Diese Seite ist aus Gründen der Barrierefreiheit optimiert für aktuelle Browser. Sollten Sie einen älteren Browser verwenden, kann es zu Einschränkungen der Darstellung und Benutzbarkeit der Website kommen!
Geophysics Homepage
Search:
Log in
print

Prediction and Understanding of Soft-proton Contamination in XMM-Newton: A Machine Learning Approach

Kronberg, Elena A., et al. (2020), Prediction and Understanding of Soft-proton Contamination in XMM-Newton: A Machine Learning Approach, Astrophysical Journal, 903(2), 89, 89, doi:10.3847/1538-4357/abbb8f, Provided by the SAO/NASA Astrophysics Data System.

Further information
BibTeX
@article{id2667,
  author = {Elena A. Kronberg and Fabio Gastaldello and Stein Haaland and Artem Smirnov and Max Berrendorf and Simona Ghizzardi and K. D. Kuntz and Nithin Sivadas and Robert C. Allen and Andrea Tiengo and Raluca Ilie and Yu Huang and Lynn Kistler},
  journal = {Astrophysical Journal},
  month = {nov},
  note = {Provided by the SAO/NASA Astrophysics Data System},
  number = {2},
  pages = {89},
  title = {{Prediction and Understanding of Soft-proton Contamination in XMM-Newton: A Machine Learning Approach}},
  volume = {903},
  year = {2020},
  url = {https://ui.adsabs.harvard.edu/abs/2020ApJ...903...89K},
  doi = {10.3847/1538-4357/abbb8f},
  eid = {89},
}
EndNote
%0 Journal Article
%A Kronberg, Elena A.
%A Gastaldello, Fabio
%A Haaland, Stein
%A Smirnov, Artem
%A Berrendorf, Max
%A Ghizzardi, Simona
%A Kuntz, K. D.
%A Sivadas, Nithin
%A Allen, Robert C.
%A Tiengo, Andrea
%A Ilie, Raluca
%A Huang, Yu
%A Kistler, Lynn
%D 2020
%N 2
%V 903
%J Astrophysical Journal
%P 89
%Z Provided by the SAO/NASA Astrophysics Data System
%T Prediction and Understanding of Soft-proton Contamination in XMM-Newton: A Machine Learning Approach
%U https://ui.adsabs.harvard.edu/abs/2020ApJ...903...89K
%8 nov
ImprintPrivacy PolicyContact
Printed 02. Dec 2021 10:39