

A large-scale passive laser gyroscope

based on ultra-stable lasers

<u>K. Liu,</u> J. Zhang, F. L. Zhang, X. H. Shi, X. Y. Zeng, X. L. Lv and Z. H. Lu

Center for Gravitational Experiments, School of Physics, Huazhong University of Science & Technology

2016.6.21 @ Meeting of IWGoRS

Huazhong University of Science and Technology

Motivation

TianQin mission (a space-borne gravitational wave detector) Satellite orbit determination to cm level

Active/Passive Laser Gyroscope

"Comparison between active- and passive-cavity interferometers."

 A. Abramovici and Z. Vager, Phys. Rev. A 33, 3181 (1986).
 "Passive versus active interferometers: Why cavity losses make them equivalent."
 J. Gea-Banacloche, Phys. Rev. A 35, 2518 (1987).

Active laser gyro : Passive laser gyro : Shot noise limit Spontaneous emission •Gain medium fluctuation •No gain medium (high vacuum) Backscattering Backscattering An ultrastable laser as Geometrical stabilization
 Geometrical stabilization injection laser Injection laser source Feedback locking

A large scale passive laser gyroscope: challenge but deserve to try.

Major theoretical parameters

CP

 $\delta \Omega = -$

hf

WT

N30.52° E114.41°	1 m Gyroscope	10 m Gyroscope (Final Goal)
Square cavity	1 m×1 m	10 m×10 m
Perimeter/Area	4 m/1 m ²	40 m/100 m ²
Scale factor stability	10 -9	10 -11
Reflectivity	99.999%	99.999%
Finesse	157000	157000
FSR	74.9 MHz	7.49 MHz
Q factor	5.9×10 ¹¹	5.9×10 ¹²
Sagnac frequency	34.7 Hz	347 Hz
Laser performance	Stability<10 ⁻¹⁴ @1s, Stability<10 ⁻¹³ @1000s	
Power	100 μW	
Sensitivity@1000s	8×10 ⁻⁹ Ω _E	8×10 ⁻¹¹ Ω _E

Optical Setup

The ring cavity is locked to one injection beam, and the other beam is locked to the ring cavity, monitoring diagonal lengths.

Laser Development: Short-term Stability

A diode laser is locked to a 10 cm-long ULE ultra-stable cavity.

Laser Development: Long-term Stability

Laser Development: Long-term Stability

Next step:

• Digital PID locking for better short-term performance

Vacuum System Design

Vacuum System Design

Cave Lab

Lab Space: 7000 m² (cave lab: 4000 m², machine shop: 600 m²)

Temperature variation inside cave laboratory

Annual variation: ~ 1K Daily variation < 5mK

Seismic noise at cave laboratory

A Free Space 0.3 m × 0.3 m Ring Cavity

 $\alpha = 20\%$ *Finesse* = 329 *Finesse*_{th} = 1573

S-polarization reflectivity : 99.9%

- A laser source is developed with a short-term stability of 1×10⁻¹³ at 0.1s. The long-term stability is 1×10⁻¹⁵ at 2000s;
- We have designed the Sagnac interferometer;
- Ring cavity alignment and mode matching is under test.
 Future Plans:
- For the 1m×1m gyroscope, a 1st step goal is to achieve a relative sensitivity of 3×10⁻⁷ at 1000s in 2017;
- a 2nd step goal is a relative sensitivity of 8×10⁻⁹ at 1000s;
- Design a 10m ×10m gyroscope.

National Facility (2017-2021)

Precision Gravity Measurement Facility (PGMF)

Thank you very much for your attention !

Research Goal for the 1m×1m Gyroscope

Digital Locking

