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ABSTRACT - We present a new numerical method to simulate seismic wave propagation 
in geometrically complex three-dimensional viscoelastic media with high order accuracy in 
space and time. The scheme solves the seismic wave equations formulated as a linear 
hyperbolic system on three dimensional unstructured tetrahedral meshes by  combining 
the Discontinuous Galerkin Finite Element method with a new time integration approach 
using arbitrary high order derivatives of the solution for flux calculation. In contrast to 
classical Finite Element methods, the numerical solution is approximated by piecewise 
polynomials  which  allow  for  discontinuities  at  element  interfaces  and  shows spectral 
convergence even on unstructured tetrahedral meshes. Due to the local character of the 
numerical scheme and the particular time integration approach, the approximation order 
can be chosen adaptively and a local time stepping technique can be applied. Together 
with  an  appropriate  mesh  partitioning  technique,  we  improve  the  efficiency  of  the 
proposed method considerably  without  losing  the  desired  high  order  accuracy  or  the 
flexibility provided by an unstructured tetrahedral mesh. To confirm its performance we 
finally apply the new scheme to the 3-D benchmark simulation of the Grenoble valley. 

1. Introduction

The solution of the seismic wave equations with very high accuracy in space and time is 
still a challenging task, especially for realistic models including complex 3-D geometries 
like  surface  topography  or  non-planar  internal  boundaries  and  material  interfaces. 
Furthermore,  attenuation and dispersion,  which strongly  affect  the seismic wave field, 
have to be considered to correctly model the wave amplitudes and phases of a fully 3-D 
seismic  wave  field.  Realistic  attenuation  properties  are  obtained  by  incorporating 
viscoelastic media that combine the behaviour of elastic solids and viscous fluids. 

A new approach, combining the Discontinuous Galerkin (DG) method of (Reed and Hill, 
1973) with a time integration method using Arbitrary high order DERivatives (ADER) as 
introduced in  (Toro et  al.,  2001;  Titarev and Toro,  2002),  was proposed in  (Dumbser, 
2005)  for  linear  hyperbolic  systems. This  highly  accurate numerical  method was then 
introduced for the simulation of elastic wave propagation on unstructured meshes for two 
and three space dimensions (Käser and Dumbser, 2006; Dumbser and Käser, 2006). The 
presented ADER-DG schemes approximate the unknown solution inside each tetrahedral 
element by a polynomial, whose coefficients - the degrees of freedom - are advanced in 
time. Hereby, the polynomial representation of the solution can be discontinuous across 
the  element  interfaces,  which  allows  to  incorporate  the  well-established  ideas  of 
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numerical flux functions from the Finite Volume (FV) framework. To define a suitable flux 
over the element surfaces a so-called Generalized Riemann Problem (GRP) (Toro et al., 
2001)  is  solved  at  the  element  interfaces,  which  provides  simultaneously  a  time-
integration  method.  The  main  idea  is  a  Taylor  expansion  in  time  in  which  all  time 
derivatives  are  replaced by  space derivatives  using  the  so-called  Cauchy-Kovalewski 
procedure which makes extensive use of the governing PDE. The numerical solution can 
thus be advanced for one time step without intermediate stages in contrast to classical 
multi-stage  Runge-Kutta  time  stepping  schemes.  Furthermore,  the  projection  of  the 
tetrahedral elements in physical space onto a canonical reference tetrahedron allows for 
an efficient implementation, as many computations of three-dimensional integrals can be 
carried out analytically beforehand. 

Later,  this  scheme was extended to  viscoelastic  rheologies in  (Käser  et  al.,  2006), 
where additional anelastic functions are incorporated resulting from different attenuation 
mechanisms of a generalized Maxwell body (Emmerich and Korn, 1987; Carcione et al., 
1988).  This  way,  realistic  seismic  wave  field  attenuation  and  dispersion  is  modeled 
correctly.  Hereby,  it  is  important  that  the  earth's  internal  friction,  i.e.  the  measure  of 
attenuation, is nearly constant over a wide seismic frequency range, which is due to the 
composition of  the earth's  polycristalline  material  consisting  of  different  minerals.  The 
superposition of these microscopic physical attenuation processes generally leads to a 
flat attenuation band.

In this paper, we present important extensions of this ADER-DG approach as far as its 
applicability and efficiency to realistic, large scale applications is concerned. The degree 
P of the approximation polynomials determines the order of accuracy of the numerical 
scheme. As most problems include zones of high and low interest a globally high degree 
P is not required and unnecessarily increases computational run time. Therefore, a  P-
adaptive ADER-DG approach is introduced, where different polynomial degrees P can be 
chosen  for  individual  tetrahedral  elements.  The  flux  computation  across  an  element 
interface requires a matrix-matrix multiplication of the flux-matrix and the matrix containing 
the degrees of freedom. Due to an hierarchical order of the polynomial basis functions the 
flux-matrices of a lower order element represent a subset of these matrices of a higher 
order element. This way, a  P-adaptive flux calculation only uses the necessary part of 
these  matrices  and  therefore  enhances  computational  efficiency.  A further  important 
extension  is  the  use  of  a  local  time step  in  the  individual  elements,  such that  each 
element uses its maximum time step allowed by the stability criterion. This way, small 
elements have to be updated with a small time step frequently, whereas large elements 
have to be updated less often. Therefore, small tetrahedrons that might appear due to 
complex  geometrical  features  or  due  to  high  spatial  resolution  requirements  to  not 
globally restrict  the time step. Furthermore, a new mesh partition technique has been 
developed in  order  to  achieve better  load balancing  for  MPI  parallelisation  of  the  P-
adaptive ADER-DG schemes with local time stepping. Thus, the mesh is split into different 
zones which might be determined by geometrical features. Then each of these zones is 
partitioned into a number of subdomains that is determined by the number of available 
processors. 

Finally,  we  apply  the  proposed  ADER-DG  scheme  with  its  full  functionality  to  the 
numerical  benchmark  of  3-D ground motion  simulation  in  the valley  of  Grenoble  and 
present  your  results  in  form of  seismograms and a  2-D map of  surface  peak ground 
particle velocity.
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2. The Numerical Scheme

The proposed numerical method combines a Discontinuous Galerkin (DG) Finite Element 
scheme with a time integration technique using Arbitrarily high order DERivatives (ADER) 
in order to solve the governing PDE with arbitrarily high approximation order in time and 
space.  The  system  of  the  three-dimensional  seismic  wave  equations  formulated  in 
velocity-stress leads to a hyperbolic system of the form
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where  the  vector  Q of  unknowns  contains  the  six  stress  and  the  three  velocity 
components. The Jacobian matrices A, B and C include the material values as explained 
in detail in (Käser and Dumbser, 2006; Dumbser and Käser, 2006). As described in detail 
in  (Dumbser  and  Käser,  2006)  in  the  Discontiuous  Galerkin  approach the  solution  is 
approximated  inside  each  tetrahedron   by  a  linear  combination  of  space-dependent 
polynomial basis functions and time-dependent degrees of freedom as expressed through
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where the basis functions  Φl form a orthogonal basis and are defined on the canonical 
reference tetrahedron. As deriving the numerical scheme in detail would go beyond the 
scope of this paper, we refer to previous work in (Käser and Dumbser, 2006; Dumbser 
and Käser, 2006) for a detailed mathematical formulation of the Discontinuous Galerkin 
method. However, we mention that the time accuracy of the scheme is automatically equal 
to the space accuracy determined by the degree of approximation polynomials used in 
equation (2). This is due to the ADER time integration approach, where the fundamental 
idea is to expand the solution via a Taylor series of order (N-1) in time
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where we then replace all time derivatives in equation (3) by space derivatives using the 
governing PDE in  equation  (1).  It  can be shown that  the k-th  time derivative  can be 
expressed as
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and  therefore  using  equation  (4)  in  (3)  the  Taylor  series  only  depends  on  space 
derivatives of the basis functions Φl of equation (2) and the degrees of freedom from the 
actual, i.e. local time level 0, as finally given by
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The expression in equation (5) can be integrated in time analytically as shown in detail 
in (Dumbser and Käser, 2006) and therefore leads to a new approach termed ADER-DG 
method that provided arbitrarily high order in space and time depending on the degree of 
the basis polynomials  Φl in equation (2) and the corresponding order (N-1) of the time 
Taylor  series  in  ,  chosen  in  equation  (3).  However,  the  accuracy  of  the  schemes  is 
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computationally  costly  as  a  many  matrix-matrix  multiplications  have  to  be  carried  to 
evolve  the  degrees  of  freedom  in  time.  Therefore,  different  approaches  to  enhance 
computational  efficiency,  in  particular  for  parallel  computing,  are  addressed  in  the 
following. 

3. Increasing Computational Efficiency

For  large  scale  applications  computational  efficiency  is  essential  in  order  to  obtain  a 
desired  accuracy  of  the  results  in  a  reasonable  time.  There  are  many  different 
possibilities to reduce computational cost, however, we remark that the key issue of our 
approach  is  to  preserve  the  high  order  accuracy  and  spectral  convergence  of  the 
proposed ADER-DG schemes.   
  
3.1. P-Adaptivity

In most applications, the computational domain is larger than a particular zone of interest, 
often also to avoid effects from the boundaries. Therefore, a large number of elements is 
needed to discretize the entire geometry of the model. However, as in most cases the 
high order accuracy is only required in a restricted area of the computational domain, it is 
desirable  to  choose  the  accuracy  adaptively  in  space.  This  means,  that  it  must  be 
possible to vary the degree  P of the approximation polynomials  Φl in equation (2) from 
one element to the other. Furthermore, due to a hierarchical order of the basis functions 
the degrees of freedom for a lower order polynomial are always a subset of the those of a 
higher  order  one.  Therefore,  the  computation  of  fluxes between elements  of  different 
order is carried out by using only the necessary part of the flux matrices.

Figure 1: Tetrahedral mesh with P-adaptive elements, P1 = blue, P2 = green, P3 = red.

Due to the direct coupling of the time and space accuracy via the ADER approach, the 
scheme automatically becomes adaptive in time accuracy, which often is referred to as Pτ

 -adaptivity. In general, the distribution of the degree P is connected with the size h, i.e. 
the radius of  the inscribed sphere, of  the tetrahedral  element such that the local  P is 
determined by
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where the choice of the power  r  determines the shape of the  P-distribution. Note, that 
equation (6)  P increases with increasing  h,  whereas in equation (7)  P decreases with 
increasing h, which gives additional freedom for the distribution of P. An example of the 
distribution of P for the Grenoble benchmark simulation with Pmin=P1 and Pmax=P3 is given 
in Figure 1. 

3.2. Local time stepping

Geometrically  complex computational  domains or spatial  resolution requirements often 
lead to meshes with small  or  even degenerate elements.  Therefore,  the time step for 
explicit numerical schemes is restricted by the ratio of the size h of the smallest element 
and the corresponding maximum wave speed in this element. For global time stepping 
schemes all elements are updated with this extremely restrictive time step length leading 
to  a  large  amount  of  iterations.  With  the  ADER  approach,  time  accurate  local  time 
stepping can be used, such that each element is updated by its own, optimal time step. 
An element can be updated to the next time level if its actual time level and its local time 
step ∆t fulfill the following condition with respect to all neighboring tetrahedrons n: 

)min( nn tttt ∆+≤∆+ (7)

Figure 2 is visualizing the evolution of four elements (I, II, III and IV) in time using the 
suggested local time stepping scheme. A loop cycles over all  elements and checks for 
each element, if condition (7) is fulfilled. At the initial state all elements are at the same 
time level, however, element II and IV fulfill condition (7) and therefore can be updated. In 
the next cycle, these elements are already advanced in time (gray shaded) in cycle 1. 
Now elements I and IV fulfill condition (7) and can be updated to their next local time level 
in cycle 2. This procedure continues and it is obvious, that the small element IV has to be 
updated more frequently than the others. A synchronization to a common global time level 
is only necessary, when data output at a particular time level is required, e.g. as shown in 
Figure 2. 

Information exchange between elements across interfaces appears when numerical 
fluxes are calculated. These fluxes depend on the length of the local time interval over 
which a flux is integrated and the corresponding element is evolved in time. Therefore, 
when the update criterion (7) if fulfilled for an element, the flux between the element itself 
and its neighbor n has to be computed over the local time interval:  

)],min(),,[max( nnnn tttttt ∆+∆+=τ (8)
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Figure 2: Visualization of the local time stepping scheme. The actual local time level t is at the top 
of the gray shaded area with numbers indicating the cycle, in which the update was done. Dotted 

lines indicate the local time step length ∆t with which an element is updated.

We illustrate this on the example of the update of element III in cycle 5 (see Figure 2). 
The remaining part of the flux not covered by the interval in equation (8) was already 
computed by the neighbors during their previous local updates. These flux contributions 
have been accumulated and were stored into a memory variable and therefore just have 
to be added. 

Note that e.g. element IV reaches the output time after 9 updates, which for a global 
time stepping scheme would require 36 updates for the four elements. With the proposed 
local time stepping scheme only 16 updates are necessary to reach the same output time 
with all elements, leading to a speedup factor of 2.25. For strongly heterogeneous local 
time step lengths this factor can become even more pronounced. 

3.3. Mesh partitioning

For large scale applications it is essential to design a parallel code that can be run on 
super-computing facilities. Therefore, the load balancing is an important issue to use the 
available computational resources efficiently. For global time stepping schemes without P-
adaptivity standard mesh partitioning as done e.g. my METIS is sufficient to get satisfying 
load balancing, as the unstructured tetrahedral mesh is partitioned into subdomains that 
contain a similar number of elements. Therefore, each processor has to carry out a similar 
amount  of  calculations.  However,  if  P-adaptivity  is  applied,  the  partitioning  is  more 
sophisticated as one subdomain might have many elements of high order polynomials 
whereas  another  might  have  the  same  number  of  elements  but  with  lower  order 
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polynomials.  Therefore,  the  parallel  efficiency  is  restricted  by  the  processor  with  the 
highest work load. 

Therefore,  we split  the  computational  domain  into  a number of  zones,  that  usually 
contain a geometrical body or a geological zone that typically is meshed individually with 
a particular mesh spacing and contains a dominant polynomial order. Then each of these 
zones  is  partitioned  separately  into  subdomains  of  approximately  equal  numbers  of 
elements, which now include both small and large tetrahedral elements with roughly the 
same orders of accuracy. This way, each processor receives a subdomain of each zone, 
which requires a similar amount of computational work. In particular, the equal distribution 
of tetrahedrons with different sizes is essential in combination with the local time stepping 
technique. Only if  each processor receives subdomains with a similar amount of small 
and large elements,  the work load is balanced. As explained in section 3.2, the large 
elements have to be updated less frequently than the smaller elements and therefore are 
computationally cheaper. We remark, that this approach increases the number of element 
surfaces  between  subdomains  of  different  processors  and  therefore  increases  the 
communication  required.  However,  communication  is  typically  low  as  only  the  set  of 
degrees of freedom has to be exchanged once per time step for tetrahedrons that share 
an interface with the boundary of a subdomain. Therefore, the improvements due to the 
new load balancing approach are dominant and outweigh the increase in communication.

However,  we admit  that  the distribution  of  the  polynomial  degree  P or  the seismic 
velocity structure might influence the efficiency of the proposed partitioning technique. A 
profound  and  thorough  mesh  partitioning  method  is  still  a  pending  task  as  the 
combination of local time stepping and P-adaptivity requires a weighting strategy of the 
computational  cost  for  each  tetrahedral  element.  The  automatic  partitioning  of 
unstructured meshes with such heterogeneous properties together with the constraint of 
keeping  the  subdomains  as  compact  as  possible  to  avoid  further  increase  of 
communication is subject to future work.

In  Figure  3  we show the  partition  of  the  tetrahedral  mesh used  for  the  numerical 
benchmark  of  3-D  ground  motion  simulation  in  the  valley  of  Grenoble,  where  each 
subdomain  for  a  processor  is  color-coded  and  consists  of  three  parts  from different 
geological zones.

Figure 3: Partitioning of an unstructured tetrahedral mesh for 64 processors (left). Non-
connected subdomains that contain a balanced number of small and large tetrahedrons from 

different zones (right).
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4. Application Example

To  confirm  the  performance  of  the 
proposed  ADER-DG  scheme  and  the 
functionality  of  the  introduced 
approaches  to  enhance  computational 
efficiency, we apply our new method to 
the strong motion case S1 as described 
in the benchmark of the Grenoble valley 
We  compute  the  S1  case  with  and 
without  free  surface  topography  to 
investigate  its  influence  on  the 
simulation  results.  The  model  setup  is 
given  in  detail  in  the  benchmark 
description and a map of the locations of 
the receivers and the rupture plane and 
the  shape  of  the  basin  are  shown  in 
Figure 4. 

To discretize the surface topography, 
we  use  the  provided  digital  elevation 
model  and  resample  it  to  a  regular 
500mx500m grid. The tetrahedral mesh 
discretizes  the  basin  structure  with  an 
average tetrahedron edge length of 200m, which is gradually coarsened away from the 
zone of interest as illustrated in  Figures 1 or  3.  The rupture plane is  subdivided into 
15x30=450 subfaults of size 300mx300m. The seismic attenuation properties inside the 
basin are approximated by viscoelastic material using three attenuation mechanisms in 
the frequency band from 0.1Hz to 10Hz. We decompose the model into four geometrical 
geological zones: (1) the basin structure, (2) the surface layer above 3km depth excluding 
the basin, (3) the layer between 3km and 27km depth and (4) the layer between 27km 
and  35km depth.  The  material  parameters  inside  the  basin  vary  as  specified  in  the 
benchmark setup, whereas in the bedrock the material values vary linearly with depth.

For our simulations we distinguish the two cases of S1: FS1 denotes the Flat model, 
TS1 denotes the model with Topography. We use an ADER-DG scheme with P-adaptivity, 
where the following P-distribution is applied: zone (1) 4th order, zone (2) 4th and 5th order, 
zone (3) 4th and 5th order and zone (4) 3rd order. The simulation time is 30s.

First we compare the seismograms recorded at stations that are located in areas of 
noticeable topographic features, e.g.  on mountain ridges or narrow valleys. Set (a)  of 
receivers includes number 4, 33, 34 and 35, which are close to the rupture plane and 
more or less in line with its strike direction. Set (b) includes number 37, 38, 39 and 40 
which are further away are more or less perpendicular to the strike. The corresponding 
synthetic seismograms are displayed in Figure (5), where all components vx, vy and vz are 
unscaled  within  each  set.  For  visualization,  however,  the  amplitudes  within  the  far 
receiver set (b) are scaled by a factor of 2 with respect to set (a). The comparison of the 
FS1 and TS1 cases in Figure (5) shows, that the incorporation of topography for TS1 
generally leads to slightly larger amplitudes in the initial  wave and in particular in the 
coda of the seismograms. Furthermore, there are phase differences as the waves in the 
TS1 case arrive slightly later due to the longer travel paths to higher elevations.
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Figure 4: Receiver locations (red stars) with
the location of the rupture plane (straight 
black line) and the shape of the basin 
(crooked black line).
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Figure 5: Comparison of seismograms of the set of near receivers (a) and far receivers (b).
FS1 = black, TS1 = red.

Secondly, in Figure 6(a) and (b) we compare the seismograms along the receiver line 
crossing the eastern branch of the Grenoble valley together with their amplitude spectra. 
The  differences  between  the  FS1  and  TS1  case  are  less  pronounced,  however,  the 
spectra show slightly higher frequency contents for the TS1 case. Furthermore, receivers 
32 and 36 show much smaller velocity amplitudes than the other receivers in Figure 6 as 
they are located on bedrock and therefore do not show the amplification effect  of the 
sedimentary basin. We remark, that after the first wave has passed these two receivers 
hardly any reflection from inside the basin structure is coming back even though inside 
waves are scattered and reflected several times.

Figure 6: Velocity seismograms (a) and amplitude spectra (b) recorded on the receiver line 
across the valley. FS1 = black, TS1 = red.

(a) (b)

(a) (b)
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Finally, we compare the peak ground particle motion on a regular pattern of 30x30=900 
receivers with 1km spacing across the area of the Grenoble valley. Figure (7) shows a 
map of the maximum particle motion for the FS1 and TS1 case. The topography effect is 
mainly  visible  south of  the  rupture plane.  However, in both cases the strongest ground 

(a) (b)

Figure 7: Map of the peak ground particle velocity for the FS1  (a) and the TS1 (b) case.

motion is predicted for the south-eastern part of the valley close to the contact of bedrock 
and soft  sediment,  which  complies  with  observed amplification  effects  of  sedimentary 
basins and the known focusing effect of along the strike direction of the rupture fault. 

5. Conclusion

We presented the new ADER-Discontinuous Galerkin approach to simulate seismic wave 
propagation  in  geometrically  and  geologically  complex  media.  The  numerical  scheme 
achieves high order accuracy in space and time on unstructured tetrahedral meshes and 
its computational efficiency is improved by applying P-adaptivity of the polynomial basis 
functions, local time stepping and a new mesh partitioning strategy for parallel computing. 
The scheme is applied to the benchmark of 3-D ground motion simulations in the valley of 
Grenoble and investigates the effects of topography on the simulation results. Noticeable 
topographic effects appear at receiver in areas of strong topography, whereas the maps 
of peak ground motion estimate the strongest ground motion to occur inside the basin 
structure at the contact of bedrock and basin sediments in strike direction of the rupture.
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