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Glossary19

Numerical methods Processes in nature are often de-20

scribed by partial differential equations. Finding solu-21

tions to those equations is at the heart of many stud-22

ies aiming at the explanation of observed data. Sim-23

ulations of realistic physical processes requires gener-24

ally the use of numerical methods – a special branch25

of applied mathematics – that approximate the par-26

tial differential equations and allows solving them on27

computers. Examples are the finite-difference, finite-28

element, or finite-volume methods.29

Spectral elements The spectral element method is an ex-30

tension of the finite element method that makes use31

of specific basis functions describing the solutions in-32

side each element. These basis functions (e. g., Cheby-33

shev or Legendre polynomials) allow the interpolation34

of functions exactly at certain collocation points. This35

is often termed spectral accuracy.36

Discontinuous Galerkin method The discontinuous Ga-37

lerkin method is a flavor of the finite-element method38

that allows discontinuous behavior of the spatial or39

temporal fields at the element boundaries. The discon-40

tinuities – that might be small in the case of continu-41

ous physical fields such as seismic waves – then define42

so-called Riemann problems that can be handled using43

the concepts from finite-volume techniques. There- 44

fore, the approximate solution is updated via numer- 45

ical fluxes across the element boundaries. 46

Parallel algorithms All modern supercomputers make 47

use of parallel architectures. This means that a large 48

number of processors are performing (different) tasks 49

on different data at the same time. Numerical algo- 50

rithms need to be adapted to these hardware architec- 51

tures by using specific programming paradigms (e. g., 52

the message passing interface MPI). The computa- 53

tional efficiency of such algorithms strongly depends 54

on the specific parallel nature of problem to be solved, 55

and the requirement for inter-processor communica- 56

tion. 57

Grid generation Most numerical methods are based on 58

the calculation of the solutions at a large set of points 59

(grids) that are either static or depend on time (adap- 60

tive grids). These grids often need to be adapted to 61

the specific geometrical properties of the objects to be 62

modeled (volcano, reservoir, globe). Grids may be de- 63

signed to follow domain boundaries and internal sur- 64

faces. Before specific numerical solvers are employed 65

the grid points are usually connected to form triangles 66

or rectangles in 2D or hexahedra or tetrahedra in 3D. 67

Definition of the Subject 68

Seismology is the science that aims at understanding the 69

Earth’s interior and its seismic sources from measure- 70

ments of vibrations of the solid Earth. The resulting im- 71

ages of the physical properties of internal structures and 72

the spatio-temporal behavior of earthquake rupture pro- 73

cesses are prerequisites to understanding the dynamic evo- 74

lution of our planet and the physics of earthquakes. One 75

of the key ingredients to obtain these images is the calcu- 76

lation of synthetic (or theoretical) seismograms for given 77

earthquake sources and internal structures. These syn- 78

thetic seismograms can then be compared quantitatively 79

with observations and acceptable models be searched for 80

using the theory of inverse problems. The methodologies 81

to calculate synthetic seismograms have evolved dramati- 82

cally over the past decades in parallel with the evolution of 83

computational resources and the ever increasing volumes 84

of permanent seismic observations in global, and regional 85

seismic networks, volcano monitoring networks and ex- 86

perimental campaigns. Today it is a tremendous challenge 87

to extract an optimal amount of information from seismo- 88

grams. The imaging process is still primarily carried out 89

using ray theory or extensions thereof not fully taking into 90

account the complex scattering processes that are occur- 91

ring in nature. 92
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2 Simulation of Seismic Wave Propagation in Media with Complex Geometries

To model seismic observations in their full complexity93

we need to be able to simulate wave propagation through94

3D structures with constitutive relations that account for95

anisotropic elasticity, attenuation, porous media as well96

as complex internal interfaces such as layer boundaries or97

fault systems. This implies that numerical methods have98

to be employed that solve the underlying partial differen-99

tial equations on computational grids. The high-frequency100

oscillatory nature of seismic wave fields makes this an ex-101

pensive endeavor as far as computational resources are102

concerned. As seismic waves are propagating hundreds103

of wavelengths through scattering media, the required ac-104

curacy of the numerical approximations has to be of the105

highest possible order. Despite the fact that the physics of106

wave propagation is well understood, only recently com-107

putational algorithms are becoming available that allow108

us to accurately simulate wave propagation on many scale109

such as reservoirs, volcanoes, sedimentary basins, conti-110

nents, and whole planets.111

In addition to the imaging problem for subsurface112

structure and earthquake sources, the possibilities for 3D113

wave simulations has opened a new route to forecast-114

ing strong ground motions following large earthquakes115

in seismically active regions. In the absence of any hope116

to deterministically predict earthquakes, the calculation117

of earthquake scenarios in regions with sufficiently well118

known crustal structures and fault locations will play an119

important role in mitigating damage particularly due to120

potentially amplifying local velocity structures. However,121

to be able to employ the advanced 3D simulation technol-122

ogy in an efficient way, and to make use of the fast ad-123

vance of supercomputing infrastructure, a paradigm shift124

in the concept of wave simulation software is necessary:125

The Earth science community has to build soft infrastruc-126

tures that enable massive use of those simulation tools on127

the available high-performance computing infrastructure.128

In this paper we want to present the state of the art of129

computational wave propagation and point to necessary130

developments in the coming years, particularly in connec-131

tion with finding efficient ways to generate computational132

grids for models with complex topography, faults, and the133

combined simulation of soil and structures.134

Introduction135

We first illustrate the evolution of methodologies to calcu-136

late and model aspects of seismic observations for the case137

of global wave propagation. Seismology can look back at138

almost 50 years of systematic observations of earthquake139

induced teleseismic groundmotions with the standardized140

global seismic and regional networks. The digital revolu-141

tion in the past decades has altered the recording culture 142

such that now seismometers are recording ground mo- 143

tions permanently rather than in trigger-mode, observa- 144

tions are becoming available in near-real time, and – be- 145

cause of the required sampling rates – the daily amount 146

of observations automatically sent to the data centers is gi- 147

gantic. If we take a qualitative look at a seismic observation 148

(Fig. 1) we can illustrate what it takes to model either part 149

or the whole information contained in such physical mea- 150

surements. 151

In Fig. 1 a seismogram observed using a broadband 152

seismometer (station WET in Germany) is shown. Glob- 153

ally observed seismograms following large earthquakes 154

contain frequencies up to 1 Hz (P-wave motions) down 155

to periods of around one hour (eigenmodes of the Earth) 156

in which case modeling is carried out in the frequency do- 157

main. Seismograms of the kind shown in Fig. 1 contain 158

many types of information. For large earthquakes the first 159

part of the seismogram (inlet) contains valuable informa- 160

tion on the spatio-temporal evolution of the earthquake 161

rupture on a finite-size fault. A model of the fault slip his- 162

tory is a prerequisite to model the complete wave form of 163

seismograms as the whole seismogram is affected by it un- 164

less severe low-pass filtering is applied. Information on the 165

global seismic velocity structure is contained in the arrival 166

times of numerous body-wave phases (here only P- and S- 167

wave arrivals are indicated) and in the dispersive behavior 168

of the surface waves (here the onset of the low-frequency 169

Love waves is indicated). Further information is contained 170

in the characteristics of the coda to body wave phases in- 171

dicative of scattering in various parts of the Earth (see [62] 172

for an account of modern observational seismology). 173

Adding a temporal and spatial scale to the above qual- 174

itative discussion reveals some important insight what it 175

takes to simulate wave propagation on a planetary scale 176

using grid-based numerical methods. Given the maximum 177

frequency of around 1Hz (P-waves) and 0.2Hz (S-waves) 178

the minimum wavelength in the Earth is expected to be 179

O(km), requiring O(100m) type grid spacing at least in 180

the crustal part of the Earth leading to O(1012) neces- 181

sary grid points (or volume elements) for accurate nu- 182

merical simulations. This would lead to memory require- 183

ments O(100 TByte) that are today possible on some of the 184

world’s largest supercomputers. The message here is that 185

despite the rapid evolution of computational power, the 186

complete modeling of teleseismic observations using ap- 187

proaches such as spectral elements (e. g., [63,64]) requiring 188

tremendous numbers of calculations to constrain struc- 189

ture and sources will remain a grand challenge for some 190

time to come. However, in many cases it is not necessary 191

or not even desirable to simulate or model the whole seis- 192
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Simulation of Seismic Wave Propagation in Media with Complex Geometries 3

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 1
Transverse velocity seismogram of the M8.3 Tokachi-Oki earthquake near Hokkaido observed at station WET in Germany with
a broadband seismometer. The total seismogram length is one hour. Arrival times of body wave phases (P, S) and the onset of trans-
versely polarized surface (Love) waves are indicated

mogram, i. e. the complete observed frequency band. If we193

lower the cutoff frequency to 0.1Hz (period 10 s), the re-194

quired memory drops down to O(100GByte). Such calcu-195

lations can be done today on PC-clusters that can be in-196

expensively assembled and run on an institutional level197

(e. g., [8]). In addition, it means that the massive use of198

such forward simulations for imaging purposes and phe-199

nomenological investigations of wavefield effects is around200

the corner. This does not only apply to wave propagation201

or imaging on a planetary scale but in the same way to202

problems in volcanology, regional seismology, and explo-203

ration geophysics.204

An illustration of global wave simulations using the fi-205

nite difference method (e. g., [14,54,55,58,109,110,114]) is206

shown in Fig. 2 (more details on the methodologies are207

given in Sect. “The Evolution of Numerical Methods and208

Grids”). The snapshot of the radial component of motion209

at a time when the direct P-wave has almost crossed the210

Earth reveals the tremendous complexity the wave field211

exhibits even in the case of a spherically symmetric Earth212

model (PREM, Dziewonski and Anderson 1980 TS2 ). The213

wavefield with a dominant period of ca. 15 seconds also214

highlights the short wavelengths that need to be propa-215

gated over very large distances. This is the special require-216

ment for computational wave propagation that is quite217

different in other fields of computational Earth Sciences.218

While the theory of linear elastic wave propagation is well219

understood and most numerical methods have been ap- 220

plied to it in various forms, the accuracy requirements are 221

so high that – particularly whenmodels with complex geo- 222

metrical features need to be modeled – there are still open 223

questions as to what works best. One of the main goals 224

of this paper is to highlight the need to focus on the grid 225

generation process for various types of computational grid 226

cells (e. g., rectangular, triangular in 2D, and hexahedral 227

and tetrahedral in 3D) and the interface to appropriate 228

highly accurate solvers for wave propagation problems. 229

As mentioned above computational modeling of 230

strong ground motions following large earthquakes (see 231

Fig. 3 for an illustration) is expected to play an increas- 232

ingly important role in producing realistic estimates of 233

shaking hazard. There are several problems that are cur- 234

rently unsolved: (1) to achieve frequencies that are inter- 235

esting for earthquake engineers in connection with struc- 236

tural damage the near surface velocity structure needs to 237

be known and frequencies beyond 5Hz need to be calcu- 238

lated. In most cases this structure is not well known (on 239

top of the uncertainties of the lower basin structures) and 240

the required frequencies demand extremely large compu- 241

tational models. (2) In addition to structural uncertain- 242

ties, there are strong dependencies on the particular earth- 243

quake rupture process that influence the observed ground 244

motions. This suggests that many 3D calculations should 245

be carried out for any characteristic earthquake of inter- 246

TS2 Do you mean Dziewonski and Anderson 1981?
TS3 Please check. This is not cited in the bibliography.
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4 Simulation of Seismic Wave Propagation in Media with Complex Geometries

Simulation of Seismic Wave Propagation in Media with Complex
Geometries, Figure 2
Snapshot of wave propagation inside the Earth approx. 25 min-
utes after an earthquake occurs at the top part of the model.
The radial component of motion is shown (blue and red denote
positive and negative velocity, resp.). The simulation was car-
ried using an axi-symmetric approximation to the wave equa-
tion [55,58] and high-order finite-differences. Motion is allowed
in the radial and horizontal directions. This corresponds to the
P-SV case in 2D cartesian calculations. Therefore the wavefield
contains both P- and S-waves and phase conversions

est, to account for such variations (e. g., Wang et al. 2006,247

2007 TS3 ). (3) The large velocity variations (e. g., 300m/s248

up to 8 km/s) require locally varying grid densities which249

is difficult to achieve with some of the classical numerical250

methods in use (e. g. finite differences). Some of the poten-251

tial routes are developed below.252

In summary, computational simulation of 3D wave253

propagation will be more and more a central tool for seis-254

mology with application in imaging problems, earthquake255

rupture problems, questions of shaking hazard, volcano256

seismology and planetary seismology. In the following we257

briefly review the history of the application of numeri-258

cal methods to wave propagation problems and the evo-259

lution of computational grids. The increasing complexity260

of models in terms of geometrical features and range of261

physical properties imposes the use of novel methodolo-262

gies that go far beyond the initial approximations based263

on finite differences.264

Simulation of Seismic Wave Propagation in Media with Complex
Geometries, Figure 3
Snapshot (horizontal component) for a simulation of the M5.9
Roermond earthquake in the Cologne Basin in 1992 [38]. The 3D
sedimentary basin (maximumdepth 2 km) leads to strong ampli-
fication andprolongation of the shakingduration that correlates
well with basin depth. Systematic calculationsmay helpmitigat-
ing earthquake induced damage

The Evolution of Numerical Methods and Grids 265

In this section we give a brief history of the application of 266

numerical methods to the problem of seismic wave propa- 267

gation. Such a review can not be complete, certainly gives 268

a limited perspective, and only some key references are 269

given. One of the points we would like to highlight is 270

the evolution of the computational grids that are being 271

employed for wave propagation problems and the conse- 272

quences on the numerical methods of choice now and in 273

the future. 274

Why do we need numerical approximations to elas- 275

tic wave propagation problems at all? It is remarkable 276

what we learned about the Earth without them! In the 277

first decades in seismology, modeling of seismic obser- 278

vations was restricted to the calculation of ray-theoret- 279

ical travel times in spherically symmetric Earth models 280

(e. g., [13,16]). With the advent of computing machines 281

these approaches could be extended to 2D and 3D me- 282

dia leading to ray-theoretical tomography and the images 283

of the Earth’s interior that we know today (e. g., [115]). 284

The analytical solution of wave propagation in spher- 285

ical coordinates naturally leads to spherical harmonics 286

and the possible quasi-analytical solution of wave prop- 287

agation problems in spherically symmetric media using 288

normal modes. As this methodology leads to complete 289

waveforms the term “waveform inversion” was coined for 290

fitting the waveforms of surface waves by correcting the 291

phase differences for surface waves at particular frequen- 292

cies (e. g., [118]). This allowed the recovery of seismic ve- 293

locity models particularly of crust and upper mantle (sur- 294

face wave tomography). A similar approach in Cartesian 295
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Simulation of Seismic Wave Propagation in Media with Complex Geometries 5

layered geometry led to complete solutions of the wave296

equation in cylindrical coordinates through the summa-297

tion of Bessel functions, the reflectivity method [46]. This298

method was later extended to spherical media through299

the Earth-flattening transformation [85]. Recently, ray-300

theory was extended allowing the incorporation of finite-301

frequency effects (e. g., [84]). The impact on the imaging302

process is still being debated.303

Most of these methods are still today extremely valu-304

able in providing first estimates of 2D or 3D effects and305

are important for the use in standard seismic processing306

due to their computational efficiency. Nevertheless, with307

the tremendous improvements of the quality of seismic308

observations we strive today to extract much more infor-309

mation on Earth’s structure and sources from recorded310

waveforms. As waveforms are in most places strongly af-311

fected by 3D structural variations the application of nu-312

merical methods that solve “directly” the partial differen-313

tial equations descriptive of wave propagation becomes314

mandatory. This necessity was recognized early on and the315

developments of numerical wave propagation began in the316

sixties of the 20th century.317

Numerical Methods318

Applied to Wave Propagation Problems319

The finite-difference technique was the first numerical320

method to be intensively applied to the wave propagation321

problem (e. g., [1,6,61,77,82,83,88,89,116,117]). The par-322

tial differentials in the wave equation are replaced by fi-323

nite differences leading to an extrapolation scheme in time324

that can either be implicit or explicit. The analysis of such325

simple numerical schemes led to concepts that are central326

to basically all numerical solutions of wave propagation327

problems. First, the discretization in space and time intro-328

duces a scale into the problem with the consequence that329

the numerical scheme becomes dispersive. This numerical330

dispersion – for the originally non-dispersive problem of331

purely elastic wave propagation – has the consequence that332

for long propagation distances wave pulses are no longer333

stable but disperse. The consequence is, that in any sim-334

ulation one has to ascertain that enough number of grid335

points per wavelength are employed so that numerical dis-336

persion is reduced sufficiently. Finding numerical schemes337

that minimize these effects has been at the heart of any new338

methodology ever since. Second, the so-called CFL crite-339

rion [24] that follows from the same theoretical analysis of340

the numerical scheme basically relates a “grid velocity” –341

the ratio between the space and time increments dx and342

dt, respectively – to the largest physical velocity c in the343

model. In order to have a stable calculation, this ratio has344

to be smaller than a constant " that depends on the specific 345

scheme and the space dimension, a value usually close to 346

unity 347

c
dt
dx

� " : (1) 348

This simple relationship has important consequences: 349

When the grid spacing dxmust be small, because of model 350

areas with low seismic velocities, then the time step dt has 351

to be made smaller accordingly leading to an overall in- 352

crease in the number of time steps and thus overall com- 353

putational requirements. In addition, the early implemen- 354

tations where based on regular rectangular grids, implying 355

that large parts of the model where carrying out unneces- 356

sary calculations. As shown below local time-stepping and 357

local accuracy are important ingredients in efficient mod- 358

ern algorithms. 359

The fairly inaccurate low order spatial finite-differ- 360

ence schemes were later extended to high-order opera- 361

tors [26,48,49,50,51,56,76,103]. Nevertheless, the required 362

number of grid points per wavelength was still large, par- 363

ticularly for long propagation distances. This has led to 364

the introduction of pseudo-spectral schemes, “pseudo” be- 365

cause only the calculations of the derivatives where done 366

in the spectral domain, but the wave equation was still 367

solved in the space-time domain with a time-extrapola- 368

tion scheme based on finite differences (e. g., Kossloff and 369

Baysal 1982 TS3 [10,45,47]). The advantage of the calcula- 370

tion of derivatives in the spectral domain is at hand: The 371

Fourier theorem tells us that by multiplying the spectrum 372

with ik, i being the imaginary unit and k the wavenumber, 373

we obtain an exact derivative (exact to numerical preci- 374

sion) on a regular set of grid points. This sounds attractive. 375

However, there are always two sides to the coin. The calcu- 376

lation requires FFTs to be carried out extensively and the 377

original “local” scheme becomes a “global” scheme. This 378

implies that the derivative at a particular point in the com- 379

putational grid becomes dependent on any other point in 380

the grid. This turns out to be computationally inefficient, 381

in particular on parallel hardware. In addition, the Fourier 382

approximations imply periodicity which makes the imple- 383

mentation of boundary conditions (like the free surface, or 384

absorbing boundary conditions) difficult. 385

By replacing the basis functions (Fourier series) in the 386

classical pseudo-spectral method with Chebyshev polyno- 387

mials that are defined in a limited domain (�1,1) the prob- 388

lemwith the implementation of boundary problems found 389

an elegant solution (e. g., [66,107,108]). However, through 390

the irregular spacing of the Chebyshev collocation points 391

(grid densification at the domain boundaries, see section 392

below) new problems arose with the consequence that this 393
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6 Simulation of Seismic Wave Propagation in Media with Complex Geometries

approach was not much further pursued except in com-394

bination with a multi-domain approach in which the field395

variables exchange their values at the domain boundaries396

(e. g., [108]).397

So far, the numerical solutions described are all based398

on the strong form of the wave equation. The finite-ele-399

ment method is another main scheme that found immedi-400

ate applications to wave propagation problems (e. g., [79]).401

Finite element schemes are based on solving the weak402

form of the wave equation. This implies that the space-403

and time-dependent fields are replaced by weighted sums404

of basis (also called trial) functions defined inside ele-405

ments. The main advantage of finite element schemes is406

that elements can have arbitrary shape (e. g., triangles,407

trapezoidal, hexahedral, tetrahedral, etc.). Depending on408

the polynomial order chosen inside the elements the spa-409

tial accuracy can be as desired. The time-extrapolation410

schemes are usually based on standard finite differences.411

There are several reasons why finite-element schemeswere412

less widely used in the field of wave propagation. First, in413

the process a large system matrix needs to be assembled414

and must be inverted. Matrix inversion in principle re-415

quires global communication and is therefore not optimal416

on parallel hardware. Second, in comparison with the fi-417

nite-element method, finite- difference schemes are more418

easily coded and implemented due their algorithmic sim-419

plicity.420

A tremendous step forward was the introduction of ba-421

sis functions inside the elements that have spectral accu-422

racy, e. g., Chebyshev or Legendre polynomials [15,39,65,423

86,90,98]. The so-called spectral element scheme became424

particularly attractive with the discovery that – by using425

Legendre polynomials – the matrices that required inver-426

sion became diagonal [65]. This implies that the scheme427

does no longer need global communication, it is a lo-428

cal scheme in which extrapolation to the next time step429

can be naturally parallelized. With the extension of this430

scheme to spherical grids using the cubed-sphere dis-431

cretization [63,64] this scheme is today the method of432

choice on many scales unless highly complex models need433

to be initiated.434

Most numerical schemes for wave propagation prob-435

lems were based on regular, regular stretched, or hexahe-436

dral grids. The numerical solution to unstructured grids437

had much less attention, despite the fact that highly com-438

plex models with large structural heterogeneities seem to439

be more readily described with unstructured point clouds.440

Attempts weremade to apply finite volume schemes to this441

problem [31], and other concepts (like natural neighbor442

coordinates [7] to find numerical operators that are ap-443

plicable on unstructured grids [72,73]). These approaches444

were unfortunately not accurate enough to be relevant 445

for 3D problems. Recently, a new flavor of numerical 446

method found application to wave propagation on trian- 447

gular or tetrahedral grids. This combination of a discon- 448

tinuous Galerkin method with ideas from finite volume 449

schemes [33,70] allows for the first time arbitrary accu- 450

racy in space and time on unstructured grids. While the 451

numerical solution on tetrahedral grids remains computa- 452

tionally slower, there is a tremendous advantage in gener- 453

ating computational grids for complex Earth models. De- 454

tails on this novel scheme are given below. 455

Before presenting two schemes (spectral elements and 456

the discontinuous Galerkin method) and some applica- 457

tions in more detail we want to review the evolution of 458

grids used in wave propagation problems. 459

Grids for Wave Propagation Problems 460

The history of grid types used for problems in compu- 461

tational wave propagation is tightly linked to the evolu- 462

tion of numerical algorithms and available computational 463

resources. The latter in the sense that – as motivated in 464

the introduction – even today realistic simulations of wave 465

propagation are still computationally expensive. This im- 466

plies that it is not sufficient to apply stable and simple nu- 467

merical schemes and just use enough grid points per wave- 468

length and/or extremely fine grids for geometrically com- 469

plex models. Optimal mathematical algorithms that min- 470

imize the computational effort are still sought for as the 471

recent developments show that are outlined in the follow- 472

ing sections. 473

In Fig. 4 a number of different computational grids 474

in two space dimensions is illustrated. The simple-most 475

equally-spaced regular finite-difference grid is only of 476

practical use in situations without strong material dis- 477

continuities. With the introduction of the pseudospectral 478

method based on Chebyshev polynomials grids as shown 479

in Fig. 4a grids appeared that are denser near the domain 480

boundaries and coarse in the interior. While this enabled 481

a muchmore efficient implementation of boundary condi- 482

tions the ratio between the size of the largest to the small- 483

est cell depends on the overall number of grid points per 484

dimension and can be very large. This leads to very small 485

time steps, that can in some way be compensated by grid 486

stretching [9] but overall the problem remains. An ele- 487

gant way of allowing grids to be of more practical shape is 488

by stretching the grids using analytical functions (Fig. 4c, 489

this basically corresponds to a coordinate transformation, 490

e. g., [50,107]). By doing this either smooth surface topog- 491

raphy or smoothly varying internal interfaces can be fol- 492

lowed by the grid allowing a more efficient simulation of 493
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Simulation of Seismic Wave Propagation in Media with Complex Geometries 7

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 4
Examples of 2D grids used for wave propagation simulations. a Chebyshev grid with grid densification near the domain boundaries.
bMultidomain finite-difference grid in regular spherical coordinates. c Stretched regular finite-difference grid that allows following
smoothly varying interface or surface boundaries. d Triangular staggered grid following an interface that allows finite-difference
type operators. e Unstructured grid with associated Voronoi cells for calculations using the finite-volume method. f Triangular cells
for finite-element type calculations. See text for details and references

geometrical features compared to a blocky representation494

on standard finite difference grids.495

The problem of global wave propagation using spheri-496

cal coordinates (here in the two-dimensional, axi-symmet-497

ric approximation) nicely illustrates the necessity to have498

spatially varying grid density (e. g., [42,43,53,59,89,109]).499

The grid shown in Fig. 4b demonstrates that in spheri-500

cal coordinates a regular discretization leads to grid dis-501

tances that get smaller and smaller towards the center of502

the Earth. This is in contrast to what is required to effi-503

ciently model the Earth’s velocity structure: Velocities are504

small near the surface (requiring high grid density) and in-505

crease towards the center of the Earth (requiring low grid506

density). One way of adjusting is by re-gridding the mesh507

every now and then, in this case doubling the grid spacing508

appropriately. This is possible, yet it requires interpolation509

at the domain boundaries that slightly degrades the accu-510

racy of the scheme.511

The problems with grid density, and complex surfaces512

cries for the use of so-called unstructured grids. Let us de-513

fine an unstructured grid as an initial set of points (a point514

cloud), each point characterized by its spatial coordinates.515

We wish to solve our partial differential equations on this516

point set. It is clear that – with appropriate grid genera-517

tion software – it is fairly easy to generate such grids that518

obey exactly any given geometrical constraints be it in con- 519

nection with surfaces or velocity models (i. e., varying grid 520

density). It is important to note that such point clouds can- 521

not be represented by 2D or 3D matrices as is the case 522

for regular or regular stretched grid types. This has im- 523

portant consequences for the parallelization of numerical 524

schemes. The first step after defining a point set is to use 525

concepts from computational geometry to handle the pre- 526

viously unconnected points. This is done through the idea 527

of Voronoi cells, that uniquely define triangles and their 528

neighbors (Delauney triangulation). In Fig. 4d an example 529

is shown for a triangular grid that follows an internal inter- 530

face [72]. For finite-difference type operators on triangular 531

grids a grid-staggering makes sense. Therefore, velocities 532

would be defined in the center of triangles and stresses at 533

the triangle vertices. Voronoi cells (Fig. 4e) can be used 534

as volumetric elements for finite volume schemes [31,73]. 535

For finite-element schemes triangular elements (Fig. 4f, 536

e. g., [70]) with appropriate triangular shape functions are 537

quite standard but have not found wide applications in 538

seismology. 539

If the grid spacing of a regular finite-difference grid 540

scheme in 3D would have to be halved this would result 541

in an overall increase of computation time by a factor of 542

8 (a factor two per space dimension and another factor 2 543
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8 Simulation of Seismic Wave Propagation in Media with Complex Geometries

because of the necessary halving of the time step). This544

simply means that the accuracy of a specific numerical545

scheme and the saving in memory or computation time546

is much more relevant in three dimensions. The evolu-547

tion of grids in three dimensions is illustrated with ex-548

amples in Fig. 5. A geometrical feature that needs to be549

modeled correctly particularly in volcanic environments is550

the free surface. With standard regular-spaced finite-dif-551

ference schemes only a block representation of the surface552

is possible (Fig. 5a, e. g., [87,92]). While the specific nu-553

merical implementation is stable and converges to correct554

solution a tremendous number of grid points is necessary555

to achieve high accuracy.556

Chebyshev grids and regular grids were applied to the557

problem of wave propagation in spherical sections (Fig. 5b,558

e. g., [52,57]). The advantage of solving the problem in559

spherical coordinates is the natural orthogonal coordinate560

system that facilitates the implementation of boundary561

conditions. However, due to the nature of spherical coor-562

dinates the physical domain should be close to the equa-563

tor and geographical models have to be rotated accord-564

ingly. A highly successful concept for wave propagation in565

spherical media was possible through the adoption of the566

cubed-sphere approach in combination with spectral-ele-567

ments (Fig. 5c, [63,64]). The cubed-sphere discretization is568

based on hexahedral grids. Towards the center of the Earth569

the grid spacing is altered to keep the number of elements570

per wavelength approximately constant.571

Computational grids for wave propagation based on572

tetrahedra (Fig. 5d,e) are only recently being used for573

seismic wave propagation in combination with appropri-574

ate numerical algorithms such as finite volumes [34] or575

discontinuous Galerkin (e. g., [70]). The main advantage576

is that the grid generation process is greatly facilitated577

when using tetrahedra compared to hexahedra. Generat-578

ing point clouds that follow internal velocity structures579

and connecting them to tetrahedra are straight forward580

and efficient mathematical computations. However, as de-581

scribed in more detail below, tetrahedral grids require582

more involved computations and are thus less efficient583

than hexahedral grids. Complex hexahedral grids – even584

for combined modeling of structure and soil (Fig. 5f) are585

possible but – at least at present – require a large amount586

of manual interaction during the grid generation process.587

It is likely that the combination of both grid types (tetra-588

hedral in complex regions, hexahedral in less complex re-589

gions) will play an important role in future developments.590

In the following we would like to present two of the591

most competitive schemes presently under development,592

(1) the spectral element method and (2) the discontinu-593

ous Galerkin approach combined with finite-volume flux594

schemes. The aim is to particularly illustrate the role of the 595

grid generation process and the pros and cons of the spe- 596

cific methodologies. 597

3DWave Propagation onHexahedral Grids: 598

Soil-Structure Interactions 599

We briefly present the spectral element method (SEM) 600

based on Legendre polynomials, focusing only on its main 601

features and on its implementation for the solution of 602

the elasto-dynamic equations. The SEM can be regarded 603

as a generalization of the finite element method (FEM) 604

based on the use of high order piecewise polynomial func- 605

tions. The crucial aspect of the method is the capability 606

of providing an arbitrary increase in spatial accuracy sim- 607

ply enhancing the algebraic degree of these functions (the 608

spectral degree SD). On practical ground, this operation 609

is completely transparent to the users, who limit them- 610

selves to choosing the spectral degree at runtime, leaving 611

to the computational code the task of building up suit- 612

able quadrature points for integration and new degrees of 613

freedom. Obviously, the increasing spectral degree implies 614

raising the required computational effort. 615

On the other hand, one can also play on the grid refine- 616

ment to improve the accuracy of the numerical solution, 617

thus following the standard finite element approach. Spec- 618

tral elements are therefore a so-called “h � p” method, 619

where “h” refers to the grid size and “p” to the degree of 620

polynomials. Referring to Faccioli et al. [40], Komatitsch 621

and Vilotte [65], Chaljup et al. [15] for further details, we 622

briefly remind in the sequel the key features of the spectral 623

element method adopted. We start from the wave equa- 624

tion: 625

�
@u2

@t2
D div �i j(u) C f ; i; j D 1 : : : d(d D 2; 3) (2) 626

where t is the time, � D �(x) the material density, 627

f D f (x; t) a known body force distribution and �i j the 628

stress tensor. Introducing Hooke’s law: 629

�i j(u) D � div uıi j C 2�"i j(u) ; (3) 630

where 631

"i j(u) D 1
2

�
@ui
@x j

C @uj

@xi

�
(4) 632

is the strain tensor, � and � are the Lamé coefficients, 633

and ıi j is the Kronecker symbol, i. e. ıi j D 1 if i D j and 634

ıi j D 0, otherwise. 635

As in the FEM approach, the dynamic equilibrium 636

problem for the medium can be stated in the weak, or vari- 637

ational form, through the principle of virtual work [121] 638

TS4 Please add references.
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Simulation of Seismic Wave Propagation in Media with Complex Geometries 9

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 5
Examples of 3D grids. a Stair-step representation of a complex free surface with finite-difference cells. b Chebyshev grid in spherical
coordinates for a spherical section. cCubed sphere grid used for spectral-element andmulti-domain Chebyshev calculations.d Tetra-
hedral grid of the Matterhorn. e Tetrahedral grid of the Earth’s interior with the grid density tied to the velocity model. f Hexahedral
grid of bridge structure and subsurface structure for spectral-element calculations. See text for details and references TS4

and through a suitable discretization procedure that de-639

pends on the numerical approach adopted, can be written640

as an ordinary differential equations system with respect641

to time:642

[M] Ü(t) C [K]U (t) D F(t) C T(t) (5)643

where matrices [M] and [K] , respectively the mass and644

the stiffness matrix, vectors F and T are due to the con-645

tributions of external forces and traction conditions, re-646

spectively. In our SE approach, U denotes the displace-647

ment vector at the Legendre–Gauss–Lobatto (LGL) nodes,648

that correspond to the zeroes of the first derivatives of Leg-649

endre polynomial of degree N. The advancement of nu-650

merical solution in time is provided by the explicit 2nd or-651

der leap-frog scheme. This scheme is conditionally stable652

and must satisfy the well known and already mentioned653

Courant–Friedrichs–Levy (CFL) condition. The key fea-654

tures of the SE discretization are described in the follow-655

ing.656

Like in the FEM standard technique, the computa-657

tional domain may be split into quadrilaterals in 2D or658

hexahedral in 3D, both the local distribution of grid points659

within the single element and the global mesh of all the660

grid points in the domainmust be assigned. Many of these661

grid points are shared amongst several spectral elements.662

Each spectral element is obtained by amapping of amaster663

element through a suitable transformation and all compu- 664

tations are performed on the master element. Research is 665

in progress regarding the introduction of triangular spec- 666

tral elements [80]. The nodes within the element where 667

displacements and spatial derivatives are computed, on 668

which volume integrals are evaluated, are not necessar- 669

ily equally spaced (similar to the Chebyshev approach in 670

pseudospectral methods mentioned above). The interpo- 671

lation of the solution within the element is done by La- 672

grange polynomials of suitable degree. The integration in 673

space is done through Legendre–Gauss–Lobatto quadra- 674

ture formula. 675

Thanks to this numerical strategy, the exponential ac- 676

curacy of the method is ensured and the computational 677

effort minimized, since the mass matrix results to be di- 678

agonal. The spectral element (SE) approach developed by 679

Faccioli et al. [40] has been recently implemented in the 680

computational code GeoELSE (GeoELasticity by Spectral 681

Elements [93,102,120] for 2D/3D wave propagation an- 682

alyzes. The most recent version of the code includes: (i) 683

the capability of dealing with fully unstructured compu- 684

tational domains, (ii) the parallel architecture, and (iii) 685

visco-plastic constitutive behavior [30]. The mesh can be 686

created through an external software (e. g., CUBIT [25]) 687

and the mesh partitioning is handled by METIS [81] TS5 . 688

TS5 I changed the wording. Please check.
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10 Simulation of Seismic Wave Propagation in Media with Complex Geometries

Hexahedral Grids689

As alreadymentioned in the SEM here presented the com-690

putational domain is decomposed into a family of non691

overlapping quadrilaterals in 2D or hexahedra in 3D. The692

grid discretization should be suitable to accurately prop-693

agate up to certain frequencies. Obviously, owing to the694

strong difference of the mechanical properties between695

soft-soil and rock-soil (or building construction material)696

and to the different geometrical details as well, the grid re-697

finement needed in the various parts of the model varies698

substantially. Therefore, a highly unstructured mesh is699

needed to minimize the number of elements. While 3D700

unstructured tetrahedral meshes can be achieved quite701

easily with commercial or non commercial software, the702

creation of a 3D non structured hexahedral mesh is still703

recognized as a challenging problem. In the following704

paragraph we provide state of the art results concerning705

the mesh creation.706

Grid Generation707

Hexahedral grids havemore severe restrictions inmeshing708

efficiently. This is basically related to the intrinsic difficulty709

that arises from the mapping of the computational domain710

with this particular element. As a consequence automatic711

procedures have difficulty capturing specific boundaries,712

create poor quality elements, the assigned size is difficult713

to be preserved and the generation process is usuallymuch714

slower compared to the tetrahedral mesh generation algo-715

rithms. On the other hand the advantages of hexahedral716

meshes are usually related to the lower computational cost717

of the wave propagation solutions with respect to the one718

based on triangular meshes or hexahedral structured grids719

(like in the finite difference method).720

Nevertheless certain problems can be addressed rea-721

sonably well with specific solutions. A quite typical case722

in earthquake seismology is the study of the alluvial basin723

response under seismic excitation. In handling this prob-724

lem, a first strategy is to try to “honor” the interface be-725

tween the sediment (soft soil) and the bedrock (stiff soil).726

The two materials are divided by a physical interface and727

the jump in the mechanical properties is strictly preserved.728

The major drawback of this approach is that usually it re-729

quires strong skills from the user to build-up the mesh and730

a significant amount of working time (Fig. 6). Given that731

the “honoring approach” is not always feasible in a reason-732

able time (or with a reasonable effort) a second strategy is733

worth to be mentioned: The so called “not honoring” pro-734

cedure. In this second case themesh is refined in proximity735

of the area where the soft deposit are localized but the ele-736

ments do not respect the interface. On a practical ground737

the mechanical properties are assigned node by node and 738

the sharp jump is smoothed through the Lagrange interpo- 739

lation polynomial and substituted with smeared interfaces 740

(Fig. 7). At the present time it is still strongly under debate 741

if it is worth to honor or not the physical interfaces. 742

Finally, we highlight the fact that meshing software 743

(e. g., CUBIT [25]) is available that seems to be extremely 744

promising and potentially very powerful for the creation 745

of geophysical and seismic engineering unstructured hex- 746

ahedral meshes. Further very interesting mesh genera- 747

tion procedures based on hexahedral are under investiga- 748

tion [99]. 749

Scale Problem with Structure and Soil 750

In engineering practice one of the most common ap- 751

proaches to design buildings under seismic load is the im- 752

position of an acceleration time history to the structure, 753

basically acting like an external load. An excellent exam- 754

ple of this technique can be found in recent publications 755

(e. g., [68,69]) and in the study of the so-called “urban- 756

seismology”, recently presented by Fernandez-Ares et al. 757

(2006) TS3 . In this case the goal is to understand how the 758

presence of an entire city can modify the incident wave- 759

field. Due to the size of the simulation and the number of 760

buildings, the latter are modeled as single degrees of free- 761

domoscillators. The interaction between soil and structure 762

is preserved but the buildings are simplified. For impor- 763

tant structure (e. g.: Historical buildings, world heritage 764

buildings, hospitals, schools, theaters, railway and high- 765

ways) it is worth to provide an ad-hoc analysis capable to 766

take into account the full complexity of the phenomena. 767

Here we present an example of a fully coupled model- 768

ing (Fig. 8): A railway bridge and its geological-topograph- 769

ical surroundings. The Acquasanta bridge on the Genoa- 770

Ovada railway, North Italy, is located in the Genoa district 771

and represents a typical structure the ancestor of which 772

can be traced back to the Roman “Pont du Gard”. This 773

structural type did not change significantly along the cen- 774

turies, thanks to the excellent design achieved no less than 775

1900 years ago. The Acquasanta bridge structure is re- 776

markable both for the site features and the local geologi- 777

cal and geomorphological conditions. The foundations of 778

several of the piers rest on weak rock; moreover, some in- 779

stability problems have been detected in the past on the 780

valley slope towards Ovada. 781

Several simulations have been performed with 782

GeoELSE, in order to evaluate the influence of seismic 783

site effects on the dynamic response of the Acquasanta 784

bridge. A fully coupled 3D soil-structure model was de- 785

signed: The grid is characterized by a “subvertical fault” 786
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Simulation of Seismic Wave Propagation in Media with Complex Geometries 11

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 6
3D numerical model used for the simulations of ESG06 “Grenoble Benchmark”. “Honoring” technique: The computational domain is
subdivided into small chunks and each one is meshed starting from the alluvial basin down to the bedrock. For simplicity only the
spectral elements are shown without LGL nodes

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 7
3D numerical model used for the simulations of ESG06 “Grenoble Benchmark”. “Not Honoring” technique: The computational do-
main is meshed with a coarsemesh and then refined twice approximately in the area where the alluvial basin is located

between calcareous schists and serpentine rocks. This is in787

accordance with available data, even if further investiga-788

tions in future should identify more in detail the tectonic789

structure of the area. The geometry of weatheredmaterials790

overlaying the calcareous schists on the Ovada side has791

been assumed according to available information. The di-792

mension of hexahedral elements ranges some tens of cen-793

timeters to about 1000m. With such a model, the problem794

can be handled in its 3D complexity and we can exam-795

ine the following aspects that are usually analyzed under796

restrictive and simplified assumptions: (i) soil-structure797

interaction, (ii) topographic amplification, (iii) soft soil798

amplification (caused by the superficial alluvium deposit799

shown in cyan), (iv) subvertical fault (red line) between800

the schists, on the Ovada side, and serpentine rock, on the801

Genoa side. For excitation a shear plane wave (x-direction)802

was used (Ricker wavelet, fmax D 3Hz, t0 D 1:0 s. and803

amplitude D 1mm) propagating vertically from the bot- 804

tom (red elements in Fig. 8). 805

In Fig. 9 we present some snapshots of the modulus 806

of the displacement vector and the magnified deformed 807

shape of the bridge. It is worth to note that at T D 2 s the 808

motion of the bridge is almost in-plane (direction x), while 809

at T D 4 s is clearly evident how the coupling between the 810

in-plane and out-plane (y-direction) motion starts to be 811

important. 812

The study of the soil-structure interaction problem 813

could be easily enhanced (i) improving the input excita- 814

tion of the model here presented and (ii) taking into ac- 815

count complex constitutive behavior both from the soil 816

and the structure side. The former is already available in 817

GeoELSE thanks to the recent implementation [41,93] of 818

the domain reductionmethod (DRM), amethodology that 819

divides the original problem into two simpler ones [4,119], 820
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12 Simulation of Seismic Wave Propagation in Media with Complex Geometries

Simulation of Seismic Wave Propagation in Media with Complex
Geometries, Figure 8
3Dmodel of Acquasanta bridge and the surrounding geological
configuration. The investigated area is 2 km in length, 1.75 km in
width and 0.86 km in depth. The model was designed to propa-
gate waves up to 5Hz with a SD D 3 (Order 4) and has 38,569
hexahedral elements and 1,075,276 grid points. The contact
between calcareous schists (brown color) and serpentine rocks
(green color) is modeled with two sub-vertical faults (red-line).
Cyan color represents the alluvial and weathered deposits

to overcome the problem of multiple physical scales that is821

created by a seismic source usually located at some depth822

on rock far away from the structure with typical element823

size of the order of meters and located over a relatively824

small area (less than 1 km2) on soft deposit. The latter still825

need to be improved because of the lack of a complete tool826

capable to handle in 3D non linear soil behavior, non-lin-827

ear structural behavior and the presence of the water, that828

play a crucial role in the failure of buildings. Partial re-829

sponse to this problem can be found in the recent work of830

Bonilla et al. [5] and in the visco-plastic rheology recently831

introduced in GeoELSE (di Prisco, 2006 TS3 ).832

3DWave Propagation on Tetrahedral Grids:833

Application to Volcanology834

As indicated above, the simulation of a complete, highly835

accurate wave field in realistic media with complex geom-836

etry is still a great challenge. Therefore, in the last years837

a new, highly flexible and powerful simulation method838

has been developed that combines the Discontinuous839

Galerkin (DG) Method with a time integration method840

using Arbitrary high order DERivatives (ADER) of the ap-841

proximation polynomials. The unique property of this nu-842

merical scheme is, that it achieves arbitrarily high approx-843

imation order for the solution of the governing seismic844

wave equation in space and time on structured and un-845

structured meshes in two and three space dimensions.846

Originally, this new ADER-DG approach [32,35] was 847

introduced for general linear hyperbolic equation systems 848

with constant coefficients or for linear systems with vari- 849

able coefficients in conservative form. Then, the extension 850

to non-conservative systems with variable coefficients and 851

source terms and its particular application to the simula- 852

tion of seismic waves on unstructured triangular meshes 853

in two space dimensions was presented [70]. And finally, 854

the further extension of this approach to three-dimen- 855

sional tetrahedral meshes has been achieved [33]. Further- 856

more, the accurate treatment of viscoelastic attenuation, 857

anisotropy and poroelasticity has been included to handle 858

more complex rheologies [28,29,71]. The governing sys- 859

tem of the three-dimensional seismic wave equations is 860

hereby formulated in velocity-stress and leads to the hy- 861

perbolic system of the form 862

@Q p

@t
C Apq

@Qq

@�
C Bpq

@Qq

@�
C Cpq

@Qq

@�
D Sp ; (6) 863

where the vector Q of unknowns contains the six stress 864

and the three velocity components and S is the source 865

term. The Jacobian matrices A, B and C include the ma- 866

terial values as explained in detail in [33,70]. 867

The ADER-DGMethod: Basic Concepts 868

The ADER-DG method is based on the combina- 869

tion of the ADER time integration approach [113], 870

originally developed in the finite volume (FV) frame- 871

work [96,97,111] and the Discontinuous Galerkin finite el- 872

ement method [18,19,20,21,22,23,91]. As described in de- 873

tail in [33] in the ADER-DG approach the solution is ap- 874

proximated inside each tetrahedron by a linear combina- 875

tion of space-dependent polynomial basis functions and 876

time-dependent degrees of freedom as expressed through 877

(Qh)p(�; �; �; t) D Q̂ pl (t)˚ l (�; �; �) ; (7) 878

where the basis functions ˚l form an orthogonal basis and 879

are defined on the canonical reference tetrahedron. The 880

unknown solution inside each element is then approxi- 881

mated by a polynomial, whose coefficients – the degrees of 882

freedom Qpl – are advanced in time. Hereby, the solution 883

can be discontinuous across the element interfaces, which 884

allows the incorporation of the well-established ideas of 885

numerical flux functions from the finite volume frame- 886

work [75,112]. To define a suitable flux over the element 887

surfaces, so-called Generalized Riemann Problems (GRP) 888

are solved at the element interfaces. The GRP solution 889

provides simultaneously a numerical flux function as well 890

as a time-integration method. The main idea is a Taylor 891
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Simulation of Seismic Wave Propagation in Media with Complex Geometries 13

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 9
Snapshots of the modulus of the displacement vector and the magnified deformed shape of the bridge (in mm)

expansion in time in which all time derivatives are re-892

placed by space derivatives using the so-called Cauchy–893

Kovalewski procedure which makes recursive use of the894

governing differential Eq. (6). The numerical solution of895

Eq. (6) can thus be advanced by one time step without in-896

termediate stages as typical e. g. for classical Runge–Kutta897

time stepping schemes. Due to the ADER time integra-898

tion technique the same approximation order in space and899

time is achieved automatically. Furthermore, the projec-900

tion of the elements in physical space onto a canonical ref-901

erence element allows for an efficient implementation, as902

many computations of three-dimensional integrals can be903

carried out analytically beforehand. Based on a numerical904

convergence analysis this new scheme provides arbitrary905

high order accuracy on unstructured meshes. Moreover,906

due to the choice of the basis functions in Eq. (7) for the907

piecewise polynomial approximation [23], the ADER-DG908

method shows even spectral convergence.909

Grid Generation: Unstructured Triangulations 910

and Tetrahedralization 911

Both tetrahedral and hexahedral elements are effectively 912

used to discretize three-dimensional computational do- 913

mains and model wave propagation with finite element 914

type methods. Tetrahedrons can be the right choice be- 915

cause of the robustness when meshing any general shape. 916

Hexahedrons can be the element of choice due to their 917

ability to provide more efficiency and accuracy in the com- 918

putational process. Furthermore, techniques for automatic 919

mesh generation, gradualmesh refinement and coarsening 920

are generally much more robust for tetrahedral meshes in 921

comparison to hexahedral meshes. Straightforward tetra- 922

hedral refinement schemes, based on longest-edge divi- 923

sion, as well as the extension to adaptive refinement or 924

coarsening procedures of a refined mesh exist [3,12]. In 925

addition, parallel strategies for refinement and coarsening 926

of tetrahedral meshes have been developed [27]. 927

Less attention has been given to the modification 928

of hexahedral meshes. Methods using iterative octrees 929
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Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 10
Tetrahedral mesh for the model of the volcano Merapi. The zone of interest, such as the free surface topography and the volcano’s
interior are discretized by a fine mesh, whereas the spatial mesh is gradually coarsened towards the model boundaries

have been proposed [74,95], but these methods often re-930

sult in nonconformal elements that cannot be accom-931

modated by some solvers. Lately also conformal refine-932

ment and coarsening strategies for hexahedral meshes933

have been proposed [2]. Other techniques insert non-hex-934

ahedral elements that result in hybrid meshes that need935

special solvers that can handle different mesh topologies.936

Commonly, the geometrical problems in geosciences arise937

through rough surface topography, as shown for the Mer-938

api volcano in Fig. 10, and internal material boundaries939

of complex shape that lead to wedges, and overturned or940

discontinuous surfaces due to folding and faulting. How-941

ever, once the geometry of the problem is defined by the942

help of modern computer aided design (CAD) software,943

the meshing process using tetrahedral elements is auto-944

matic and stable. After the mesh generation process, the945

mesh vertices, the connectivity matrix and particular in-946

formation about boundary surfaces are typically imported947

to a solver.948

The computational possibilities and algorithmic flexi-949

bility of a particular solver using the ADER-DG approach950

for tetrahedral meshes are presented in the following.951

Local Accuracy: p-Adaptation952

In many large scale applications the computational do-953

main is much larger than the particular zone of interest.954

Often such an enlarged domain is chosen to avoid effects955

from the boundaries that can pollute the seismic wave field956

with possible, spurious reflections. Therefore, a greater957

number of elements has to be used to discretize the do-958

main describing the entire model. However, in most cases959

the high order accuracy is only required in a restricted area960

of the computational domain and it is desirable to choose961

the accuracy that locally varies in space. This means, that it962

must be possible to vary the degree p of the approximation963

polynomials locally from one element to the other [36]. As 964

the ADER-DGmethod uses a hierarchical order of the ba- 965

sis functions to construct the approximation polynomials, 966

the corresponding polynomial coefficients, i. e. the degrees 967

of freedom, for a lower order polynomial are always a sub- 968

set of those of a higher-order one. Therefore, the computa- 969

tion of fluxes between elements of different approximation 970

orders can be carried out by using only the necessary part 971

of the flux matrices. 972

Furthermore, the direct coupling of the time and space 973

accuracy via the ADER approach automatically leads to 974

a local adaptation also in time accuracy, which often is re- 975

ferred to as p-adaptivity. In general, the distribution of the 976

degree p might be connected to the mesh size h, i. e. the 977

radius of the inscribed sphere of a tetrahedral element. In 978

particular, the local degree p can be coupled to the mesh 979

size h via the relations 980

p D pmin C �
pmax � pmin

� �
h � hmin

hmax � hmin

�r
; (8) 981

p D pmax � �
pmax � pmin

� �
h � hmin

hmax � hmin

�r
; (9) 982

where the choice of the power r determines the shape of 983

the p-distribution. Note, that depending on the choice of 984

the first term and the sign the degree p can increase as in 985

Eq. (8) or decrease as in Eq. (9) with increasing h, starting 986

from a minimum degree pmin up to a maximum degree 987

pmax. This provides additional flexibility for the distribu- 988

tion of p inside the computational domain. An example of 989

a p-distribution for the volcano Merapi is given in Fig. 11. 990

Here the idea is to resolve the slowly propagating sur- 991

face waves with high accuracy, whereas the waves prop- 992

agating towards the absorbing model boundaries pass 993

through a zone of low spatial resolution. This approach 994

leads to numerical damping due to an amplitude decay 995

that reduces possible boundary reflections. Furthermore, 996
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Simulation of Seismic Wave Propagation in Media with Complex
Geometries, Figure 11
The local degree p of the approximation polynomial depends on
the insphere radius of each tetrahedral element and is given in
color code. Close to the surface topography an approximation
polynomial of degree p D 5 (blue) is used, whereas in depth the
degree is reduced to p D 4 (green) and p D 3 (yellow)

the computational cost is reduced significantly due to the997

strongly reduced number of total degrees of freedom in the998

model.999

Local Time Stepping: �t-Adaptation1000

Geometrically complex computational domains or spatial1001

resolution requirements often lead to meshes with small1002

or even degenerate elements. Therefore, the time step for1003

explicit numerical schemes is restricted by the ratio of the1004

size h of the smallest element and the corresponding maxi-1005

mum wave speed in this element. For global time stepping1006

schemes all elements are updated with this extremely re-1007

strictive time step length leading to a large amount of it-1008

erations. With the ADER-DG approach, time accurate lo-1009

cal time stepping can be used, such that each element is1010

updated by its own, optimal time step [36]. Local time-1011

stepping was used in combination with the finite-differ-1012

ence method by Falk et al. (1996) TS6 and Tessmer [106].1013

An element can be updated to the next time level if its1014

actual time level and its local time step�t fulfill the follow-1015

ing condition with respect to all neighboring tetrahedra n:1016

t C �t � min(tn C �tn) : (10)1017

Figure 12 is visualizing the evolution of four elements (I,1018

II, III and IV) in time using the suggested local time step-1019

ping scheme. A loop cycles over all elements and checks1020

for each element, if condition (10) is fulfilled. At the ini-1021

tial state all elements are at the same time level, however,1022

element II and IV fulfill condition (10) and therefore can1023

be updated. In the next cycle, these elements are already1024

advanced in time (grey shaded) in cycle 1. Now elements1025

I and IV fulfill condition (10) and can be updated to their 1026

next local time level in cycle 2. This procedure continues 1027

and it is obvious, that the small element IV has to be up- 1028

dated more frequently than the others. A synchronization 1029

to a common global time level is only necessary, when data 1030

output at a particular time level is required as shown in 1031

Fig. 12. 1032

Information exchange between elements across inter- 1033

faces appears when numerical fluxes are calculated. These 1034

fluxes depend on the length of the local time interval over 1035

which a flux is integrated and the corresponding element is 1036

evolved in time. Therefore, when the update criterion (10) 1037

is fulfilled for an element, the flux between the element it- 1038

self and its neighbor n has to be computed over the local 1039

time interval: 1040

	n D [max(t; tn) ; min(t C �t; tn C �tn)] : (11) 1041

As example, the element III fulfills the update crite- 1042

rion (10) in cycle 5 (see Fig. 12). Therefore, when com- 1043

puting the fluxes only the remaining part of the flux given 1044

by the intervals in Eq. (11) has to be calculated. The other 1045

flux contribution was already computed by the neighbors 1046

II and IV during their previous local updates. These flux 1047

contributions have been accumulated and were stored into 1048

a memory variable and therefore just have to be added. 1049

Note that e. g. element IV reaches the output time af- 1050

ter 10 cycles and 9 local updates, which for a global time 1051

stepping scheme would require 9 � 4 D 36 updates for the 1052

all four elements. With the proposed local time stepping 1053

scheme only 16 updates are necessary to reach the same 1054

output time with all elements as indicated by the final 1055

number of grey shaded space time elements in Fig. 12. 1056

Comparing these numbers leads to a speedup fac- 1057

tor of 2.25. For strongly heterogeneous models and local 1058

time step lengths this factor can become even more pro- 1059

nounced. However, due to the asynchronous update of el- 1060

ements that might be spatially very close to each other the 1061

mesh partitioning for parallel computations becomes an 1062

important and difficult issue. Achieving a satisfying load 1063

balancing is a non-trivial task and still poses some unre- 1064

solved problems as explained in the following. 1065

Mesh Partitioning and Load Balancing 1066

For large scale applications it is essential to design a par- 1067

allel code that can be run on massively parallel super- 1068

computing facilities. Therefore, the load balancing is an 1069

important issue to use the available computational re- 1070

sources efficiently. For global time stepping schemes with- 1071

out p-adaptation standard mesh partitioning as done e. g. 1072
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16 Simulation of Seismic Wave Propagation in Media with Complex Geometries

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 12
Visualization of the local time stepping scheme. The actual local time level t is at the top of the gray shaded area with numbers
indicating the cycle, in which the update was done. Dotted lines indicate the local time step length �t with which an element is
updated

by METIS [60] is sufficient to get satisfying load balanc-1073

ing. The unstructured tetrahedral mesh is partitioned into1074

subdomains that contain an equal or at least very similar1075

number of elements as shown in Fig. 13. Therefore, each1076

processor has to carry out a similar amount of calcula-1077

tions. However, if p-adaptation is applied, the partition-1078

ing is more sophisticated as one subdomain might have1079

many elements of high order polynomials whereas another1080

might have the same number of elements but with lower1081

order polynomials. Therefore, the parallel efficiency is re-1082

stricted by the processor with the highest work load. How-1083

ever, this problem can usually be solved by weighted par-1084

titioning algorithms, e. g. METIS.1085

In the case of local time stepping, mesh partitioning is1086

becoming a much more difficult task. One solution is to1087

divide the computational domain into a number of zones,1088

that usually contain a geometrical body or a geological1089

zone that typically is meshed individually with a particular1090

mesh spacing h and contains a dominant polynomial or-1091

der. Then each of these zones is partitioned separately into1092

subdomains of approximately equal numbers of elements.1093

Then each processor receives a subdomain of each zone,1094

which requires a similar amount of computational work1095

as shown in Fig. 13. In particular, the equal distribution of 1096

tetrahedrons with different sizes is essential in combina- 1097

tion with the local time stepping technique. Only if each 1098

processor receives subdomains with in total give a simi- 1099

lar amount of small and large elements, the work load is 1100

balanced. The large elements have to be updated less fre- 1101

quently than the smaller elements and therefore are com- 1102

putationally cheaper. Note, that the separately partitioned 1103

and afterwards merged zones lead to non-connected sub- 1104

domains for each processor (see Fig. 13). This increases 1105

the number of element surfaces between subdomains of 1106

different processors and therefore increases the communi- 1107

cation required. However, communication is typically low 1108

as the degrees of freedom have to be exchanged only once 1109

per time step and only for tetrahedrons that have an inter- 1110

face at the boundary between subdomains. Therefore, the 1111

improvements due to the new load balancing approach are 1112

dominant and outweigh the increase in communication. 1113

However, care has to be taken as the distribution of 1114

the polynomial degree p or the seismic velocity structure 1115

might influence the efficiency of this grouped partitioning 1116

technique. A profound and thorough mesh partitioning 1117

method is still a pending task as the combination of lo- 1118
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cal time stepping and p-adaptivity requires a new weight-1119

ing strategy of the computational cost for each tetrahedral1120

element considering also the asynchronous element up-1121

date. The automatic partitioning of unstructured meshes1122

with such heterogeneous properties together with the con-1123

straint of keeping the subdomains as compact as possible1124

to avoid further increase of communication is still subject1125

to future work.1126

In Fig. 13 an example of a grouped partition of the1127

tetrahedral mesh is shown for 4 processors. Two non-1128

connected subdomains indicated by the same color are1129

assigned to each processor including small – and there-1130

fore computationally expensive – tetrahedrons that are up-1131

dated frequently due to their small time step, and much1132

larger elements that typically are cheap due to their large1133

time step. This way, the work load often is balanced suffi-1134

ciently well over the different processors.1135

Relevance of High Performance Computing:1136

Application to Merapi Volcano1137

In recent years the development of the ADER-DG algo-1138

rithm including the high order numerical approximation1139

in space and time, the mesh generation, mesh adapta-1140

tion, parameterization, and data visualization form the ba-1141

sis of an efficient and highly accurate seismic simulation1142

tool. Realistic large scale applications and their specific re-1143

quirements will further guide these developments. On the1144

other hand, the study and incorporation of geophysical1145

processes that govern seismic wave propagation insures,1146

that the simulation technology matches the needs and ad-1147

dresses latest challenges in modern computational seis-1148

mology. Hereby, the accurate modeling of different source1149

mechanisms as well as the correct treatment of realistic1150

material properties like anelasticity, viscoplasticity, poros-1151

ity and highly heterogeneous, scattering media will play an1152

important role.1153

However, only the combination of this state-of-the-art1154

simulation technology with the most powerful supercom-1155

puting facilities actually available can provide excellent1156

conditions to achieve scientific progress for realistic, large1157

scale applications. This combination of modern technolo-1158

gies will substantially contribute to resolve current prob-1159

lems, not only in numerical seismology, but will also influ-1160

ence other disciplines. The phenomenon of acoustic, elas-1161

tic or seismic wave propagation is encountered in many1162

different fields. Beginning with the classical geophysical1163

sciences seismology, oceanography, and volcanology such1164

waves also appear in environmental geophysics, atmo-1165

spheric physics, fluid dynamics, exploration geophysics,1166

aerospace engineering or even medicine.1167

With the rapid development of modern computer 1168

technology and the development of new highly accurate 1169

simulation algorithms computer modeling just started to 1170

herald a new era in many applied sciences. The 3D wave 1171

propagation simulations in realistic media require a sub- 1172

stantial amount of computation time even on large par- 1173

allel computers. Extremely powerful national supercom- 1174

puters already allow us to run simulations with unrivaled 1175

accuracy and resolution. However, using the extremely 1176

high accuracy and flexibility of new simulation methods 1177

on such massively parallel machines the professional sup- 1178

port of experts in supercomputing is absolutely essential. 1179

Only professional porting, specific CPU-time and storage 1180

optimizations of current software with respect to continu- 1181

ously changing compilers, operating systems, hardware ar- 1182

chitectures or simply personnel, will ensure the lifetime of 1183

new simulation technologies accompanied by ongoing im- 1184

provements and further developments. Additionally, the 1185

expertise and support in the visualization of scientific re- 1186

sults using technologies of Virtual Reality for full 3Dmod- 1187

els not only enhances the value of simulations results but 1188

will support data interpretation and awake great interest 1189

in the new technology within a wide research community. 1190

As an example, volcano monitoring plays an increas- 1191

ingly important role in hazard estimation in many densely 1192

populated areas in the world. Highly accurate computer 1193

modeling today is a key issue to understand the processes 1194

and driving forces that can lead to dome building, erup- 1195

tions or pyroclastic flows. However, data of seismic ob- 1196

servations at volcanoes are often very difficult to interpret. 1197

Inverting for the source mechanism, i. e. seismic moment 1198

tensor inversion, or just locating an exact source position 1199

is often impossible due to the strongly scattered wave field 1200

due to an extremely heterogeneous material distribution 1201

inside the volcano. Furthermore, the rough topography 1202

alone can affect the wave field by its strongly scattering 1203

properties as shown in Fig. 14. 1204

Therefore, it is fundamental to understand the effects 1205

of topography and scattering media and there influence on 1206

the seismic wave field. A systematic study of a large num- 1207

ber of scenarios computed by highly accurate simulation 1208

methods to provide reliable synthetic data sets is necessary 1209

to test the capabilities of currently used inversion tools. 1210

Slight changes in parameters like the source position, the 1211

source mechanism or the elastic and geometric properties 1212

of the medium can then reveal the limits of such tools and 1213

provide more precise bounds of their applicability in vol- 1214

cano seismology. 1215

Finally, the implementation of the ADER-DG method 1216

is still much more expensive than other state-of-the-art 1217

implementations of existing methods. However, a fair 1218
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18 Simulation of Seismic Wave Propagation in Media with Complex Geometries

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 13
Standard partitioning of the computational domain (left) and an example of 4 subdomains grouped together for more efficient local
time stepping

Simulation of Seismic Wave Propagation in Media with Complex Geometries, Figure 14
Snapshots of the seismic wave field after an explosive event close to the summit of Merapi volcano. The free surface topography
introduces strong scattering of the waves making it extremely difficult to invert for the seismic source mechanism or the exact
source location

comparison between accuracy and computational cost is1219

still a pending task. Themain reason for the CPU-time dif-1220

ference is the much larger number of tetrahedral elements1221

than hexahedrons that have to be used to cover the same1222

volume. Furthermore, due to the choice of the basis func-1223

tions, the flux computations are expensive, as the matrix-1224

matrix multiplications involved are not sparse.1225

However, the ADER-DG method is currently imple-1226

mented on hexahedral meshes to make fair comparisons1227

possible. Preliminary tests show, that the change of mesh1228

topology from tetraherons to hexahedrons significantly re-1229

duces the computational cost. However, final results are1230

subject to future investigations.1231

Discussion and Future Directions1232

As indicated in the introduction and highlighted in the1233

previous sections, computational tools for wave propa-1234

gation problems are getting increasingly sophisticated to1235

meet the needs of current scientific problems. We are far1236

away from simple finite-difference time schemes that are1237

solving problems on regular grids on serial computers in1238

which case the particular programming approach did not 1239

affect dramatically the overall performance. Today, com- 1240

petitive algorithms are results of years of partly highly pro- 1241

fessional coding. Implementations on high-performance 1242

computing hardware requires in-depth knowledge of par- 1243

allel algorithms, profiling, and many technical aspects of 1244

modern computations. To make complex scientific soft- 1245

ware available to other researchers requires implementa- 1246

tion and testing on many different (parallel) platforms. 1247

This may involve parallelization using different program- 1248

ming paradigms (e. g., the combination of OpenMP and 1249

MPI on nodes of shared memory machines), and interop- 1250

erability on heterogeneous computational GRIDs. 1251

This has dramatic consequences particularly for young 1252

researchers in the Earth Sciences who want to use ad- 1253

vanced computational tools to model observations. While 1254

in the early days a finite-difference type algorithm could 1255

be understood, coded, implemented and tested in a few 1256

weeks, this is no longer possible. In addition, standard cur- 1257

ricula do not offer training in computational methods al- 1258

lowing them to efficiently write and test codes. This sug- 1259

gests that at least for some, well-defined computational 1260
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problems verified and professionally engineered scientific1261

software solutions should be provided to the commu-1262

nity and also professionally extended and maintained in1263

close collaboration with scientists. In seismology we are1264

in a quite fortunate situation. In contrast to many other1265

fields of physical sciences, our constitutive relations (e. g.,1266

stress-strain) are fairly well understood, and – as indicated1267

in this paper – numerical solutions for 3D problems and1268

their implementation on parallel hardware are well ad-1269

vanced. Another argument for stable tested “community”-1270

codes for wave propagation is the fact that advancement in1271

many scientific problems (e. g., imaging the Earth’s inte-1272

rior, quantifying earthquake-induced shaking hazard) re-1273

lies on zillions of forward modeling runs with only slight1274

variations of the internal velocity models.1275

As far as technical developments are concerned, the1276

efficient initialization of complex 3D models on com-1277

putational grids is still a great challenge. Realistic mod-1278

els may be composed of complex topography, families1279

of overlapping fault surfaces, discontinuous interfaces,1280

and varying rheologies (e. g., elastic, anisotropic, viscoelas-1281

tic, viscoplastic, porous). This may require the combina-1282

tion of tetrahedral and hexahedral grid in models with1283

strongly varying degree of complexity. Ideally, standards1284

for Earth models (as well as synthetic data) formats should1285

be established by the communities that allow easy ex-1286

change and multiple use of models with different simu-1287

lation tools (e. g., wave propagation, deformation, earth-1288

quake rupture). In addition, the rapid developments to-1289

wards PetaFlop computing opens new questions about the1290

scalability and efficient parallelization of current and fu-1291

ture algorithms.1292

As the forward problem of wave propagation is at the1293

core of the seismic imaging problem for both source and1294

Earth’s structure, in the near future we will see the in-1295

corporation of 3D simulation technology into the imag-1296

ing process. Provided that the background seismic velocity1297

models are fairly well known (e. g., reservoirs, global Earth,1298

sedimentary basins), adjoint methods provide a power-1299

ful analytical tool to (1) relate model deficiencies to misfit1300

in observations and (2) quantify the sensitivities to spe-1301

cific aspects of the observations (e. g., [100,104,105]). As1302

the core of the adjoint calculations is the seismic forward1303

problem, the challenge is the actual application to real data1304

and the appropriate parametrizations of model and data1305

that optimize the data fitting process.1306

In summary, while we look back at (and forward1307

to) exciting developments in computational seismology,1308

a paradigm shift in the conception of one of the central1309

tools of seismology – the calculation of 3D synthetic seis-1310

mograms – is necessary. To extract a maximum amount of1311

information from our high-quality observations scientists 1312

should have access to high-quality simulation tools. It is 1313

time to accept that “software is infrastructure” and provide 1314

themeans to professionally develop andmaintain commu- 1315

nity codes and model libraries at least for basic Earth sci- 1316

ence problems and specific focus regions. Developments 1317

are one the way along those lines in the SPICE project 1318

(Seismic Wave Propagation and Imaging in Complex Me- 1319

dia, a European Network [101]), the Southern Califor- 1320

nia Earthquake Center (SCEC [94]) and the CIG Project 1321

(Computational infrastructure in geodynamics [17]). 1322
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