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Newtonian Cooling

Numerical solution to first order ordinary differential equation

),( tTf
dt
dT

=

We can not simply integrate this equation. We have to solve it 
numerically! First we need to discretise time:

jdttt j += 0

and for Temperature T

)( jj tTT =
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Newtonian Cooling

Let us try a forward difference:

)(1 dtO
dt

TT
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... which leads to the following explicit scheme :

),(dt1 jjjj tTfTT +≈+

This allows us to calculate the Temperature T as a function of
time and the forcing inhomogeneity f(T,t). Note that there will
be an error O(dt) which will accumulate over time. 
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Newtonian Cooling

Let’s try to apply this to the Newtonian cooling problem:

TAir TCappucino

How does the temperature of the liquid evolve as a
function of time and temperature difference to the air?
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Newtonian Cooling

The rate of cooling (dT/dt) will depend on the temperature 
difference (Tcap-Tair) and some constant (thermal conductivity).
This is called Newtonian Cooling.

With  T= Tcap-Tair being the temperature difference and τ the 
time scale of cooling then f(T,t)=-T/ τ and the differential equation 
describing the system is

τ/T
dt
dT

−=

with initial condition T=Ti at t=0 and τ>0. 
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Newtonian Cooling

This equation has a simple analytical solution:

How good is our finite-difference appoximation?
For what choices of dt will we obtain a stable solution?

)/exp()( τtTtT i −=

Our FD approximation is:

)1(1 ττ
dtTTdtTT jjjj −=−=+

)1(1 τ
dtTT jj −=+
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Newtonian Cooling

)1(1 τ
dtTT jj −=+

1. Does this equation approximation converge for dt -> 0?
2. Does it behave like the analytical solution?

With the initial condition T=T0 at t=0:

)1(01 τ
dtTT −=

)1)(1()1( 012 τττ
dtdtTdtTT −−=−=

leading to :
j

j
dtTT )1(0 τ

−=
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Newtonian Cooling

j
j

dtTT )1(0 τ
−=

Let us use dt=tj/j where tj is the total time up to time step j:
j
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This can be expanded using the binomial theorem
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Newtonian Cooling
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Newtonian Cooling

substituted into the series for Tj we obtain:
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... which is the Taylor expansion for 
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Newtonian Cooling - Convergence

So we conclude:

For the Newtonian Cooling problem, the numerical 
solution converges to the exact solution when the 
time step dt gets smaller.

How does the numerical solution behave?

)1(1 τ
dtTT jj −=+)/exp(0 τtTTj −=

The analytical solution
decays monotonically!

What are the conditions
so that Tj+1<Tj ?
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Newtonian Cooling - Convergence

)1(1 τ
dtTT jj −=+

Tj+1<Tj requires

110 <−≤
τ
dt

or

τ<≤ dt0

The numerical solution decays only montonically for 
a limited range of values for dt! Again we seem to have 
a conditional stability.
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Newtonian Cooling - Convergence

)1(1 τ
dtTT jj −=+

if ττ 2<< dt 0)1( <−
τ
dt

then

the solution oscillates but converges as |1-dt/τ|<1

if τ2>dt then 2/ >τdt

1-dt/τ<-1 and the solution oscillates and diverges  

... now let us see how the solution looks like ....
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Newtonian Cooling - Convergence

% Matlab Program - Newtonian Cooling

% initialise values
nt=10;
t0=1.
tau=.7;
dt=1.

% initial condition
T=t0;

% time extrapolation
for i=1:nt,
T(i+1)=T(i)-dt/tau*T(i);
end

% plotting
plot(T)
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Newtonian Cooling - Convergence
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Newtonian Cooling - Convergence

Solution converges but does not have the right time-dependence
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Newtonian Cooling - Convergence

... only slight error of the time-dependence - acceptable solution ...
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Newtonian Cooling - Convergence

.. very accurate solution which we pay by a fine sampling in time ...
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Newtonian Cooling - Convergence

... this solution is wrong and unstable !
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What is  an implicit scheme?

Explicit vs. implicit scheme for Newtonian Cooling

Crank-Nicholson Scheme (mixed explicit-implicit)

Explicit vs. implicit for  the diffusion equation

Relaxation Methods

Numerical Methods in Geophysics:
Implicit Methods
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What is an implicit method?

Let us recall the ODE:

),( tTf
dt
dT

=

Before we used a forward difference scheme, what happens
if we use a backward difference scheme?
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What is an implicit method?

or

Is this scheme convergent? 

1
1 )1( −
− +≈

τ
dtTT jj

j
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dtTT −+≈ )1(0 τ

Does it tend to the exact solution as dt->0? YES, it does (exercise)

Is this scheme stable, i.e. does T decay monotonically? This requires  
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What is an implicit method?

This scheme is always stable! This is called
unconditional stability

... which doesn’t mean it’s accurate!
Let’s see how it compares to the explicit method...
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What is an implicit method?
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What is an implicit method?

Explicit stable - implicit stable - both inaccurate
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What is an implicit method?

Explicit stable - implicit stable - both inaccurate
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What is an implicit method?

Explicit stable - implicit stable - both accurate

red-analytic
blue-explicit

green-implicit

It doesn’t look like we gained 
much from unconditional stability!
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Mixed implicit-explicit schemes

We start again with ...

Let us interpolate the right-hand side to j+1/2 so that both 
sides are defined at the same location in time ...

2
),(),( 111 jjjjjj tTftTf

dt
TT +

≈
− +++

),( tTf
dt
dT

=

Let us examine the accuracy of such a scheme using 
our usual tool, the Taylor series.
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Mixed implicit-explicit schemes

... we learned that ...
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... also the interpolation can be written as ... 
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Mixed implicit-explicit schemes

... it turns out that ...
this mixed scheme is accurate to second order!

The previous schemes (explicit and implicit) were 
all first order schemes.

Now our cooling experiment becomes:
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leading to the extrapolation scheme



Numerical Methods in Geophysics Implicit Methods

Mixed implicit-explicit schemes
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How stable is this scheme?
The solution decays if ... 
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Mixed implicit-explicit schemes

This scheme  is always stable for positive dt and τ!
If dt>2 τ, the solution decreases monotonically!

Let us now look at the Matlab code and then
compare it to the other approaches.

1

2
1

2
1

1 <
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

−
<−

τ

τ
dt

dt



Numerical Methods in Geophysics Implicit Methods

Mixed implicit-explicit schemes

t0=1.
tau=.7;
dt=.1;
dt=input(' Give dt : ');

nt=round(10/dt);

T=t0;
Ta(1)=1;
Ti(1)=1;
Tm(1)=1;

for i=1:nt,
t(i)=i*dt;
T(i+1)=T(i)-dt/tau*T(i);                     % explicit forward
Ta(i+1)=exp(-dt*i/tau);                      % analytic solution
Ti(i+1)=T(i)*(1+dt/tau)^(-1);                % implicit 
Tm(i+1)=(1-dt/(2*tau))/(1+dt/(2*tau))*Tm(i); % mixed
end

plot(t,T(1:nt),'b-',t,Ta(1:nt),'r-',t,Ti(1:nt),'g-',t,Tm(1:nt),'k-')
xlabel('Time(s)')
ylabel('Temperature')



Numerical Methods in Geophysics Implicit Methods

Mixed implicit-explicit schemes
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Mixed implicit-explicit schemes
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Mixed implicit-explicit schemes
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Mixed implicit-explicit schemes
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The mixed scheme is a clear winner!
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Explicit - Implicit Methods - Summary

Certain FD approximations to time-dependent partial 
differential equations lead to implicit solutions. That means to

propagate (extrapolate) the numerical solution in time, a 
linear system of equations has to be solved. 

The solution to this system usually requires the use of matrix 
inversion techniques.

The advantage of some implicit schemes is that they are 
unconditionally stable, which however does not mean they 

are very accurate. 

It is possible to formulate mixed explicit-implicit schemes 
(e.g. Crank-Nickolson or trapezoidal schemes) , which are 

more accurate than the equivalent explicit or implicit 
schemes.


