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Numerical Methods in Geophysics

Why do we need higher-order operators?

High-order operators

For realistic problems the first and second order methods
are not accurate enough.  So far we only used information 
from the nearest neighbouring grid points. 
Could we improve the accuracy of the derivative operators 
by using more information (on both sides)?  

Derivative

n g n g n g n g n g

Derivative

Length of operator
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Taylor Operators

High-order operators

... like so often we look at Taylor series ...
Remember how we derived the second-order scheme

a f a f a f d x+ ≈ + '

b f b f b f d x− ≈ − '

⇒ + ≈ + + −+ −a f b f a b f a b f d x( ) ( ) '

the solution to this equation for a and b leads to 
a system of equation which can be cast in matrix form

dxba
ba
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Interpolation Derivative
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Taylor Operators

High-order operators

... in matrix form ...
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Interpolation Derivative

... so that the solution for the weights is ...
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Taylor Operators

High-order operators

... and the result ...

Interpolation Derivative

Can we generalise this idea to longer operators?
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Let us start by extending the Taylor expansion beyond f(x±dx):
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Taylor Operators

High-order operators

'''
!3

)2(''
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*b |

*c |

*d |

... again we are looking for the coefficients a,b,c,d with which
the function values at x±(2)dx have to be multiplied in order

to obtain the interpolated value or the first (or second) derivative!

... Let us add up all these equations like in the previous case ...
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Taylor Operators

High-order operators

≈+++ +++−−− dfcfbfaf
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... we can now ask for the coefficients a,b,c,d, so that the
left-hand-side yields either f,f’,f’’,f’’’ ...
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Taylor Operators

High-order operators
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... if you want  the interpolated value ...

... you need to solve the matrix system ...
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Taylor Operators

High-order operators
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... with the result after inverting the matrix on the lhs ...
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... Interpolation ...
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Taylor Operators

High-order operators
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... with the result ...
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... first derivative ...
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Taylor Operators

High-order operators
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... with the result ...
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... third derivative ...

... why did it not work for the 2nd derivative ?
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Taylor Operators

High-order operators

''''
!4
)2('''

!3
)2(''

!2
)2(')2()2(

432

fdxfdxfdxfdxfdxxf +−+−≈−*a |

*b |

*c |

*d |

*e |

''''
!4
)('''

!3
)(''

!2
)(')()(

432

fdxfdxfdxfdxfdxxf +−+−≈−

''''
!4
)('''

!3
)(''

!2
)(')()(

432

fdxfdxfdxfdxfdxxf ++++≈+

''''
!4
)2('''

!3
)2(''

!2
)2(')2()2(

432

fdxfdxfdxfdxfdxxf ++++≈+

fxf =)(

... note that we had to add the 4th derivatives which will 
give us the required constraints on the coefficients a,b,c,d,e
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Taylor Operators

High-order operators
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... so finally we end up with the system ...
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Taylor Operators

High-order operators

... if you want  the second derivative ...

... you need to solve the matrix system ...

... could we find interpolation weights like this ?
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Taylor Operators

High-order operators
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... with the result ...
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... second derivative ...
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Taylor Operators

High-order operators

... Fornberg1 (1996) gives a closed-form expression for 
the first derivative weights ...

1Fornberg, B.,  A practical guide to pseudospectral methods, Cambridge University Press.
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⎨
⎧
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jp
if j= 1, 2,..., p/2

if j= 0

... where p(even) is the order of accuracy, j is the x-position of the weight.
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One-sided operators

High-order operators

Before we look at how the operators look like as they grow longer
we investigate whether we can approximate a derivative near 
a physical boundary .... 

domain boundary

derivative

Let us follow the same route as before and use Taylor series.
Let’s start with a first order scheme.
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One-sided operators

High-order operators

... so we have to look for information on one side only

a f a f a f d x+ ≈ + '

)2(' dxbfbfbf +≈++

dxfbafbabfaf ')2()( +++≈+⇒ +++

the solution to this equation for a and b leads to 
a system of equations which can be cast in matrix form

dxba
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Derivative
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... and the solution is ...
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One-sided operators

High-order operators
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This is our well known definition of the centered derivative, but
it will be defined not right at the boundary but dx/2 away from it!

Derivative

Let us extend this to the right and find higher-order operators
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One-sided operators

High-order operators
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... again we multiply by our coefficients and add everything up ...
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One-sided operators

High-order operators

≈+++ ++++++ dfcfbfaf
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... to obtain the derivatives we have to solve the system ...
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One-sided operators

High-order operators

0=+++ dcba

1320 =+++ dcb

... if you want  the first derivative ...

... you need to solve the matrix system ...
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Numerical Methods in Geophysics

One-sided operators

High-order operators
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... with the result after inverting the matrix on the lhs ...
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... Interpolation ...
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Taylor Operators

High-order operators
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Numerical Methods in Geophysics

Taylor Operators - one sided

High-order operators

3-point
5-point

7-point 8-point

Note the exploding coefficients with increasing operator length 
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Taylor Operators - Summary

High-order operators

Finite-difference operators with high-order accuracy 
can be derived using Taylor series. For two-sided 
operators the coefficients rapidly 
decrease. For one-sided operators the coefficients 
get larger with increasing operator length. 

Now that we improved the accuracy of the space 
derivatives, how can we improve the accuracy of 
the time extrapolation?

Let’s look at the Taylor scheme ...
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High-order Taylor extrapolation

High-order operators

Let us look at the acoustic wave equation

Scpcp zx
2222 )( +∂+∂=&&

.. we now know how to accurately calculate the r.h.s. of this equation...
our standard FD scheme for the time extrapolation yields

pdtdttptpdttp &&2)()(2)( +−−=+

n
N

n

n

p
n

dtdttptpdttp 2

1

2

)!2(
2)()(2)( ∑

=

+−−=+

... extending this to higher orders leads to the scheme ...

... this has interesting consequences as we only need the even 
orders of the time derivative, which we  can easily calculate ...



Numerical Methods in Geophysics

High-order Taylor extrapolation

High-order operators

... since ...

Scpcp zxt
22222 )( +∂+∂=∂

... we have also ...
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... so we can loop through our algorithm as long as we want (N times) to 
achieve higher-order accuracy in the time-extrapolation scheme ...

Scpcp ttzxt
2222224 )( ∂+∂∂+∂=∂

... or ...

Scpcp ttzxt
4242226 )( ∂+∂∂+∂=∂

.. however we have to be careful how the spatial and temporal operators 
behave and whether the accuracy of the solution to the pde actually improves! 
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High-order extrapolation

High-order operators

... often we have to extrapolate a first order system ...

),( tTfTt =∂

... or ... 

τ
ρ xt x

u ∂=∂
)(

1
&

... and we initially used a simple scheme like ... 

),(dt1 jjjj tTfTT +≈+

... this scheme is also known as the  Euler scheme and is of little 
practical use ...
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High-order extrapolation

High-order operators

... how about predicting a value and 
then averaging ....

),(dt1
*

jjjj tTfTT +≈+

this is our first guess (equivalent to the Euler scheme) and now we 
use this value to improve our solution ...

[ ]),(),(
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High-order extrapolation

High-order operators

... leading to a general algorithm like ...
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=
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For n=0,1,2,3,...N-1

End

called predictor-corrector or modified Euler or .... scheme ...
... how does this apply to our cooling problem ?

predictor

corrector
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High-order extrapolation

High-order operators
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... this was the simplest scheme ...
with the modified Euler scheme we get 
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High-order extrapolation

High-order operators

... the next more accurate scheme is the fourth order Runge-Kutta 
method, an extension of the predictor-corrector scheme ... 
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For n=0,1,2,3,...N-1

End



Numerical Methods in Geophysics

High-order extrapolation

High-order operators

...  Matlab sample code ...

for i=1:nt,

t(i)=i*dt;
T(i+1)=T(i)-dt/tau*T(i);                 % Euler
Ta(i+1)=exp(-dt*i/tau);                     % Analytical solution
Ti(i+1)=T(i)*(1+dt/tau)^(-1);               % implicit
Tm(i+1)=(1-dt/(2*tau))/(1+dt/(2*tau))*Tm(i);    % mixed implicit-explicit

k1=-dt/tau*Te(i);
k2=-dt/tau*(Te(i)+k1);
Te(i+1)=Te(i)+1/2*(k1+k2);                  % predictor-corrector

k1=-dt/tau*Tr(i);
k2=-dt/tau*(Tr(i)+k1/2);
k3=-dt/tau*(Tr(i)+k2/2); 
k4=-dt/tau*(Tr(i)+k3);
Tr(i+1)=Tr(i)+1/6*(k1+2*k2+2*k3+k4);            % Runge-Kutta

end

... with the results ...
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Numerical Methods in Geophysics

High-order extrapolation

High-order operators

Comparison of low order implicit, mixed implicit-explicit (Crank-Nicholson), 
modified Euler (predictor-corrector), Runge-Kutta (fourth order)

for Newtonian Cooling 

blue - Euler

red - Crank-Nicholson

black - analytic solution

magenta - Runge-Kutta

green - implicit

Runge-Kutta is the winner!
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Numerical Methods in Geophysics

High-order extrapolation

High-order operators

Comparison of low order implicit, mixed implicit-explicit (Crank-Nicholson), 
modified Euler (predictor-corrector), Runge-Kutta (fourth order) 

for Newtonian Cooling

blue - Euler

red - Crank-Nicholson

black - analytic solution

magenta - Runge-Kutta

green - implicit
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Fourier Coefficients

High-order operators

We will now approach the problem of finding high-order space operators 
from a completely different viewpoint: Fourier Integrals. 

Let us recall

∫
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ikx

)()(

)(
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... where f(x) is an arbitrary function and F(k) is its Fourier spectrum. 
Note that there are several different definitions, which distinguish 
themselves through normalisation constants and the sign convention in 
the exponent.
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... how can we express the derivative of a function using these expressions? 

∫

∫
∞

∞−

−

∞

∞−

−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂=∂

dkekikF

dkekFxf

ikx

ikx
xx

)(

)()(

... because F(k) clearly does not depend on x. Let us define ...

ikkP −=)(

... note that we use capital letters to denote fields in the wavenumber domain ...
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... so that ... 

∫
∞

∞−

−=∂ dkekFkPxf ikx
x )()()(

... now a bell rings ... and we remember the Convolution Theorem which 
says “a multiplication in the wavenumber domain is a convolution in the 
space domain” which can be expressed as

... note the small letters as we are now in the space domain!

In the discrete and band-limited world this integral turns into a convolution sum.
This is the most general way of describing a differential operator. It comprises all 

the cases from two-point, local operators up to the exact spectral operator.
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Fourier Coefficients

High-order operators

.. we now want to express the operator p(x) in the space domain ...
we first have to get rid of the infinities as we are in a discrete domain where 

we have a maximum frqeuency (wavenumber), the Nyquist frequency.
This band-limitation can be expressed using Heaviside functions.

⎩
⎨
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=
0
1

)(xH
if x>0

if x<0

in our example the limitation in k can be expressed as

( ))()()( NyNy kkHkkHikkP −++=

we now have to transform this back into the space domain 
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... to obtain ...

[ ])cos()sin(1)( 2 xkxkxk
x

xp NyNyNy −=
π

... in a staggered scheme we need to discretise space like ...
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... leading to ...
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... these are our differential weights ...
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to shorten the operator we taper with a Gaussian function
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High-order operators

... the same approach can be applied to the problem of interpolation ...
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i.e. I(k) is now our interpolation operator expressed in the wavenumber 
domain. Again we are looking for the equivalent representation 

in the space domain, which we get by inverse Fourier Transform
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High-order operators

... in the band-limited world our operator is ...

discretising with

( ))()()( 2/
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... which in the space domain yields ...
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High-order operators
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High-order operators
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High-order operators - Accuracy

High-order operators

... as mentioned earlier the derivative operator in the wavenumber domain is 

∫
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... which in the space domain led to the convolutional operator  p(x) looking like
exact                                          shortened
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High-order operators

... this suggests that we can now Fourier transform our shortened operator 
and compare it with the exact one in the k-domain ...

kikpFFT ~))(~( −=
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... which also means that we now have a numerical wavenumber as a function 
of the exact wavenumber we propagate in our system.
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High-order operators

... we can now compare some of our high-order Taylor operators with 
the exact operator in the wavenumber domain  ...
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High-order operators - Accuracy

High-order operators

... we can now compare some of our high-order Taylor operators with 
the exact operator in the wavenumber domain  ...
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High-order operators

... we can now compare some of our high-order Taylor operators with 
the exact operator in the wavenumber domain  ...
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High-order operators

... we can now compare some of our high-order Taylor operators with 
the exact operator in the wavenumber domain  ...
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Summary

Finite-difference operators can be regarded as  
(truncated) spectral (global) operators in a general 
way. In pseudo-spectral methods, the space derivatives
are calculated in the wavenumber domain.

The length of the operator determines its accuracy.

increasing length of operator2 nx

FD Spectralimproving accuracy


