1-D and 2-D Elements

1-D elements

- coordinate transformation
- linear elements
linear basis functions quadratic basis functions cubic basis functions

2-D elements

- coordinate transformation
- triangular elements
linear basis functions
quadratic basis functions
- rectangular elements
linear basis functions quadratic basis functions

1-D elements: coordinate tranformation

We wish to approximate a function $u(x)$ defined in an interval [a, b] by some set of basis functions

$$
u(x)=\sum_{i=1}^{n} c_{i} \varphi_{i}
$$

where i is the number of grid points (the edges of our elements) defined at locations x_{i}. As the basis functions look the same in all elements (apart from some constant) we make life easier by moving to a local coordinate system

$$
\xi=\frac{x-x_{i}}{x_{i+1}-x_{i}}
$$

so that the element is defined for $\xi=[0,1]$.

1-D linear elements

There is not much choice for the shape of a (straight) 1-D element! Notably the length can vary across the domain.

We require that our function $u(\xi)$ be approximated locally by the linear function

$$
u(\xi)=c_{1}+c_{2} \xi
$$

Our node points are defined at $\xi_{1,2}=0,1$ and we require that

$$
\begin{array}{cl}
u_{1}=c_{1} & \Rightarrow \quad c_{1}=u_{1} \\
u_{2}=c_{1}+c_{2} & \Rightarrow c_{2}=-u_{1}+u_{2}
\end{array}
$$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

1-D elements - linear basis functions

As we have expressed the coefficients c_{i} as a function of the function values at node points $\xi_{1,2}$ we can now express the approximate
function using the node values

$$
\begin{aligned}
& u(\xi)=u_{1}+\left(-u_{1}+u_{2}\right) \xi \\
& =u_{1}(1-\xi)+u_{2} \xi \\
& =u_{1} N_{1}(\xi)+N_{2}(\xi) \xi
\end{aligned}
$$

.. and $N_{1,2}(x)$ are the linear basis functions for 1-D elements.

1-D quadratic elements

Now we require that our function $u(x)$ be approximated locally by the quadratic function

$$
u(\xi)=c_{1}+c_{2} \xi+c_{3} \xi^{2}
$$

Our node points are defined at $\xi_{1,2,3}=0,1 / 2,1$ and we require that

$$
\begin{aligned}
& u_{1}=c_{1} \\
& u_{2}=c_{1}+0.5 c_{2}+ \\
& u_{3}=c_{1}+c_{2}+c_{3}
\end{aligned}
$$

$$
u_{2}=c_{1}+0.5 c_{2}+0.25 c_{3} \quad \longrightarrow \quad \mathbf{c}=\mathbf{A} \mathbf{l}
$$

$$
\longrightarrow A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 & 4 & -1 \\
2 & -4 & 2
\end{array}\right]
$$

1-D quadratic basis functions

... again we can now express our approximated function as a sum over our basis functions weighted by the values at three node points

$$
u(\xi)=c_{1}+c_{2} \xi+c_{3} \xi^{2}=u_{1}\left(1-3 \xi+2 \xi^{2}\right)+u_{2}\left(4 \xi-4 \xi^{2}\right)+u_{3}\left(-\xi+2 \xi^{2}\right)
$$

$$
=\sum_{i=1}^{3} u_{i} N_{i}(\xi)
$$

1-D: Quadratic basis functions

... note that now we re using three grid points per element ...

Can we approximate a constant function?

1-D cubic basis functions

... using similar arguments the cubic basis
functions can be derived as
$u(\xi)=c_{1}+c_{2} \xi+c_{3} \xi^{2}+c_{4} \xi^{3}$

$$
N_{1}(\xi)=1-3 \xi^{2}+2 \xi^{3}
$$

$$
N_{2}(\xi)=\xi-2 \xi^{2}+\xi^{3}
$$

$$
N_{3}(\xi)=3 \xi^{2}-2 \xi^{3}
$$

$$
N_{4}(\xi)=-\zeta^{2}+\xi^{3}
$$

... note that here we need derivative information at the boundaries ...

How can we approximate a constant function?

2-D elements: coordinate transformation

Let us now discuss the geometry and basis functions of 2-D elements, again we want to consider the problems in a local coordinate system, first we look at triangles

before

after

2-D elements: coordinate transformation

Any triangle with corners $P_{i}\left(x_{i}, y_{i}\right), i=1,2,3$ can be transformed into a rectangular, equilateral triangle with

$$
\begin{aligned}
& x=x_{1}+\left(x_{2}-x_{1}\right) \xi+\left(x_{3}-x_{1}\right) \eta \\
& y=y_{1}+\left(y_{2}-y_{1}\right) \xi+\left(y_{3}-y_{1}\right) \eta
\end{aligned}
$$

using counterclockwise numbering. Note that if $\eta=0$, then these equations are equivalent to the 1-D tranformations. We seek to approximate a function by the linear form

$$
u(\xi, \eta)=c_{1}+c_{2} \xi+c_{3} \eta
$$

we proceed in the same way as in the 1-D case

2-D elements: coefficients

... and we obtain

$$
\begin{aligned}
& u_{1}=u(0,0)=c_{1} \\
& u_{2}=u(1,0)=c_{1}+c_{2} \\
& u_{3}=u(0,1)=c_{1}+c_{3}
\end{aligned}
$$

... and we obtain the coefficients as a function of the values at the grid nodes by matrix inversion

$\mathbf{c}=\mathbf{A l}$

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& \text { containing } \\
& \text { the 1-D case }
\end{aligned} \quad \mathbf{A}=\left[\begin{array}{cc}
\mathbf{1} & \mathbf{0} \\
-\mathbf{- 1} & \mathbf{1}
\end{array}\right]
$$

triangles: linear basis functions

from matrix A we can calculate the linear basis functions for triangles

$$
\begin{array}{lc}
N_{1}(\xi, \eta)= & 1-\xi-\eta \\
N_{2}(\xi, \eta)= & \xi \\
N_{3}(\xi, \eta)= & \eta
\end{array}
$$

triangles: quadratic elements

Any function defined on a triangle can be approximated by the quadratic function

$$
u(x, y)=\alpha_{1}+\alpha_{2} x+\alpha_{3} y+\alpha_{4} x^{2}+\alpha_{5} x y+\alpha_{6} y^{2}
$$

and in the transformed system we obtain

$$
u(\xi, \eta)=c_{1}+c_{2} \xi+c_{3} \eta+c_{4} \xi^{2}+c_{5} \xi \eta+c_{6} \eta^{2}
$$

as in the 1-D case we need additional points on the element.

triangles: quadratic elements

To determine the coefficients we calculate the function u at each grid point to obtain

$$
\begin{aligned}
& u_{1}=c_{1} \\
& u_{2}=c_{1}+c_{2}+c_{4} \\
& u_{3}=c_{1}+c_{3}+c_{6} \\
& u_{4}=c_{1}+1 / 2 c_{2}+1 / 4 c_{4} \\
& u_{5}=c_{1}+1 / 2 c_{2}+1 / 2 c_{3}+1 / 4 c_{4}+1 / 4 c_{5}+1 / 4 c_{6} \\
& u_{6}=c_{1}+1 / 2 c_{3}+1 / 6 c_{6}
\end{aligned}
$$

... and by matrix inversion we can calculate the coefficients as a function of the values at P_{i}

$$
\mathbf{c}=\mathbf{A} \mathbf{l}
$$

triangles: basis functions

$\mathbf{C}=\mathbf{A}$

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-3 & -1 & 0 & 4 & 0 & 0 \\
-3 & 0 & -1 & 0 & 0 & 4 \\
2 & 2 & 0 & -4 & 0 & 0 \\
4 & 0 & 0 & -4 & 4 & -4 \\
2 & 0 & 2 & 0 & 0 & -4
\end{array}\right]
$$

... to obtain the basis functions

$$
\begin{aligned}
& N_{1}(\xi, \eta)=(1-\xi-\eta)(1-2 \xi-2 \eta) \\
& N_{2}(\xi, \eta)=\xi(2 \xi-1) \\
& N_{3}(\xi, \eta)=\eta(2 \eta-1) \\
& N_{4}(\xi, \eta)=4 \xi(1-\xi-\eta) \\
& N_{5}(\xi, \eta)=4 \xi \eta \\
& N_{2}(\xi, \eta)=4 \eta(1-\xi-\eta)
\end{aligned}
$$

... and they look like ...

triangles: quadratic basis functions

The first three quadratic basis functions ...

triangles: quadratic basis functions

.. and the rest ...

rectangles: transformation

Let us consider rectangular elements, and transform them into a local coordinate system

before

after

rectangles: linear elements

With the linear Ansatz

$$
u(\xi, \eta)=c_{1}+c_{2} \xi+c_{3} \eta+c_{4} \xi \eta
$$

we obtain matrix A as

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

and the basis functions

$$
\begin{aligned}
& N_{1}(\xi, \eta)=(1-\xi)(1-\eta) \\
& N_{2}(\xi, \eta)=\xi(1-\eta) \\
& N_{3}(\xi, \eta)=\xi \eta \\
& N_{4}(\xi, \eta)=(1-\xi) \eta
\end{aligned}
$$

rectangles: quadratic elements

With the quadratic Ansatz
$u(\xi, \eta)=c_{1}+c_{2} \xi+c_{3} \eta+c_{4} \xi^{2}+c_{5} \xi \eta+c_{6} \eta^{2}+c_{7} \xi^{2} \eta+c_{8} \xi \eta^{2}$
we obtain an 8×8 matrix A... and a basis function look e.g. like

$$
\begin{aligned}
& N_{1}(\xi, \eta)=(1-\xi)(1-\eta)(1-2 \xi-2 \eta) \\
& N_{5}(\xi, \eta)=4 \xi(1-\xi)(1-\eta)
\end{aligned}
$$

N_{1}

N_{2}

1-D and 2-D elements: summary

The basis functions for finite element problems can be obtained by:

1. Transforming the system in to a local (to the element) system
2. Making a linear (quadratic, cubic) Ansatz for a function defined across the element.
3. Using the interpolation condition (which states that the particular basis functions should be one at the corresponding grid node) to obtain the coefficients as a function of the function values at the grid nodes.
4. Using these coefficients to derive the n basis functions for the n node points (or conditions).
