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Possible interpretations of probability theory (Tarantola, 1988):

1.
 

A purely
 

statistical
 

interpretation: probabilities
 

diescribe
 

the
 outcome

 
of random

 
processes

 
(in physics, economics, biology, etc.)

2.
 

Probabilities
 

describe
 

subjective
 

degree
 

of knowledge
 

of the
 true

 
value

 
of a physical

 
parameter. Subjective

 
means

 
that

 
the

 knowledge
 

gained
 

on a physical
 

system may
 

vary
 

from
 

experiment
 to experiment. 

The key postulate of probabilistic inverse theory
 

is (Tarantola
 

1988):

Let X be a discrete parameter space with a finite number of parameters.
The most general way we have for describing any state of information

 
on X 

is by defining a probability
 

(in general a measure) over X. 
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Combining states of informationCombining states of information

With basic principles from mathematical logic it can be shown that with two 
propositions f(x) (e.g. two data sets, two experiments, etc.) the combination 
of the two sources of information (with a logical and) comes down to

This

 

is

 

called

 

the

 

conjunction

 

of states

 

of information

 

(Tarantola

 

and Valette, 1982). Here

 
μ(x) is

 

the

 

non-informative pdf

 

and s(x) will turn out to be

 

the

 

a posteriori

 

probability

 
density

 

function. 

This

 

equation

 

is

 

the

 

basis

 

for

 

probabilistic

 

inverse

 

problems:

We

 

will proceed

 

to combine

 

information

 

obtained

 

from

 

measurements

 

with

 

information
from

 

a physical

 

theory. 
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Solving the forward problem is equivalent to predicting error free values of 
our data vector d, in the general case

Examples:

- ground
 

displacements
 

for
 

an earthquake
 

source
 

and a given
 

earth
 

model
- travel

 

times
 

for
 

a regional or
 

global earth
 

model
- polarities

 

and amplitudes
 

for
 

a given
 

source
 

radiation
 

pattern
- magnetic

 

polarities
 

for
 

a given
 

plate
 

tectonic
 

model
 

and field
 

revearsal
 

history
- shaking

 

intensity
 

map
 

for
 

a given
 

earthquake
 

and model
-....

But: Our
 

modeling
 

may
 

contain
 

errors, or
 

may
 

not
 

be
 

the
 

right physical
 

theory, 
How

 

can
 

we
 

take
 

this
 

into
 

account?

)(mgdcal =
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Θ(d,m) summarized: 

The expected correlations between model and data space can be described 
using the joint density function Θ(d,m). When there is an inexact physical 
theory (which is always the case), then the probability density for data d is 
given by Θ(d|m)μ(m).

This may for example imply putting error bars about the predicted data 
d=g(m) …

 

graphically
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Information from measurementsInformation from measurements

An experiment will give us information on
 

the true values of observable 
parameters (but not actually the true values), we will call this

 

pdf
 

ρD

 

(d).

Example:
 

Uncertainties of a travel time reading

Good data

Noisy data

Uncertainty
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A priori
 

information on model parametersA priori
 

information on model parameters

All the information obtained independently 
of the measurements on the model space is 
called a priori information.

 

We describe 
this information using the pdf

 

ρM

 

(m). 

Example:
 

We have no prior information 
ρM

 

(m)=μ(m) , where μ(m) is the non-
 informative prior.

Example:
 

We are looking for a density 
model in the Earth (remember the treasure 
hunt). From sampling many many rocks we 
know what densities to expect in the Earth:

<-
 

it looks like lognormal
 

distributions are a
Good way of describing some physical 
parameters
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The solution to the inverse problemThe solution to the inverse problem

The information obtained a priori
 

which we described with ρ(d,m) is now 
combined with information from a physical theory which we decribe

 

with
Θ(d,m). Following the ideas of conjunction of states of information, we define 
the a posteriori probability density funtion

 

as the
 

solution to an inverse 
problem
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Let’s try and look at this graphically …
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The (only) goal of this 
lecture is to understand 
these figures!

The rest is details …
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Early applications of Monte Carlo methods to the 
determination of Earth’s structure (Press 1968). 
Early applications of Monte Carlo methods to the 
determination of Earth’s structure (Press 1968).
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The goal:

How can we efficiently sample 
the a posteriori pdf …

… knowing that the computation 
of the forward problem is 
expensive and computational 
power is finite!
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MetropolisRandom walks -

 
Metropolis

First modifications: 

Limit the algorithm to look in the neighborhood of the present point. This is called 
near neighbor sampling.

Here we allowed the walker 
to move only within 10% 
of the total size of the model
Space.

The program used was 
mc_neigh.m and the relevant 
Parameter neigh=0.1.
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The forward problem: The gravity gradient at the surface is 
given by: 

The forward problem: The gravity gradient at the surface is 
given by: 

∫
∞

+
Δ
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Let us look at the outcome of this process:  the prior probabilitesLet us look at the outcome of this process:  the prior probabilites
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… a random walk through the prior probabilities produce models that look like this: … a random walk through the prior probabilities produce models that look like this: 
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... we do not expect that the fine layering is well resolved, which is why 
it makes sense to  look a smoothed models … 

... we do not expect that the fine layering is well resolved, which is why 
it makes sense to  look a smoothed models …
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The random walk through the a posteriori probability leads to the models:The random walk through the a posteriori probability leads to the models:
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Note:

These models are samples of the a 
posteriori probability density 
function. They represent the 
state of information we have on 
our Earth model. With these 
samples we can now ask questions 
like:

 What is the value for the mass density 
at depth z=2km or z=20km and 
how well is it constrained? We 
only have to calculate the marginal 
probabilities to answer this 
questions.

 Note:  

At depth 2km we seem to have clearly 
gained information.

 

Note:

These models are samples of the a 
posteriori probability density 
function. They represent the 
state of information we have on 
our Earth model. With these 
samples we can now ask questions 
like:

What is the value for the mass density 
at depth z=2km or z=20km and 
how well is it constrained? We 
only have to calculate the marginal 
probabilities to answer this 
questions.

Note:  

At depth 2km we seem to have clearly 
gained information.
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How has the misfit of our models improved compared to the a priori models?How has the misfit of our models improved compared to the a priori models?

The misfit is almost perfect for all our a posteriori models but

 

again we hit on the 
particular gravity problem that many very different

 

models explain the data!

 

The misfit is almost perfect for all our a posteriori models but

 

again we hit on the 
particular gravity problem that many very different

 

models explain the data!
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What are the mean values and standard deviations  of the density

 

as a function of 
depth?

 

What are the mean values and standard deviations  of the density

 

as a function of 
depth?

Here we clearly see that we gave gained information in the top 20 km !Here we clearly see that we gave gained information in the top 20 km !
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Can we use some of those concepts in seismic 
waveform inversion problems? 

Can we decribe in a quantitative way prior information 
on our Earth models 
• To search for good starting models 
• around some final models to investigate uncertainties

Can we visualize at the same time Earth models AND 
their uncertainties?

….
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The measued data are assumed to be contaminated by random, 
uncorrelated noise. To make it a little more complicated, the errors 
are assumed to come from two processes with difference 
variances σi and relative probabilities (expressed through a): 

The measued data are assumed to be contaminated by random, 
uncorrelated noise. To make it a little more complicated, the errors 
are assumed to come from two processes with difference 
variances σi and relative probabilities (expressed through a):
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