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Example: seismic wave propagation

Why numerical methods?Why numerical methods?

homogeneous medium

Seismometers

explosion
In this case there 

are analytical solutions? 
Are they useful?



Example: seismic wave propagation

Why numerical methods?Why numerical methods?

layered medium

Seismometers

explosion

... in this case quasi-analytical 
solutions exist, applicable for example 

for layered sediments ... 



Example: seismic wave propagation

Why numerical methods?Why numerical methods?

long wavelength 
perturbations

Seismometers

explosion
… in this case high-frequency 
approximations can be used

(ray theory)



Example: seismic wave propagation

Why numerical methodsWhy numerical methods

Generally heterogeneous
medium

Seismometers

explosion
… we need numerical 

solutions! … we need grids! …
And big computers …





Spatial Scales and Memory
(back of the envelope)

Spatial Scales and Memory
(back of the envelope)

Highest frequency: 0.1 Hz
Shortest wavelength: 20 km (crust)
Shortest wavelength: 50 km (mantle)
Grid points per wavelength: 5
Grid spacing: 2000 m (crust)
Grid spacing: 5000 m (mantle)

Highest frequency: 0.1 Hz
Shortest wavelength: 20 km (crust)
Shortest wavelength: 50 km (mantle)
Grid points per wavelength: 5
Grid spacing: 2000 m (crust)
Grid spacing: 5000 m (mantle)

Required grid points: O(109)
Required memory:  O(100 GBytes)



Data

Synthetics

T>20s

Data fitting - Inversion



Partial Differential Equations in Geophysics
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+Δ=∂ The acoustic 
wave equation
- seismology
- acoustics
- oceanography 
- meteorology

Diffusion, advection, 
Reaction
- geodynamics
- oceanography 
- meteorology
- geochemistry
- sedimentology
- geophysical fluid dynamics

P pressure
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P pressure
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k diffusivity
v flow velocity
R reactivity
p sources

C tracer concentration
k diffusivity
v flow velocity
R reactivity
p sources



Numerical methods: properties

Finite differences

Finite volumes

- time-dependent PDEs
- seismic wave propagation
- geophysical fluid dynamics
- Maxwell’s equations
- Ground penetrating radar
-> robust, simple concept, easy to 

parallelize, regular grids, explicit method

Finite elements - static and time-dependent PDEs
- seismic wave propagation
- geophysical fluid dynamics
- all problems
-> implicit approach, matrix inversion, well founded,

irregular grids, more complex algorithms,     
engineering problems

- time-dependent PDEs
- seismic wave propagation
- mainly fluid dynamics
-> robust, simple concept, irregular grids, explicit  

method



Other Numerical methods:

Particle-based 
methods  

Pseudospectral
methods

- lattice gas methods
- molecular dynamics
- granular problems
- fluid flow
- earthquake simulations
-> very heterogeneous problems, nonlinear problems

Boundary element
methods

- problems with boundaries (rupture)
- based on analytical solutions
- only discretization of planes 
--> good for problems with special boundary conditions

(rupture, cracks, etc)

- orthogonal basis functions, special case of FD
- spectral accuracy of space derivatives
- wave propagation, GPR
-> regular grids, explicit method, problems with  

strongly heterogeneous media



What is a finite difference?What is a finite difference?

Common definitions of the derivative of f(x):
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These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE



What is a finite difference?What is a finite difference?

The equivalent approximations of the derivatives are:
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forward difference

backward difference

centered difference



The big question:The big question:

How good are the FD approximations?

This leads us to Taylor series....



Our first FD algorithm (ac1d.m) !Our first FD algorithm (ac1d.m) !
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P pressure
c acoustic wave speed
s sources

Problem: Solve the 1D acoustic wave equation using the finite 
Difference method.
Problem: Solve the 1D acoustic wave equation using the finite 
Difference method.

Solution:Solution:
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Problems: StabilityProblems: Stability
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1≈≤ ε
dx
dtc

Stability: Careful analysis using harmonic functions shows that 
a stable numerical calculation is subject to special conditions 
(conditional stability). This holds for many numerical problems.

Stability: Careful analysis using harmonic functions shows that 
a stable numerical calculation is subject to special conditions 
(conditional stability). This holds for many numerical problems.



Problems: DispersionProblems: Dispersion
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Dispersion: The numerical 
approximation has 
artificial dispersion,
in other words, the wave 
speed becomes frequency 
dependent. 
You have to find a 
frequency bandwidth 
where this effect is small.
The solution is to use a 
sufficient number of grid 
points per wavelength.

Dispersion: The numerical 
approximation has 
artificial dispersion,
in other words, the wave 
speed becomes frequency 
dependent. 
You have to find a 
frequency bandwidth 
where this effect is small.
The solution is to use a 
sufficient number of grid 
points per wavelength.

True velocity



Our first FD code!Our first FD code!
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% Time stepping

for i=1:nt,

% FD

disp(sprintf(' Time step : %i',i));

for j=2:nx-1
d2p(j)=(p(j+1)-2*p(j)+p(j-1))/dx^2; % space derivative

end
pnew=2*p-pold+d2p*dt^2;                % time extrapolation
pnew(nx/2)=pnew(nx/2)+src(i)*dt^2;     % add source term
pold=p; % time levels
p=pnew;
p(1)=0; % set boundaries pressure free
p(nx)=0;

% Display 
plot(x,p,'b-')
title(' FD ')
drawnow

end



Snapshot ExampleSnapshot Example
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Seismogram DispersionSeismogram Dispersion



Finite Differences - SummaryFinite Differences - Summary

• Conceptually the most simple of the numerical methods and 
can be learned quite quickly

• Depending on the physical problem FD methods are 
conditionally  stable (relation between time and space 
increment)

• FD methods have difficulties concerning the accurate 
implementation of boundary conditions (e.g. free surfaces, 
absorbing boundaries)

• FD methods are usually explicit and therefore very easy to 
implement and efficient on parallel computers

• FD methods work best on regular, rectangular grids
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