Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Geophysics Homepage
Search:
Log in
print

Using non-diagonal data covariances in geophysical inversion

Moorkamp, M., and A. Avdeeva (2020), Using non-diagonal data covariances in geophysical inversion, Geophysical Journal International,, 222(2), 1023-1033, doi:10.1093/gji/ggaa235.

Abstract
We present a new approach that allows for the inversion of quantities derived from the observed data using non-diagonal data covariance matrices. For example, we can invert approximations of apparent resistivity and phase instead of magnetotelluric impedance using this methodology. Compared to the direct inversion of these derived quantities, the proposed methodology has two advantages: (i) If an inversion algorithm allows for the specification of a full data covariance matrix, users can invert for arbitrary derived quantities by specifying the appropriate covariance matrix instead of having to rely on the inversion code to have implemented this feature. (ii) It is fully compatible with the assumptions of least-squares optimization and thus avoids potential issues with bias when inverting quantities that are nonlinear functions of the original data, We discuss the theory of this approach and show an example using magnetotelluric data. However, the same method can be applied to other types of geophysical data, for example gravity gradient measurements.
BibTeX
@article{id2688,
  author = {M. Moorkamp and A. Avdeeva},
  journal = {Geophysical Journal International,},
  number = {2},
  pages = {1023-1033},
  title = {{Using non-diagonal data covariances in geophysical inversion}},
  volume = {222},
  year = {2020},
  doi = {10.1093/gji/ggaa235},
}
EndNote
%0 Journal Article
%A Moorkamp, M. 
%A Avdeeva, A.
%D 2020
%N 2
%V 222
%J Geophysical Journal International,
%P 1023-1033
%T Using non-diagonal data covariances in geophysical inversion
ImprintPrivacy PolicyContact
Printed 27. Nov 2021 08:40