Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Geophysics Homepage
Search:
Log in
print

Parallel Geometric Multigrid

Hülsemann, F., M. Kowarschik, M. Mohr, and U. Rüde (2005), Parallel Geometric Multigrid, in Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, edited by A. M. Bruaset and A. Tveito, pp. 165–208, Springer, doi:10.1007/3-540-31619-1_5, ISBN: 3-540-29076-1.

Abstract
Multigrid methods are among the fastest numerical algorithms for the solution of large sparse systems of linear equations. While these algorithms exhibit asymptotically optimal computational complexity, their efficient parallelisation is hampered by the poor computation-to-communication ratio on the coarse grids. Our contribution discusses parallelisation techniques for geometric multigrid methods. It covers both theoretical approaches as well as practical implementation issues that may guide code development.
BibTeX
@incollection{id444,
  author = {F. H{\"u}lsemann and M. Kowarschik and M. Mohr and U. R{\"u}de},
  booktitle = {Numerical Solution of Partial Differential Equations on Parallel Computers},
  editor = {A. M. Bruaset and A. Tveito},
  number = {51},
  pages = {165{--}208},
  publisher = {Springer},
  series = {Lecture Notes in Computational Science and Engineering},
  title = {{Parallel Geometric Multigrid}},
  year = {2005},
  isbn = {3-540-29076-1},
  language = {en},
  doi = {10.1007/3-540-31619-1{\_}5},
}
EndNote
%0 Book Section
%A Hülsemann, F.
%A Kowarschik, M.
%A Mohr, M.
%A Rüde, U.
%E Bruaset, A. M.
%E Tveito, A.
%D 2005
%N 51
%P 165–208
%T Parallel Geometric Multigrid
%@ 3-540-29076-1
%B Numerical Solution of Partial Differential Equations on Parallel Computers
%I Springer
ImprintPrivacy PolicyContact
Printed 15. Dec 2019 21:29