Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Geophysics Homepage
Search:
Log in
print

On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation

Duru, Kenneth C., Alice-Agnes Gabriel, and Gunilla Kreiss (2019), On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation, Comput. Methods Appl. Mech. Eng., doi:10.1016/j.cma.2019.02.036.

Abstract
In this paper, we develop a provably energy stable discontinuous Galerkin spectral element method (DGSEM) approximation of the perfectly matched layer (PML) for the three and two space dimensional (3D and 2D) linear acoustic wave equations, in first order form, subject to well-posed linear boundary conditions. First, using the well-known complex coordinate stretching, we derive an efficient un-split modal PML for the 3D acoustic wave equation, truncating a cuboidal computational domain. Second, we prove asymptotic stability of the continuous PML by deriving energy estimates in the Laplace space, for the 3D PML in a heterogeneous acoustic medium, assuming piece-wise constant PML damping. Third, we develop a DGSEM for the wave equation using physically motivated numerical flux, with penalty weights, which are compatible with all well-posed, internal and external, boundary conditions. When the PML damping vanishes, by construction, our choice of penalty parameters yield an upwind scheme and a discrete energy estimate analogous to the continuous energy estimate. Fourth, to ensure numerical stability of the discretization when PML damping is present, it is necessary to systematically extend the numerical numerical fluxes, and the inter-element and boundary procedures, to the PML auxiliary differential equations. This is critical for deriving discrete energy estimates analogous to the continuous energy estimates. Finally, we propose a procedure to compute PML damping coefficients such that the PML error converges to zero, at the optimal convergence rate of the underlying numerical method. Numerical solutions are evolved in time using the high order Taylor-type time stepping scheme of the same order of accuracy of the spatial discretization. By combining the DGSEM spatial approximation with the high order Taylor-type time stepping scheme and the accuracy of the PML we obtain an arbitrarily accurate wave propagation solver in the time domain. Numerical experiments are presented in 2D and 3D corroborating the theoretical results.
Further information
BibTeX
@article{id2366,
  author = {Kenneth C. Duru and Alice-Agnes Gabriel and Gunilla Kreiss},
  journal = {Comput. Methods Appl. Mech. Eng.},
  month = {mar},
  title = {{On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation}},
  year = {2019},
  url = {https://linkinghub.elsevier.com/retrieve/pii/S0045782519301070},
  doi = {10.1016/j.cma.2019.02.036},
}
EndNote
%0 Journal Article
%A Duru, Kenneth C.
%A Gabriel, Alice-Agnes
%A Kreiss, Gunilla
%D 2019
%J Comput. Methods Appl. Mech. Eng.
%T On energy stable discontinuous Galerkin spectral element approximations of the perfectly matched layer for the wave equation
%U https://linkinghub.elsevier.com/retrieve/pii/S0045782519301070
%8 mar
ImprintPrivacy PolicyContact
Printed 21. Aug 2019 15:49