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In this paper we present high-order formulations of the finite volume and discontinuous
Galerkin finite-element methods for wave propagation problems with a space-time
adaptation technique using unstructured meshes in order to reduce computational cost
without reducing accuracy. Both methods can be derived in a similar mathematical
framework and are identical in their first-order version. In their extension to higher
order accuracy in space and time, both methods use spatial polynomials of higher degree
inside each element, a high-order solution of the generalized Riemann problem and a
high-order time integration method based on the Taylor series expansion. The static
adaptation strategy uses locally refined high-resolution meshes in areas with low wave
speeds to improve the approximation quality. Furthermore, the time step length is chosen
locally adaptive such that the solution is evolved explicitly in time by an optimal time
step determined by a local stability criterion. After validating the numerical approach,
both schemes are applied to geophysical wave propagation problems such as tsunami
waves and seismic waves comparing the new approach with the classical global time-
stepping technique. The problem of mesh partitioning for large-scale applications on
multi-processor architectures is discussed and a new mesh partition approach is proposed
and tested to further reduce computational cost.

Keywords: finite volumes; discontinuous Galerkin finite elements; ADER; local time stepping;
seismic wave propagation; tsunami wave propagation

1. Introduction

Within the last decade many disciplines in natural and engineering sciences have
extensively made use of scientific computations in addition to purely theoretical,
classical experimental or observational research. Today, supercomputers are
invaluable virtual laboratories, where experiments can be carried out to test
theoretical mathematical formulations of physical problems, to investigate large
parameter spaces, and to design and optimize models under investigation.
However, the ever increasing computational resources are not enough to achieve
sufficient resolution in the current Earth science problems if a simple uniform
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increase of the discrete model resolution is employed. This is particularly true
in cases where large computational domains contain local small-scale features
that strongly affect the behaviour of the global solution. Therefore, different
adaptive strategies have been developed to maximize the resolution to cost
ratio when numerically solving partial differential equations. Adaptive mesh
refinement (AMR) has been developed in different scientific communities and
is used in a static or dynamic way to locally achieve high spatial resolution
(e.g. Babuska et al. 1995; Plewa et al. 2000; Kiser & Iske 2005; Shi et al
2006). However, for explicit numerical time-integration schemes, a fine spatial
resolution of the mesh limits the time-step length due to the stability condition.
Therefore, local time-stepping approaches have been developed, where the size
of a time step can vary locally such that small time steps only need to be
used in zones of the computational domain where the spatial resolution is high
or waves are fast. Such schemes in combination with first-order discontinuous
Galerkin (DG) finite-element schemes on unstructured three-dimensional meshes
have been proposed by Flaherty et al. (1997) and local time-stepping for finite
volume (FV) methods on unstructured tetrahedral meshes have been developed
by Fumeaux et al. (2004). A high-order DG scheme using the Cauchy—Kowalewski
procedure for space—time expansion and local time-stepping has been introduced
for linear seismic wave equations by Dumbser et al. (2007) and later extended
to nonlinear hyperbolic-parabolic systems (e.g. Lorcher et al. 2007; Gassner
et al. 2008). Despite the overall reduction of computational cost using adaptive
numerical methods, their application to large-scale problems on multi-processor
supercomputers still requires further developments. Owing to the adaptive
character of such numerical schemes, the distribution of the computational
load becomes a mnon-trivial task. To efficiently use the computational
performance of large systems, the numerical algorithms have to scale to
several thousands of processors, which requires a homogeneous load balance
that can become a problematic issue, especially for complex heterogeneous
numerical models.

The aim of this paper is to present high-order FV and DG schemes on
unstructured meshes statically adapted to particular physical problems using a
local time-step approach. Furthermore, a new partitioning strategy is introduced
and its effect on the computational performance is compared for large-scale
applications in tsunami and earthquake wave-propagation scenarios.

2. Numerical method

The numerical scheme is constructed considering a conforming discretization of
the computational domain £2 = UT,,, with elements 7, identified using a unique
index m. In two-dimensional study we use triangular elements, while in three-
dimensional study we use tetrahedral elements. The numerical method is used to
approximate the solution of the following hyperbolic balance law:

WU+ 0, F(U)+0,G(U)+0.H(U)=8(U), (2.1)

with U =[u,...,u,] the unknown vector of conservative variables, F(U), G(U)
and H(U) the flux vectors in each spatial coordinate z=(z,y,2) and S(U)
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a source term. The quasi-linear form of equation (2.1) reads
U+ A(U)I, U+ B(U), U+ C(U),U=S8(U), (2.2)

with the Jacobian matrices A=0F/0U, B=0G/0U and C=0H/dU.
Equation (2.2) is said to be hyperbolic if for any direction of a normalized vector
n = (ny, ny, n,) the matrix An, + Bn, + Cn, has real eigenvalues and a complete
set of linear-independent eigenvectors. Considering one component u(z, t) of the
unknown vector U (Z,t) for simplicity, we can approximate it by wu,(Z, t)

N-1

u(@, B~ u(E, 1) =Y Wt)gi(@), (2.3)

=0

with ;(t) the time-dependent scalar degrees of freedom, ¢;(z) the space-
dependent polynomial basis functions and N the number of degrees of freedom.
We use orthogonal basis functions from Jacobi polynomials defined in a
reference element 7g, which are mapped into each element 7, of the discretized
computational domain £2. Approximation (2.3) introduces high-order polynomial
representation in space of the unknown vector. The number of degrees of
freedom and therefore the number of basis functions is defined by the order
of the numerical approximation O. For two-dimensional problems we use N =
(O 4+ 1)O/2 and for three-dimensional problems we use N = (O + 2)(O + 1)0/6
basis function hierarchically ordered. We write equation (2.1) in divergence
form as

ou+ V- F(u) — s(u)=0, (2.4)

with V =(9,,9,,9.) and F(u) = (f(w), g(w), h(u)). Multiplying equation (2.4) by
the basis function ¢;(Z), integrating in the control volume 7, and using the
divergence theorem we get

J ¢k8tudw+J ¢k]:(u)-7zdw—J quk-}"(u)da::J drs(u)de.  (2.5)
m 0Tm m T

Introducing the polynomial approximation (2.3) and integrating in the time
interval [t", t"*!] we obtain

1
~An+1 An
u = U;. —
k k
“mlmk |:

tn+1 tn+1

[T ver-rwdsa- | Jms(u)dwdt}, 26)
" Tm " Tm

¢ntl

J J o1 F(u) - ndxdt
o ot

with |7,,| the Jacobian matrix of the mapping between the reference element
Te and the physical element T, and my the diagonal mass matrix computed
in the reference element. We refer to the work of Késer & Dumbser (2006) and
Dumbser & Kiser (2006) for details on the numerical method when applied to
the linear seismic wave equation and its efficient implementation and to the work
of Castro (2007) for an application to nonlinear hyperbolic equations.

Equation (2.6) is a one-step scheme for the numerical solution from time ¢t = ¢"
to t = t"*! providing the approximation to the flux, volume and source space-time
integrals. Note that we update each single degrees of freedom of the polynomial
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approximation (2.3). This is a standard DG finite-element discretization. If
we consider the FV approach, we use only first-order approximation in the
polynomial representation (2.3), the term V¢, cancels out and the scheme (2.6)
updates the cell average of the numerical solution. The choice of the scheme, i.e.
DG or FV, is problem-dependent. In general, DG numerical methods produce
smaller errors and are compact, meaning that each element needs only its direct
neighbours. However, they can become expensive in computational time when
applied to nonlinear equations. On the other hand, FV schemes need a high-order
non-oscillatory reconstruction step that involves several large stencils containing
more elements than just the direct neighbours, and therefore the schemes are
less compact. Equation (2.6) is a general representation of the numerical scheme
and applies to one-, two-, and three-dimensional problems integrating over the
corresponding element T,.

The flux integral along the boundaries of the element 7, is computed by solving
the generalized Riemann problem using the arbitrary high-order derivative
(ADER) approach, originally presented by Toro et al. (2001) and Titarev & Toro
(2002). We refer to the work of Castro & Toro (2008) for a detailed description
of the solution and comparison of three different strategies. A fourth possible
solution was presented by Dumbser et al. (2008).

The generalized Riemann problem introduces time accuracy of the same order
as the spatial accuracy and is expressed as the following initial value problem:

PDEs: 0, U 4+ 0:F(U)=8(U), &e(—o0,00), 1>0,
UL if& <0, (2.7)

1C: UE,0Q) =
&0 Ur) if&>0,

where & is a local coordinate aligned with the normal vector n; to the boundary
face 97, with the origin & =0 right at the interface. The index j refers to the
boundaries of the control volume with 87, =3_;97,;. The Riemann problem
(2.7) is generalized in two ways, the initial conditions are high-order polynomials
in space and the equations include source terms. The solution is a time-dependent
solution that allows us to evaluate the numerical flux F(u) - n and therefore the
calculation of the flux integral in equation (2.6).

The initial conditions Uy (&) and Ugr(§) are obtained from the polynomial
representation of the numerical solution at time ¢t =t" for DG schemes. In the
case of FV schemes, we use a weighted essentially non-oscillatory (WENO)
reconstruction procedure of order O, for example the one presented by Dumbser &
Kaser (2007), to recover WENO polynomial representation of the unknown vector
U in each element at each time step. In both cases the data have to be rotated
in order to align them to the normal direction 7;.

The volume and source integrals in equation (2.6) are approximated using
a space—time high-order evaluation of the integrals, where we use the Cauchy—
Kowalewski method to express high-order spatial derivatives into high-order time
derivatives and then use a Taylor time-series expansion in the time interval
[t", t"*1]. In practice, we do an L2 projection of each time derivatives 8?)) wp (T, t")
inside element 7, to obtain a space—time evolution equation expressed as follows:

U(%, T) = ’&lr(bl(%)qu(r)a (28)
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where ¢,.(7) are the coefficients of the Taylor series with r=0,...,0 —1 and
7 €[0, At]. The time step At =t""! — ¢" is defined by the stability condition

- Cenn h
“200-1D+1v’

where Cg is the Courant—Friedrichs—Lewy number proposed by Courant et al.
(1928), O the order of the numerical approximation used in equation (2.3), h a
measure of the size of the element and v the fastest wave velocity in the particular
element. As mentioned above, FV methods use O =1 in approximation (2.3)
and therefore equation (2.9) reduces to the classical FV stability condition. This
condition is applied to each element in the computational domain and then the
smallest time step is used to update the numerical solution for all elements. We
refer to this approach as the global time step (GTS) method, which is still the
most common approach for solving balance laws like equation (2.1).

If we consider the same (. number for the full computational domain,
equation (2.9) shows that the maximal time step At in each element depends
on the element size h, the order O of the approximation used in equation (2.3)
and the maximum wave velocity v. Some of these parameters can be adjusted to
recover a homogeneous time step throughout the computational domain, while
others depend on the particular problem that we are trying to solve. In both cases
an adaptive local time step (LTS) is a powerful tool to improve computational
efficiency on medium- and large-scale numerical simulations, in particular for
geophysical problems. In the next section we present an LTS scheme that can be

applied to ADER-DG and ADER-FV numerical methods.

At (2.9)

3. Space-time adaptive approach

When solving realistic large-scale geophysical problems we normally encounter
complex geometries that define the computational domain. On the other hand,
the maximum and minimum wave speeds involved in the numerical simulation
can present highly heterogeneous values and therefore forcing us to adapt the
mesh spacing to provide enough spatial resolution. Take for example a seismic
wave propagation problem, where the velocity model consists of a large-scale
homogeneous material but with a confined small basin of very low velocity.
Because of the small-scale geometry of the basin and the slow velocity of the waves
inside, we are forced to prescribe a fine mesh in order to resolve the wave
structure inside this basin. Another example is the wave propagation of a tsunami
wave where long period waves propagating in the open ocean approach and
interact with a complex small-scale coast line. In these two examples, an LTS
scheme would improve the computational effort to simulate the problem.

In this section we generalize the approach presented by Dumbser et al. (2007)
for the ADER-DG LTS in order to be used also in the context of ADER-FV
schemes. The main difficulty to directly apply the algorithm of ADER-DG LTS to
high-order FV methods is the reconstruction process. In this process we make use
of cell averages of neighbour elements to construct a polynomial representation of
the unknown vector inside each element at each time step, typically performing a
WENO type of reconstruction. The number of cell averages needed is defined by
the number of elements in the reconstruction stencil. The cell average values in
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Figure 1. Cluster organization of the computational domain £2 = CV U ¢® U C® | In this figure,
the full computational domain has been divided into three clusters, each one running with different
time steps.

the corresponding stencil need to be at the same time level as the element that is
reconstructed. This is typically not possible when each element runs its own time
step. In the work of Fumeaux et al. (2004) in the context of FV, they enforce some
level of synchronization by allowing the elements to advance by a multiple of 2 of
a fundamental time step. A more general approach was presented by Tessmer
(2000) for the finite difference scheme, allowing for any positive multiple of a
fundamental time step. In the work of Lorcher et al. (2007) and Gassner et al.
(2008) they extend the ADER-DG LTS to nonlinear Euler and Navier—Stokes
equations considering DG methods.

The LTS approach presented here introduces two modifications to the one
presented by Dumbser et al. (2007). First, we use LTS applied to clusters of
elements instead to a single element; and second, we propose a reconstruction step
based on evolved cell averages when the neighbour elements in the reconstruction
stencil belong to different clusters and therefore to different time levels. Thereby,
the reconstruction stencils have to be fully contained in direct neighbour clusters.
In figure 1 we show the computational domain subdivided into three clusters.
Each cluster defines the maximum time step by taking the smallest step from the
stability criterion (2.9) applied to the elements inside the cluster.

The main ingredient of the LTS approach is the update criterion which when
applied to a cluster of elements reads: a cluster of elements, identified with
superscript c, is updated from time level ¢ to the time level ¢t + At(® if and
only if the update criterion

t((:) _i_At((z) Smin(t((f_,‘) +At(6j)) ch (31)

is satisfied with respect to all direct cluster neighbours ¢;. Once the criterion
has been fulfilled for the cluster ¢, the elements in the cluster with neighbours
inside the same cluster can compute the flux in the full interval At?, while the
ones along the boundary of the cluster compute the flux integrals in the following
time interval:

[t1; t2] = [max(t'?, t9)): min(t'9 + At (D 4 AtD)]. (3.2)
Note that [t1;¢2] depends on the corresponding cluster neighbour ;.

Equations (3.1) and (3.2) are identical to the one presented by Dumbser et al.
(2007), but now applied to clusters of elements.
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Figure 2. Reconstruction and update for local time step schemes. On the left the reconstruction
step. On the right the update step. Horizontal solid black lines are actual time level of clusters.
Horizontal grey lines are reconstructed values. Horizontal dashed lines are maximum time step for
the cluster. Horizontal dotted lines (reconstruction column) are extrapolated cell average time with
u the cell averages.

The novelty of this approach is the reconstruction step which we explain next,
via a one-dimensional example, for simplicity.

In figure 2 we show two columns. The left one shows the reconstruction step
while the right one shows the update step. At the beginning of the simulation,
figure 2a, we cluster the elements with similar time step: CV =[T;, 73], C® =
(73,71, T3] and C® =[Ts, T7]. Because all the elements are at the same time level
t =0 we can reconstruct the initial data. After each cluster defines its maximum
time step, see dashed line in the update column, we use the update criterion (3.1).
In figure 2a, cluster C® fulfills the criterion and is updated to the time level
t=At?. In updating C® we compute fluxes in the time interval ac with respect
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to CV and bd with respect to C®. These fluxes are stored in the corresponding
neighbour elements on the neighbouring clusters. In this case the flux associated
to the interface dc is stored by element 7 in O and the flux associated to the
interface bd is stored by element 75 in C'®. At the next time cycle represented
in figure 2b, we need to reconstruct the elements in C® at the new time level.
The problem is that the neighbouring clusters remain at time ¢ =0. Here, we
use an evolved cell average value when the elements in the reconstruction stencil
belong to a different time level. In this reconstruction step, elements of C'®
will use evolved cell averages from O and C® when needed as represented
with @ in figure 2b. After C® is reconstructed and the new maximum time
step is computed, the update criterion is used. In figure 20 CV is updated to
the time level t = At™W. All elements on the boundary between CV and C®
will compute flux only in the time interval ce as defined by equation (3.2). The
flux in the segment ac was already computed and stored in the previous cycle.
In figure 2¢ we reconstruct CV using information from C® and compute the
maximum time step. The update criterion tells us to update C® to the time level
fg. Boundary elements between CY and C® compute the flux in the interval
ef and then is stored by element 75 in CV. Elements in the boundary between
C® and C® compute the flux for the full update time interval dg, which is
stored by element 75 in C®. In figure 2d we reconstruct C'® using evolved cell
averages from CV and C® and then C® is updated. Elements at the interface
between C® and C'® need to compute the flux integral only in the time segment
gh. In figure 2e we reconstruct C® using evolved cell averages from C® and
then update C'®. This procedure continues until a synchronization time level is
imposed or the final time simulation is reached.

Because we consider reconstruction stencils to be fully contained in direct
neighbour clusters we can ensure that the evolved cell averages are within
the valid time interval defined by the time step of each cluster. The cell
average evolution within the time interval ¢t =[t9, t© 4+ At(“] is obtained from
equation (2.8) considering only the first basis function ¢y(z) =1 as follows:

’l_L(I_i‘,T) = aﬂr(pr(f)a (33)

and then evaluated at the desired time level.

With this new method we can use local time steps associated with each cluster
of elements to reduce computational time in large-scale simulations. Moreover, the
optimized time step with respect to the stability criterion reduces the numerical
diffusion of the scheme. The proposed scheme reproduces the one presented by
Dumbser et al. (2007) for ADER-DG, and therefore without reconstruction step,
if we consider each single element in the computational domain as a cluster.

With the LTS modification the update scheme reads as follows:

=gl - L JQJ SLF (u) - ndadt + HO
w = — pF(uw) - ndzdt +H'
: Y Talm | Jn Jar,

t!b‘f’l tz_Hrl

7 verrwdsa- | J¢k5<u)dwdt}, 5.0
ty Tm tl Tm
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with "=t and "1 = + At If the element that is updated has direct
neighbouring elements inside the same cluster #® =0 and [¢1; 2] = [t tf“]. On
the other hand, if the element to update has a neighbouring element in a different
cluster H(© # 0 and contains the precomputed fluxes from previous neighbouring
cluster updates. In the same manner [¢1;¢2] are computed from equation (3.2).
After the element is updated, H(® is set to zero.

The fact that we restrict this approach to consider reconstruction stencils fully
contained in direct neighbouring clusters does not present practical restrictions.
The LTS approach only pays off if the computational domain has a small number
of short time-step elements, which then one can cluster together. Moreover, if
we only consider two clusters of elements, which are not necessarily formed by
neighbouring elements, this approach still applies.

In the next section we validate the proposed ADER-FV LTS scheme through
a convergence test for the two-dimensional nonlinear shallow water equations
to illustrate that the new scheme achieves the expected order of convergence. In
Dumbser et al. (2007), the accuracy of the ADER-DG LTS was already presented
for linear seismic wave equations in three dimensions.

4. Validation

In order to verify the expected order of accuracy we perform a convergence test
where the numerical solution is compared with an exact solution on a sequence
of refined meshes for the nonlinear shallow water equations with non-horizontal
bathymetry; see the book of Toro (2001) for further details of the equations.
Measuring the error resulting from different meshes we can compute the empirical
order of convergence of the ADER-FV LTS numerical scheme. Here, we consider
an exact solution U(z,t) given by

b(Z) = 0.2e 8"+,

h(Z, 1) = P — b(F),
w(Z,t) =0.2 4+ 0.1sin(zm),
v(Z,t) =0.2 + 0.1sin(ym).

h(zZ, t)
U, t)=| h(z,)u(z, t) |, with
h(z, Hv(z, t)

(4.1)

Introducing this exact solution into the two-dimensional version of the
balance law (2.1) we obtain the new source term, SU)(z,t) = dU + 3, FU) +
0, G(U) — SU). The convergence test problem is then defined as follows:

PDEs: o, U+ 0,F(U)+9,G(U)=S8(U) +S(U),}

IC: U(%,0) =U(Z,0). (4.2)

The computational domain [—1,1] x [—1,1] is discretized with structured
triangular meshes and two clusters are defined with different characteristic
element sizes determining the local time steps (figure 3). Periodic boundary
conditions are applied. The final time in the computation is set to ¢t = 1. In table 1
we observe that the expected orders are reached for second to fifth order for this
test problem using the ADER-FV LTS numerical method. The fine cluster C®
computes 32, 35 and 39 per cent more time steps than the coarse cluster CV for
meshes 4, 8 and 16.
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o

c@)
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X X X

Figure 3. Set of mesh refinements for the convergence test. We refer to them as 4, 8 and 16. The bold
line defines the interface between the two clusters with different characteristic time step lengths.

Table 1. Errors for the numerical convergence test for component ug from second (P1) to fifth (P4)
order. In the last column the ratio of time steps between C® and C is shown.

mesh L' O I? Oz L Op c®/cW
4 7.95 x 1072 — 5.21 x 1072 — 1.05 x 1071 — 1.32
8 2.13 x 1072 1.90 1.44 x 1072 1.86 5.57 x 1072 0.91 1.35
16 3.91 x 1073 2.45 2.70 x 1073 2.41 1.53 x 1072 1.86 1.39
4 4.04 x 1072 — 2.65 x 1072 — 6.60 x 1072 — 1.32
8 9.07 x 1073 2.16 6.20 x 1073 2.09 2.41 x 1072 1.45 1.35
16 9.03 x 1074 3.33 6.26 x 1074 3.31 3.74 x 1073 2.69 1.39
4 4.07 x 1072 — 2.82 x 1072 — 9.33 x 1072 — 1.32
8 5.77 x 1073 2.82 4.10 x 1073 2.79 1.98 x 1072 2.24 1.35
16 3.38 x 1074 4.09 2.61 x 1074 3.97 1.98 x 1073 3.32 1.39
4 2.84 x 1072 — 2.09 x 1072 — 8.25 x 1072 — 1.32
8 457 x 1073 2.63 3.77 x 1073 2.47 2.99 x 1072 1.46 1.35
16 1.52 x 1074 4.91 8.95 x 107 5.39 2.63 x 1074 6.83 1.39

5. Geophysical applications

(a) Tsunami wave propagation

Here we show an application of the ADER-FV LTS method where LTS
adaptation helps to reduce computational effort to solve a real-scale problem.
The case considers a tsunami wave propagation problem modelled with the
two-dimensional nonlinear shallow water equations. We use the well-balanced
ADER-FV scheme presented by Castro et al. (submitted) with and without the
LTS modification. The computational domain represents an area offshore the west
coast of Chile close to San Antonio with the coordinates (z,y) = (0,0) centred
at longitude 78°W and latitude 38°S (figure 4a). The bathymetry of the area
(Amante & Eakins 2008) was used to extract the coast line. In figure 4a we

Phil. Trans. R. Soc. A (2009)
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Figure 4. In this figure we show part of the computational domain. The top, left and bottom of the
domain are open boundaries while the right boundary represents the coast line represented with

reflective boundaries. (a) Bathymetry of the area of interest. (b) Discretization of the computational
domain with statically adapted triangular mesh. The black line identifies the interface between the

two clusters CD on the right and C® on the left.

plot the bathymetry of the area of interest. Observe the strong contrast on the

bathymetry depth with variation from —5800m in the Atacama Trench to 0 m on

the coast. In figure 4b we plot the mesh used to discretize the physical domain.
The mesh was constructed to accurately describe the coast line with very small

see right part of figure 4b). Because in the open ocean the velocity of

(

the tsunami wave is much higher

elements

. This unbalance of mesh size produces

, the wave length is larger. Furthermore, there are

no geometrical restrictions and we can use larger elements to discretize that part
of the domain (see left part of figure 4b)
very small time steps near the coast and large time steps away from the coast.

Therefore, we subdivide the mesh into two clusters when using the LTS scheme
is denoted as C" and the left one as C®. Coloured parts of the mesh identify
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Figure 5. Snapshots of the vertical water displacement for the tsunami wave propagation scenario
approaching the coast. The white line represents the interface between the two clusters of elements
running at different time steps.
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Figure 6. Signals of the tsunami wave heights registered at the three locations indicated in figure 5.
On the vertical axis the numbers indicate the receivers from 1 to 3. Immediately inside we place
the maximum wave signal for each receiver. Broken line, global time step; continuous line, local
time step.
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figure 6. We compare the numerical solution using the GTS and the LTS scheme.
The GTS scheme runs for 12154s on 16 AMD Opteron 250 2.4 GHz cores, while
the LTS scheme uses 9810s, an improvement of 20 per cent. In the LTS the
smaller time step cluster C"Y uses 2333 updates, while the cluster C® only
requires 528 wich is, on average, a difference of 4.4 number of updates. In figure 5
at time ¢t =0 we observe the initial condition with a wave amplitude of the order
of 1 m. A negative wave travels to the coast crossing the cluster boundary without
generating any spurious numerical artefacts. See time ¢t =5,...,20min. At t =15
min this wave arrives to the coast and reflects back. On the other hand, a positive
wave travels through deep ocean heading northwest. This wave is sampled by the
register number 3.

In figure 6 we plot the signals for both the methods showing the same behaviour
during the full simulation time, as expected. We observe a slightly higher
amplitude in the first wave arrivals obtained by the LTS scheme, particularly
visible in signal 3. We explain this as an effect of the reduced numerical
diffusion due to the optimal use of the time step. Signal 1 shows a much richer
wave structure due to the vicinity of the coast and the corresponding wave
reflections from there. Signal 2 is very interesting as it is recorded just to the
left of the cluster interface. After the first wave passage there are about 15 min
without vertical water displacement. Later, after roughly 30 min of simulation
time, we register again a vertical displacement due to reflections from the
coast. We consider these results as a clear indication that the LTS scheme
works properly.

(b) Seismic wave propagation

Here we present a large-scale application of the proposed ADER-DG LTS
scheme to a ground motion simulation problem in the continental area of
San Antonio on the west coast of Chile. This is done by solving the set of
linear hyperbolic equations describing seismic wave propagation in three space
dimensions as presented by Dumbser & Késer (2006). We want to remark that
this application represents a simplified case of the real geophysical situation.
However, the test case clearly demonstrates the flexibility and feasibility of the
proposed methodology and could also be applied for more realistic scenarios
where detailed knowledge of the earthquake source and the geological properties
of the subsurface are included. Furthermore, we recall that the accuracy and
correctness of the adaptive DG scheme for simple seismic wave propagation
problems were already validated in previous the work of Dumbser et al. (2007),
and therefore we concentrate our attention on the comparison of the efficiency of
the method. To this end, we first show a simulation using the classical ADER-
DG GTS scheme using a GTS defined by the smallest time step in the entire
computational domain following equation (2.9). Then, we show the results of the
same simulation using the LTS scheme with the same standard mesh partition.
Finally, we improve the efficiency of that scheme by modifying the partitioning
strategy to get a better load balance for multi-processor calculations.

The computational domain with the coordinate origin (z,y,2) = (0,0,0)
centred at longitude 72°W, latitude 34°S and elevation Om.a.s.l. is shown in
figure 7a, where five different geological units with distinct material properties
are shown: (i) a 200m thick sedimentary basin at the surface embedded into
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Figure 7. (a) Computational model representing the San Antonio area with its topography and the
basin and subduction geometry. (b) Zoomed view of the geometry of the two thin basins embedded
in a near-surface layer. Crosses show the surface locations of the 10 seismic receivers. (¢) Colour-
coded MPI domains obtained by a standard partition of Metis. (d) Improved partitioning strategy
by subdividing each geological unit (zone) separately in the desired number of MPI domains.

Table 2. Material values for the five units of the San Antonio model for seismic ground motion

simulation.
unit o (kgm™3) vp (ms™1) vg (ms~1)
1 2100 3000 400
2 2100 3600 700
3 2300 4300 2500
4 2600 4500 2600
5 2600 5400 3120

(ii) a wider and 500 m deep basin structure, (iii) a near-surface layer of 2000 m
thickness over (iv) a large block of continental crustal material, and (v) an
oceanic wedge indicating the subducting slab along a dipping curved interface.
The material properties used are given in table 2.

The topography of the model is taken from a digital elevation model
(Amante & Eakins 2008) and the source is placed close to the subduction
interface at (s, s, 25) = (16 650,51 006, —30 000) m, where the hypocentre of the
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Figure 8. Seismograms of the ground motion velocities u,v and w at four selected receivers. The
seismograms of the three different simulations are superimposed and coincide visually in one
single line, which confirms that there is no difference in the obtained results. The seismogram
scaling is the same within each plot, but might differ from one plot to the other to improve
visualization. (a) Receiver 2 is positioned west of the basins; (b) receiver 4 is inside the
outer basin; (¢) receiver 6 is inside the inner basin; and (d) receiver 9 is positioned east of
the basins.

1985 Santiago earthquake has been located. Synthetic seismograms are registered
at 10 receivers with a regular distance of 3km in increasing z-direction across
the basins at the model surface as shown in figure 7b. The seismograms are
used to check the consistency of the results obtained by the three different
simulations.

The first simulation using an ADER-DG GT'S scheme of order 4 and a standard
Metis (Karypis & Kumar 1998) partition into 1020 subdomains of equal numbers
of elements requires 43 256 s on 1020 Intel Itanium2 Montecito Dual Core 1.6 GHz
cores. Leaving the simulation setup unchanged, but exchanging the GTS with an
LTS scheme, the computational time significantly reduces to 29444s. However,
the used standard mesh partition as shown in figure 7¢ is not adequate any
more. Whereas for GTS schemes it is important that each subdomain consists
of the same number of elements in order to ensure well-adjusted load balance, for
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Figure 9. (a) Equally scaled seismograms of the vertical ground motion velocity plotted as a cross
section from west to east (left to right) show a clear amplification and prolongation of the signals
within the basin structure. In particular, it is obvious that the strong ground motion is caused
by the arrival of S-waves. (b) Comparison of the velocity seismograms at receiver 6 inside the
inner basin considering or neglecting the basin. It is obvious how the basin causes strong wave
amplification and prolongation of the shaking due to wave trapping. Solid line, with basin; dashed
line, no basin.

LTS this strategy leads to problems. In fact, each element evolves its solution
by an LTS and therefore the number of update cycles for each element to
reach a certain time level is different. Furthermore, after each update cycle
neighbouring information has to be exchanged via MPI communication between
the different processors. Therefore, for LTS schemes it is important that the
number of element updates determined by equation (3.1) in each subdomain is
equal. This is a highly non-trivial task, as the number of element updates per
cycle in each subdomain also changes with time. Therefore, a dynamic load-
balancing technique should provide the best load balance. However, an efficient
implementation of a dynamic load-balance algorithm for unstructured meshes
using LTS is subject to future work and might result in significant MPI overhead.
Nevertheless, our preliminary and effective solution is the partition of the mesh
respecting the different geological units (zones). This way, each zone is partitioned
into the desired number of subdomains as shown in figure 7d. This is similar to
the case of the tsunami wave simulation in §5a where each cluster is partitioned
separately. Finally, each processor obtains one subdomain from each geological
zone that provides an improved load balance due to the fact that computationally
expensive (small) and cheap (large) elements are distributed more evenly. Using
the LTS scheme with the modified partition of figure 7d in a third simulation
reduces the computational time to 26 976 s.

The resulting ground motion components u,v and w in z-, y- and z-direction,
respectively, are shown as seismograms in figure 8 at four selected receivers
obtained by the three different simulations. In fact, the seismograms appear
as one line indicating that all the three simulations visually produce the same
results. Receiver 2 located west outside the basin shows clear P- and S-wave
arrivals, whereas receiver 4 inside the outer basin and receiver 6 inside the
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inner basin show a much richer seismogram structure due to trapped waves
inside the basins. Trapped waves are a well-known basin effect, if the impedance
contrast between a hard basement rock and a soft sedimentary basin rock
allows only a small fraction of the wave energy inside the basin to escape
from it. Therefore, subsequent internal reflections from the basin boundaries
cause wave interference that can significantly amplify and prolongate the ground
motion. Receiver 9 on the east side of the basin again shows the direct wave
arrivals more clearly; however, followed by a surface wave coda mainly caused by
the basin.

Plotting the seismograms of all stations as a cross section from west to
east in figure 9a, the ground motion amplification and longer duration due
to the basins are clearly visible. Furthermore, it is obvious that the S-wave
arrival is causing the large amplitudes, while the direct P-waves do not show
a significant coda. To emphasize the importance of considering the low-velocity
basins even if extremely thin in their spatial extent, we also show a comparison
with the results obtained by neglecting the basins. To this end, we leave the
geometry of the problem unchanged but fill the basins (units 1 and 2) with
the same material as the surrounding surface material of unit 3. Figure 9b
displays the comparison with and without the basin at receiver 6. Without
the basin there is only weak ground motion after about 16s, i.e. after the
direct S-wave has passed the receiver. Therefore, considering such fine, low-
velocity structures is currently a key issue in realistic ground motion modelling
and seismic hazard analysis, but remains a challenge for many non-adaptive
numerical schemes.

6. Conclusions

We presented a space—time adaptive algorithm to be used in the context of fully
discrete, one step high-order FV and DG finite-element methods on unstructured
meshes. We empirically demonstrated the expected order of convergence up to
fifth order. In addition to statically adapted meshes we apply the LTS approach
to two real-scale geophysical applications in the FV and DG finite-element
framework. In both cases the computational effort is reduced while keeping or
even slightly improving the numerical accuracy. For large-scale problems where
multi-processor computations are necessary, the LTS approach requires a new
mesh partition strategy as the computational work may not be distributed
equally. Therefore, we apply a partition technique subdividing clusters of elements
or geological zones with equivalent elements separately into the desired number of
MPI domains. However, further studies especially with respect to dynamic load-
balancing algorithms need to be done for each method and different physical
problems. Scalability is becoming an increasingly important issue when enlarging
the number of processors to several thousands, which seems to be the future trend
in high-performance computing.
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