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! High accuracy

! Parallel implementation is fairly easy   ↔
diagonal mass matrix

! Advantages of meshing like in FEM
� Better representation of topography and interfaces
� Possibility of deformed elements

Pictures taken from Komatitsch and Vilotte (1998) and Komatitsch and Tromp (2002a-b)

Motivation Motivation �� whywhy SEM?SEM?



Motivation Motivation �� WhyWhy still still lookinglooking at 1D?at 1D?

! Simple analytical solution
� Quantitative comparisons

! Educational aspect
� all concepts can be explained considering a 1D case
� Extensions to higher dimension are then rather 

straightforward
� formulas are looking simpler ☺



From theFrom the ��Weak FormulationWeak Formulation� to a Global � to a Global 
Linear SystemLinear System

Aim of SEM (FEM) formulation: invertible linear system of equations

Starting with 1D wave equation:

Free surface boundary conditions:

Weak Formulation:

Linear System of equations �
matrix formulation



5 5 StepsSteps to to get theget the Global Matrix Global Matrix EquationEquation

1. Domain decomposition → Mesh of elements
→ Transformation between physical

and local element coordinates
= Mapping

2. Interpolation of functions → Lagrange polynomials
on the elements → Gauss-Lobatto-Legendre (GLL) points

3. Integration over the → GLL integration quadrature
element GLL points and weights

4. The elemental matrices:
- mass matrix → diagonal using Lagrange polynomials

and GLL quadrature
- stiffness matrix → can be used as in FEM but it is easier

to calculate forces (see later)

5. Assembly → Connectivity Matrix

→→→→ Global linear system



Domain Ω

1D „meshing“Subdividing Ω into elements

Mapping Function
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coordinate transformation

1. Domain1. Domain DecompositionDecomposition �� Mapping Mapping 
FunctionFunction



non deformed elements

deformed elements

! Now 2D!

product of degree 1 Lagrange polynomials

product of degree 2 Lagrange polynomials

Notice! In 3D it is a triple product!

Examples
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TransformationTransformation



Shape FunctionShape Function �� 2D 2D ExamplesExamples
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CoordinateCoordinate Transformation Transformation contcont´d´d
Jacobi Matrix and Jacobian Jacobi Matrix and Jacobian DeterminantDeterminant

1D 3D

Later, when  calculating derivatives and integrals, we will have to correct for the
coordinate transformation. HOW is it done?

Jacobi Matrix and its determinant
called Jacobian

The Jacobian describes the volume
change of the element 



2. Interpolation on 2. Interpolation on thethe ElementsElements

Interpolation is done using Lagrange polynomials defined on the
Gauss-Lobatto-Legendre points.

interpolation interpolating functions

Polynomial degree N for interpolation is usually higher than that for the mapping

GLL points: The N+1 roots of the Legendre polynomial of degree N



Lagrange PolynomialsLagrange Polynomials -- ExamplesExamples
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Lagrange polynomial !
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of degree 8



3. Integration 3. Integration Over theOver the ElementElement

Gauss-Lobatto-Legendre quadrature for spatial integration
!BIG advantage!

(compared to quadratures using Chebychev polynomials)

same collocation points for interpolation and integration
→ diagonal mass matrix

(this we will see on the next slides � remember )

GLL weights of integration



4. 4. The ElementalThe Elemental Matrices Matrices ��
MassMass MatrixMatrix

Now - the most important issue of SEM � How does it become diagonal?
(Sorry, nasty formulas inevitable ;-)

Starting with 1. term of the weak formulation:

integration quadrature

interpolating v and u

coordinate transformation

weights



Mass Marix contMass Marix cont´d´d

Thanks to Kronecker delta the
formula is getting simpler!

Rearranging we get which can be expressed as

Finally the world is simple again!



4. 4. The ElementalThe Elemental Matrices Matrices ��
StiffnessStiffness MatrixMatrix

Having to factorize an even more complicated equation we obtain the
stiffness matrix

Note! The �Kronecker delta relation� does not hold for the derivatives
of the Lagrange  polynomials

→ the stiffness matrix is not diagonal!

All elements of the elemental stiffness matrix are therefore nonzero



5. 5. The Assembly ProcessThe Assembly Process ��
ConnectivityConnectivity MatrixMatrix

How do the elemental matrices contribute to the global system?

Important information we need: - How are the elements connected?
- Which elements share nodes
- To which elements contributes

a certain node?

→ �Connectivity Matrix�

#1#2

#3 #4



Assembling Assembling thethe Global MatricesGlobal Matrices

How do we use the information contained in the Connectivity Matrix?

i indicates element number
j and k indicate the N+1 nodes



Two WaysTwo Ways to to get theget the Global Matrix Global Matrix 
EquationEquation

1. Explicitly calculating the global stiffness matrix once for the whole simulation

2. Calculating the forces at all nodes for every timestep and then summing the forces
at each node (= assembling the global force vector F)
Advantage: much easier to implement in 2- and 3D
Drawback:  CPU time increases

Calculation of Forces

strain at node i:

Hooke´s Law → stress:

Note: Here we need to correct for the coordinate transformation (same for stiffness matrix)
→ 2 x Jacobi Matrix of inverse transformation → 1 x Jacobian Determinant

1. x

2. x



Boundary ConditionsBoundary Conditions

Implementation of different boundary conditions in the SEM formulation is very easy

1. Free surface boundary conditions are implicitly included in the weak formulation
→ nothing to be done → time integration (explicit Newmark scheme)

2. Rigid boundaries are easily applied by not inverting the linear system for 
boundary nodes

This corresponds to setting U(1) and U(ng) equal to zero for all times.



Boundary Conditions contBoundary Conditions cont´d´d

3. Periodic boundary conditions: sum forces and masses at the edges

→ F(1)periodic = F(1) fs + F(ng) fs same for F(ng)periodic

→ M(1)periodic = M(1) fs + M(ng) fs and M(ng)periodic

4. Absorbing boundary conditions: 

stress conditions at the edges: 

→ F(1)absorbing = F(1) fs + 

→ F(1)absorbing = F(1) fs + 



SummarySummary of SEM of SEM ConceptsConcepts

! Weak formulation
! Therefore few problems with boundary 

conditions
! Use forces instead of the stiffness matrix
! Additional information is needed �

Connectivity
! Assembly is time consuming
! Lagrange polynomials in connection with 

Gauss-Lobatto-Legendre quadrature
! Most important: the diagonal mass matrix



ComparisonComparison of SEM and Optimal FD of SEM and Optimal FD 
OperatorsOperators

!Why comparing to Optimal Operators
(Opt. Op.) ?
� Both methods are said to be more accurate

than conventional FE and FD methods
� Both were developed in the last 10 years

and are still not commonly used (especially
Opt. Op. are not fully established in 
computational Seismology)



ComparisionComparision
TheThe SetupSetup

! Model size 1200 grid points

! Source Delta peak in space and time

! Receiver Array every 5th gridpoint  → 240 receivers

! Effective Courant 0.5 (grid spacing varies in SEM)

Number 0.82 used in stability criterion

! Filtering 5 to 40 points per wavelength (ppw)

frequencies chosen correspondingly

! Propagation length 1 to 40 propageted wavelengths (npw)

! Analytical solution Heaviside shaped

(displacement) first arrival in seismogram at time 



SeismogramsSeismograms
HomogeneousHomogeneous and and Two LayeredTwo Layered MediumMedium



HowHow to check to check for performancefor performance??

synthetic seismograms + analytical solution → relative solution error (rse)

The used setup allows for a uge database
of rse covering a wide range of ppw and npw

What determines the perfomance of a
numerical method?

The effort (or CPU time) it takes to achieve a certain accuracy for a given 
problem � i.e. the points per wavelength one has to use to reach an

acceptable error after propagating the signal a wanted number of
wavelengths

and the memory usage.



CPU CPU CostCost

Benchmarking the CPU time

Several runs with different model sizes (1000 � 20000 nodes) → CPU time per grid node 
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ResultsResults �� Homogeneous CaseHomogeneous Case



HomogeneousHomogeneous ModelModel�� RSERSE DifferenceDifference
and Relative CPU timeand Relative CPU time
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Two LayeredTwo Layered ModelModel�� RSERSE DifferenceDifference and and 
Relative CPU timeRelative CPU time
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ConclusionsConclusions

! Memory → no big role in 1D, but may be in 3D
! Similar behaviour of errors

� SEM slightly better for less than 20 npw and for 7
ppw and less

! CPU cost is much higher for SEM
→ Opt. Op. win for the used setup (without 
boundaries) in 1D
→ SEM in heterogeneous model better than in

homogeneous compared to Opt. Op.
! Simulations including surface waves in 3D

models may be better with SEM
! Perhaps better approximation of interfaces



FutureFuture WorkWork
1D

! Comparison of several subroutines for the 
calculation of the GLL points and weights

! Comparison of stiffness matrix and calculation
of forces implementations

3D
! Installation of a 3D code written by Komatitsch

and Tromp (2003) on the Hitachi
! Comparison of 3D SEM-simulations in the

Cologne Basin model with the results of the FD
simulations performed by Michael Ewald
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Boundary ConditionsBoundary Conditions �� ExamplesExamples
FreeFree SurfaceSurface
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Boundary ConditionsBoundary Conditions �� ExamplesExamples
Rigid BoundariesRigid Boundaries
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Boundary ConditionsBoundary Conditions �� ExamplesExamples
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Boundary ConditionsBoundary Conditions �� ExamplesExamples
Absorbing BoundariesAbsorbing Boundaries
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ResultsResults �� Two LayeredTwo Layered MediumMedium


