Current challenges in seismology

Heiner Igel Department für Geo- und Umweltwissenschaften Ludwig-Maximilians-Universität, München

- Wave propagation: from lab to planetary scale
- Scientific challenges in seismology and the role of numerical simulations
 - I Volcano seismology
 - II Sources of seismic energy: Rupture processes
 - III Earthquake scenarios: Ground motion after large earthquakes
 - IV Global wave propagation: Earthquakes and the structure of the Earth's interior
- Outlook

With contributions by Michael Ewald, Gilbert Brietzke, Markus Treml, Michael Thorne, Gunnar Jahnke, Johannes Ripperger

Slides at: http://www.geophysik.uni-muenchen.de/~igel/utrecht

Wave propagation on all scales

0.1m	•	Lab scale, elastic properties, fracturing, porosity, anisotropy
10km	•	Volcano seismology, reservoir modelling and inversion, marine seismics
100-1000km	•	Dynamic rupture propagation, earthquake scenario simulations
>1000km	•	Continental and planetary scale, global wave propagation, deep earth imaging
	• ·	

Progress in those fields depends on advances in accurate calculations of wave propagation in heterogeneous 3D media

Theory vs. observations

- There is a wide gap between theoretical/numerical and observational seismology
- Computational power is now such that 3D numerical approaches to wave propagation could enter routine data fitting procedures (e.g. source or structural imaging) or monitoring
- The scientific value of 3D simulation data is continuously increasing (e.g. earthquake scenario simulations, global wave propagation)

Numerical methods

- Finite Differences (high order, optimal operators)
- Pseudospectral methods (Chebyshev, Fourier, Lagrange)
- Unstructured grids (finite volumes, natural neighbours)
- Finite/spectral elements
- Parallelization using MPI (message passing interface)

-> for rupture problems special internal boundary conditions apply

Typical model (grid) sizes

SIMULATION PARAMETERS			
Spatial discretization (km)	0.2		
Temporal discretization (sec)	0.0198		
Lowest S-wave velocity (km/sec)	1.4		
Grid size (physical model)	$700 \times 800 \times 150 = 84 \cdot 10^6$		
Grid size (computational model)	$800 \times 900 \times 200 = 144 \cdot 10^6$		
Number of time steps	3034		
Simulation time (sec)	60		
Memory usage (GB)	24.0		
Computation time (hours)	12		

We simulate on Hitachi SR8000, LRZ- München, 1.5 TB RAM

I - Volcano seismology

Scientific questions:

- What processes control eruptions?
- What are the sources of seismic energy?
- Can we estimate the inside structure of volcanoes?
- Can seismic observations help predict eruptions?

Disciplines:

 seismology - petrology - mineralogy meteorology - material science geology - physics - geochemistry

Supercomputing:

3D wave propagation, topography, scattering, source processes, tomography

Volcano topography

Summary II – Volcano seismology

- Observations of seismic waves is an important part of a volcano monitoring system
- Volcanoes are a seismologist's nightmare (strongly heterogeneous media, strong topography) ...
- We are only beginning to be able to model waves through realistic volcano structures
- The ultimate goal is to understand the observed seismograms in terms of (time-dependent) processes happening in the magma chambers

II - Earthquake rupture

Scientific questions:

- What processes control the seismic rupture?
- What temporal and spatial scales are relevant (seismic cycle)?
- What means (experiments/simulations) are necessary to progress the field?

Disciplines:

seismology - mathematics - petrology theoretical mechanics - rheology hydrology - computational physics statistical physics ...

Supercomputing:

Phenomenological studies of rupture processes varying rupture criteria, 3D simulations of rupture and wave propagation

What is an earthquake?

Two curious observations

The heat-flow paradoxon During an earthquake an enormous amount of heat should be generated -> it's not observed.

The theory of crack propagation says that a rupture should propagate in both directions. We observe uni-lateral rupture for 80% of the large earthquakes.

٠

Slip at the surface after the earthquake along the fault (max 10m)

26 Dec 2004 01:58:53MET

26 Dec 2004 01:58:53MET

Sumatra rupture process results immediately after the rupture (Data from Ji Chen, CalTech)

Theory (black) - Observations (red) First 250 seconds

Possible explanation: unilateral rupture - material interface

Dynamic Rupture in a 3D medium

Fault surface

- The rupture starts after a threshold stress is surpassed
- A frictional boundary condition (e.g., *rate-and-state-dependent friction law*) determines the motions of the fracture surfaces
- Depending on the frictional behavior rupture is favored or not (velocity weakening, slip weakening)
- Actual rupture behavior is not known before simulation (dynamic rupture vs. kinematic rupture)

3D simulation of rupture

Pulse-like rupture at a material interface slip-rate as a function of time

Directivity

Rupture direction has consequences for seismic hazard: Dopplereffect may lead to enhanced shaking in the direction of rupture

Rupture at material interfaces

- ... material interfaces are preferred locations of rupture, i.e., ruptures may migrate towards them ...
- ... possible explanation of the heat-flow paradoxon as normal stresses are dynamically reduced -> less friction -> less heat
 - ... predominantly uni-lateral rupture through dynamic weakening and strengthening in the different rupture directions ...
- .. yet, there are considerable uncertainties as to the frictional phenomena during rupture (zero friction?)

Summary II - Rupture processes

- The earthquake rupture process is still poorly understood
- We are lacking direct observations close to the fault that ruptures (-> SAFOD project!)
- Rupture at material interfaces may explain some of the observations
- 3D simulations of wave propagation and rupture may help to constrain the physical processes involved

III - Earthquake hazard and risk

Scientific problems:

- Do we know the earthquake hazard of specific regions?
- Can we estimate the strong ground motions for specific earthquake scenarios?
- What information is necessary to make these estimates reliable?

Dsiciplines:

seismology - earthquake engineering - geology - neotectonics (paleo-seismology) geomorphology - geodesy ...

Supercomputing:

Calculation of earthquake scenarios in frequency bands that are relevant for earthquake engineers (structural safety)

Taiwan M7.4 Earthquake 1999

Taiwan M7.4 Earthquake 1999

Cologne Basin Tectonics

Earthquakes in the Cologne Basin

Known earthquake faults

In paleoseismology and geology (neotectonics) one tries to recognize active faults and determines maximum rupture dimensions (-> magnitudes)

This allows in principle the calculation of potential earthquake scenarios.

Georisiker

Sediment structure

Earthquake scenarios

Comparison with observations M4.9, July 2002 Cologne Basin, Germany

Amplification through 3D model

5720

What can we do with the uncertainties in the crustal structure?

Summary III-Earthquake scenarios

- There are considerable uncertainties in estimating strong ground motion for earthquake scenarios (3D structure, source behavior)
- With the concept of "Green's functions" a large number of earthquake scenarios could be simulated and some of the uncertainties accounted for

IV - Global seismology

Scientific questions:

- How do 3D structures inside our planet relate to its dynamic behavior (mantle convection)?
- What is the role of the major structural discontinuities (670km, core-mantle boundary, etc.)
- Where do plumes originate?

Disciplines:

seismology - geodynamics geochemistry - fluid dynamcis cristallography - geodesy - geology paleomagnetics

Supercomputing:

Towards simulation and inversion of the globally observed wave field using 3D modelling tools

From: P. Bunge

Global wave propagation

26 Dec 2004 01:58:53MET

3D simulation - Sumatra event

100

Finite source model <20s periods 3D tomographic model Spectral element method

Simulation of Global Wave Propagation

Elastic PSV Case Dominant Period: 7.5 sec Earth Model: Prem

> Gunnar Jahnke (GJ@TerraeMotus.org)

Theoretical seismograms - verification

10 20 0 Shear waves

Sumatra quake - Observations

Sumatra quake

Theory vs. observation

Time (s)

Tokachi-oki, M8.3 September 25, 2003

Global observations Alaska, M7.9, November 2002

Global observations Alaska, M7.9, November 2002 observations (black) – simulations (red)

Tsuboi, Tromp, Komatitsch, 2003

Sound of an instrument

Summary IV- Global seismology

٠

- 3D wave propagation for models on a planetary scale is now possible
- These methods will be used in the near future to obtain a sharper image of the structure inside the Earth
- There are still many open questions about the dynamics of the Earth's deep interior, seismology can – at least – provide an image of the state of the Earth's convective system now ... but we need higher resolution!

Outlook

- What shall we do with the gigantic amount of synthetic data that we create in addition to observations?
- How can our modelling/simulation tools help the observers in Earth sciences?
- How can we involve students in these developments?

... some of these issues are currently dealt with in our EU network SPICE with UoU as partner (Prof. J. Trampert) ...

www.spice-rtn.org

Slides at: http://www.geophysik.uni-muenchen.de/~igel/utrecht

والصواد الداري