Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Geophysics Homepage
Search:
Log in
print

Assessing Margin-Wide Rupture Behaviors along the Cascadia Megathrust with 3-D Dynamic Rupture Simulations

Ramos, Marlon, Yihe Huang, Thomas Ulrich, Duo Li, Alice-Agnes Gabriel, and Amanda Thomas (2021), Assessing Margin-Wide Rupture Behaviors along the Cascadia Megathrust with 3-D Dynamic Rupture Simulations, Journal of Geophysical Research - Solid Earth, 126, doi:10.1029/2021JB022005, open access version available at EarthArxiv https://eartharxiv.org/repository/view/2141/.

Abstract
From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred - the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3-D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high-stress asperities along the down-dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.
Further information
BibTeX
@article{id2676,
  author = {Marlon Ramos and Yihe Huang and Thomas Ulrich and Duo Li and Alice-Agnes Gabriel and Amanda Thomas},
  journal = {Journal of Geophysical Research - Solid Earth},
  note = {open access version available at EarthArxiv https://eartharxiv.org/repository/view/2141/},
  title = {{Assessing Margin-Wide Rupture Behaviors along the Cascadia Megathrust with 3-D Dynamic Rupture Simulations}},
  volume = {126},
  year = {2021},
  url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB022005},
  doi = {10.1029/2021JB022005},
}
EndNote
%0 Journal Article
%A Ramos, Marlon
%A Huang, Yihe
%A Ulrich, Thomas
%A Li, Duo
%A Gabriel, Alice-Agnes
%A Thomas, Amanda
%D 2021
%V 126
%J Journal of Geophysical Research - Solid Earth
%Z open access version available at EarthArxiv https://eartharxiv.org/repository/view/2141/
%T Assessing Margin-Wide Rupture Behaviors along the Cascadia Megathrust with 3-D Dynamic Rupture Simulations
%U https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB022005
ImprintPrivacy PolicyContact
Printed 08. Dec 2021 23:08