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Motivation — why SEM?

® High accuracy

® Parallel implementation is fairly easy. o
diagonal mass matrix

® Advantages of meshing like in FEM
— Better representation of topography and interfaces
— Possibility of deformed elements

Pictures taken from Komatitsch and Vilotte (1998) and Komatitsch and Tromp (2002a-b)



Motivation — Why still looking at 1D

® Simple analytical solution
— Quantitative comparisons

® Educational aspect
— all concepts can be explained considering a 1D case

— Extensions to higher dimension are then rather
straightforward

— formulas are looking simpler ©



Aim of SEM (FEM) formulation: invertible linear system of equations
d%u & , Ou
Starting with 1D wave equation: P o3 ~ an (1 g) = f(=z)

ido — [vpVuds + [ VopVude= [ vfd
prvua: r'vu ua:+Qv,u u dx Q'vfa:

Free surface boundary conditions: u—=0c=0

Weak Formulation: / pvudr + / Vv u Vu dx =/ v f dx
Q Q Q

Linear System of equations — .
matrix formulation MU + KU = F




1.

5 Steps to get the Global Matrix Equation

Domain decomposition

Interpolation of functions
on the elements

Integration over the
element

The elemental matrices:
- mass matrix

- stiffness matrix

Assembly

—

Mesh of elements

Transformation between physical
and local element coordinates

Mapping

Lagrange polynomials
Gauss-Lobatto-Legendre (GLLE), points

GLL integration quadrature
GLL points and weights

diagonal using Lagrange polynomials
and GLL quadrature

can be used as in FEM but it is easier
to calculate forces (see later)

Connectivity Matrix

Global linear system



1. Domain - Decomposition — Mapping
Function

Domain Q

ne =2
H— ——8 I —+1
012 3 4 5 6 78

Q Q, Q,

Mapping Function
coordinate transformation

2(€) = Y Na(®) za
a=1




Mapping Function — Coordinate
Transformation

non deformed elements

INow2D!  a(&m) = 3 Na(yn) za

a=1
product of degree 1 Lagrange polynomials
1 —
Ni(&,m) = £5(8) £(m), e = =%

No(E,m) = £(&) () de) =

1
Examples

product of degree 2 Lagrange polynomials

M) = B3O Bm),  Be = L

No(€,m) = £3(€) £3(n) B = 1-¢2

Notice! In 3D it is a triple product!




Shape Function — 2D Examples




Coordinate Transformation cont’d
Jacobi Matrix and Jacobian Determinant

Later, when calculating derivatives and integrals, we will have to correct for the
coordinate transformation. HOW is it done?

1D 3D

Jacobi Matrix and its determinant O

called Jacobian o€
Oy
5 25

T z
J = |a—£| 9¢

oz
9’

oz, y, z)
(&, m,¢)

oz(€) _ ”Z ONL(£) _ J = |J|| =
86 a=1 86 ’

The Jacobian describes the volume - 5 dzr dy dz = 7 d& dn dc
change of the element




2. Interpolation on the Elements

Interpolation is done using Lagrange polynomials defined on the
Gauss-Lobatto-Legendre points.

interpolation interpolating functions

Al T €4
ue(§) & Y ue(&) £:(€) 6=11 —7
i=0 J;?:E(;)&z_&j

N
!
Vue(§) = ) ue(§)4;(€) £:(&5) = 0;;
1=0
Polynomial degree N for interpolation is usually higher than that for the mapping

GLL points:  The N+1 roots of the Legendre polynomial P, of degree N




Lagrange Polynomials - Examples

All 6 Lagrange polynomials
of degree 5

e

, . Lagrange polynomial 07
of degree 8




3. Integration Over the Element

Gauss-Lobatto-Legendre quadrature for spatial integration

IBIG advantage!
(compared to quadratures using Chebychev polynomials)

same collocation points for interpolation and integration

— diagonal mass matrix
(this we will see on the next slides — remember £;(§;) = ;5 )

N
IRIGEEDITRIC)
=0

GLL weights of integration
2

N<N2+ 1) [Py ()12

N(N +1)

(& = £1)

(& = =+1)




4. The Elemental Matrices —
Mass Matrix

Now - the most important issue of SEM — How does it become diagonal?
(Sorry, nasty formulas inevitable ;-)

Starting with 1. term of the weak formulation: /Qp vuder + /Q Vv u Vu dxr = /Qv f dz

coordinate transformatlon

e

| p(@) v(@) i(2) dz = [ p(€) v(e) ii(€) J de

A interpolating v and u

1 N A/N

p(&) [D_ v 4;(O)] [ u; £;(6)] T dE
- i=0 =0

N N N
integration quadrature —» > {p(ér) wilD ] vi L:CER] D Uy £;(&)] T (&)}
k=0 + =0 j=0

weights



Mass Marix cont’'d

N N N
> Aok wel ) vi L] [ 45 £(€)] Ti} =

Thanks to Kronecker delta the

/ Jformula is getting simpler!

Z {ok wk[Z &;k] [Z i 0;k] Ti}

’[,_

Rearranging we get which can be expressed as

N N
Z Z: ZO Pk wk:(s?,k: 0 k:jk]} é ugme”

Finally the world is simple again! me;; = p; wi J; 0;j




Having to factorize an even more complicated equation we obtain the
stiffness matrix

Note! The ,Kronecker delta relation® does not hold for the derivatives
of the Lagrange polynomials
- the stiffness matrix is not diagonal!

kejj = Z e Wi 4 (€k)€ (&) Tk
k=0

All elements of the elemental stiffness matrix are therefore nonzero




5. The Assembly Process —
Connectivity Matrix

How do the elemental matrices contribute to the global system?

Important information we need: - How are the elements connected?
- Which elements share nodes

- To which elements contributes
a certain node?

-, Connectivity Matrix"

O9=B-1)N+1 .. [(re—1)N +1] )
= -1)N+1] [(ne — 1)N + 2]

[(ne — )N + N +1]




Assembling the Global Matrices

How do we use the information contained in the Connectivity Matrix?

| indicates element number
j and k indicate the N+1 nodes

M(C; ;) = M(C;5) + mej(-i)

K(Cy,i, Cj,1) = K(Cy 3, Cj,) + k;e,(g

( kel kel ke$")
k,egl) kegg kegg
kS kea (ke§d + kef?) ke
keg?l) keg%
(ke$ + kel)) kel
keg?l) kegg
ke:(fl) keg?Q)




Two Ways to get the Global Matrix
Equation

1. Explicitly calculating the global stiffness matrix once for the whole simulation

2. Calculating the forces at all nodes for every timestep and then summing the forces
at each node (= assembling the global force vector F)

Advantage: much easier to implement in 2- and 3D
Drawback: CPU time increases

Calculation of Forces

8uz- 8?1,7; 367, £ _(e)
- nt
Ox 0 Oz

strain at node i:

= Yu; 4(&) -
J

Hooke's Law - stress:

Note: Here we need to correct for the coordinate transformation (same for stiffness matrix)
— 2 x Jacobi Matrix of inverse transformation - 1 x Jacobian Determinant




Boundary Conditions

Implementation of different boundary conditions in the SEM formulation is very easy

1. Free surface boundary conditions are implicitly included in the weak formulation
— nothing to be done - time integration (explicit Newmark scheme)

Uy, = At>M'F 4 2U; — Uy,

2. Rigid boundaries are easily applied by not inverting the linear system for
boundary nodes

Uy ,(2:ng—1) = At>-M'(2:ng—-1) F(2:ng—-1) +
+ 2U(2:ng—1) — U, _,(2:ng—-1)

This corresponds to setting U(1) and U(ng) equal to zero for all times.




Boundary-Conditions cont'd

3. Periodic boundary conditions: sum forces and masses at the edges

- F(1 )periodic = F(1) fs + F(ng) fs same for F(ng)periodic

- M) =M(1)  + M(ng) ¢ and M(nQ)periodic

periodic

4. Absorbing boundary conditions:

stress conditions at the edges: (o = p vg u

- I:('I)absorbing = F(1) s T p(l) US(]-) u(l)

- I:('I)absorbing = F(1) fs + p(ng) vS(ng) u(ng)




Summary-of SEM Concepts

® \Weak formulation

® Therefore few problems with boundary
conditions

® Use forces instead of the stiffness matrix

® Additional information is needed —
Connectivity

® Assembly is time consuming

® | agrange polynomials in connection with
Gauss-Lobatto-Legendre quadrature

® Most important: the diagonal mass matrix



Comparison of SEM and Optimal FD
Operators

® \Why comparing to Optimal Operators
(Opt. Op.) ?

— Both methods are said to be more accurate
than conventional FE and FD methods
— Both were developed in the last 10 years

and are still not commonly used (especially
Opt. Op. are not fully established in
computational Seismology)



Comparision

The Setup
® Model size 1200 grid points
® Source Delta peak in space and time
® Receiver Array every 5t gridpoint " 240.receivers
® Effective Courant 0.5 (grid spacing varies in SEM)
Number 0.82 used in stability criterion
® Filtering 5 to 40 points per wavelength (ppw)

frequencies chosen correspondingly
® Propagation length 1 to 40 propageted wavelengths (npw)
® Analytical solution  Heaviside shaped

(displacement) first arrival in seismogram at time ¢ = d
v



Seismograms
Homogeneous and-Two Layered Medium

Unfiltered

| L r o 1 j |
| [e— | 1k TS ___,.'
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30 ppw (17 prop W.) ' 30 ppw (18 prop. W.v, ) Y .




How to check for performance?

synthetic seismograms + analytical solution - relative solution error (rse)

The used setup allows for a uge database SE — | (uanalyt—usim)zdt
of rse covering a wide range of ppw and npw o fugmlytdt

What determines the perfomance of a
numerical method?

The effort (or CPU time) it takes to achieve a certain accuracy for a given
problem —i.e. the points per wavelength one has to use to reach an
acceptable error after propagating the signal a wanted number of
wavelengths

cpt
Cost = ppw (frse)-npw-i
ne

and the memory usage.




CPU Cost

Benchmarking the CPU time

Several runs with different model sizes (1000 — 20000 nodes) — CPU time per grid node
12 x 103

. SEM 12
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e

Opt. Op. 5pt

CPU time per time step
N IN

- Taylor 5pt

02 04 06 08 1 12 14 16 18 2x104
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Results — Homogeneous Case
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Homogeneous Model- RSE Difference
and Relative CPU time

relative CPU time

1.8
1.6

difference RSE(SEM) — RSE(Opt. Op.) 14
1.2

1

0.8




Two Layered Model- RSE Difference and
Relative - CPU time

relative CPU time

difference RSE(SEM) — RSE(Opt. Op.)




Conclusions

® Memory - no big role in 1D, but may be in 3D

® Similar behaviour of errors

— SEM slightly better for less than 20 npw and for 7
ppw and less

® CPU cost is much higher for SEM

— Opt. Op. win for the used setup (without
boundaries) in 1D

-~ SEM in heterogeneous model better than in
homogeneous compared to Opt. Op.

® Simulations including surface waves in 3D
models may be better with SEM

® Perhaps better approximation of interfaces



Future Work

1D

® Comparison of several subroutines for the
calculation of the GLL points and weights

® Comparison of stiffness matrix and calculation
of forces implementations

3D

® |nstallation of a 3D code written by Komatitsch
and Tromp (2003) on the Hitachi

® Comparison of 3D SEM-simulations in the
Cologne Basin model with the results of the FD
simulations performed by Michael Ewald
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Boundary - Conditions — Examples
Free Surface

Polynomiols of degree 5




Boundary - Conditions — Examples
Rigid Boundaries

Polynomials of degree 3




Boundary - Conditions — Examples
Periodic Boundaries

Polynomials of degree 5




Boundary - Conditions — Examples
Absorbing Boundaries

Polynomials of degree 5




Results — Two Layered Medium
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