

Finite volumes - basic theory

... as the figure suggests, the FV method is based on the idea of knowing a 3D field at the sides of a surface surrounding a finite volume. Is there a mathematical theorem relating the (vector) fields inside a volume with the values at its surface? Yes, it s Gauss' theorem

Numerical Methods in Geophysics

...

Generalization

Gauss' theorem: Generalized to the gradient of for arbitrary tensor fields ... (e.g. could also be a scalar field) ...

- Warbitrary tensor fieldVvolume inside SSsurface around Vnunitary normal to the surface
 - (pointing outwards)

Numerical Methods in Geophysics

Finite volumes - 3D

Answer:

We simply need to turn Gauss' theorem into a discrete version!

Assumption: smoothly varying W_{jk}

$$\partial_i W_{jk} \approx \frac{1}{\Delta V} \sum_{\alpha} \Delta S_{\alpha} n_i^{\alpha} W_{jk}^{\alpha}$$

W _{ik}	arbitrary tensor field
ΔV	total volume
ΔS_{lpha}	surface segment
n _i	unitary normal to the surface
α	number of surface segments

Numerical Methods in Geophysics

Finite volumes - space grids

Numerical Methods in Geophysics

Finite volumes – volumes and surfaces

Numerical Methods in Geophysics

Voronoi Cells in Nature

Numerical Methods in Geophysics

Finite volumes - Difference weights

Let us calculate the difference operators for a simples finite volume cell

Finite volumes - wave propagation

- Basis for local interpolation
- Linear interpolation using triangles
- Distance weighting
- Natural neighbour interpolation
- Differential weights
- Examples

Voronoi: Overlapping Regions

Unstructured Grid Methods

Triangular grid guality

Method 1: Natural Neighbour Coordinates

Numerical Methods in Geophysics

Method 2: The Finite Volume Method-

The Finite Volume method is based on a discretization of Gauss' Law

$$\partial_i f = \frac{1}{\Delta S} \sum_{j=1}^{NN} \Delta L_{ij} n_{ij} f_j$$

Note that the position of point S is irrelevant!

Surprising result! Using only three points is more accurate than using all natural neighbours!

Numerical Methods in Geophysics

Test function f_p on primary grid points x_i :

$$f_p(x_i) = \sin(\underline{k}\underline{x}_i - wt)$$

Analytical deriv ative $f^{(j)}$ on secondary grid points x_k :

$$f_s^{(j)}(x_k) = k_j \cos(\underline{k}\underline{x}_k - wt)$$

Error of numerical derivative on sec. grid

$$\mathcal{E}(\underline{k}, q_{mean}) = \frac{\sum_{k} (\tilde{f}^{(j)}(x_{k}) - f(x_{k}))^{2}}{\sum_{k} f^{2}(x_{k})}$$

Numerical Methods in Geophysics

Irregular Grid - q^{mean =}0.8

black - Magnier green - NN blue - FV(NN) red - FV (3 points)

Numerical Methods in Geophysics

Waves with natural neighbours

Numerical Methods in Geophysics

The **finite volume method** is an elegant approach to solving partial differential equations on unstructured grids.

The finite volume method is based on a discretization of Gauss' theorem.

The FV method is frequently applied to **flow problems**. High-order approaches have been recently developed.

The FV method requires the calculation of volumes and surfaces for each cell. This requires the calculation of Voronoi cells and triangulation.