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S U M M A R Y
We use the method of simultaneously encoded sources to perform computationally inexpensive
full-waveform inversion (FWI) on fixed-spread, marine seismic data. A workflow is proposed
whereby both data- and model-based preconditioning strategies are enforced to mitigate the
non-linearity of the seismic inverse problem. Artificial crosstalk, introduced by the false cor-
relation of forward and adjoint wavefields of simultaneously simulated sources, is minimized
by simulating supershots of random linear combinations of data with iteration-varying encod-
ing. Using encoded sources with partial-source assembly, crosstalk is furthermore suppressed
by randomizing the locations of encoded subsources. Synthetic case studies verify our basic
workflow approach, demonstrating accurate model reconstruction in the most extreme case of
a single supershot. Application to real data from the Valhall oilfield in the North Sea demon-
strates reconstruction of near-surface features with one to two orders of magnitude speedup
per FWI iteration. Such an efficiency gain can be incorporated into a seismic data processing
workflow both for tomographic inversion and for quality control measures.
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1 I N T RO D U C T I O N

Full-waveform inversion (FWI) has emerged as an effective method
for delivering high-resolution tomographic images of the Earth’s
structure. Although the theoretical foundation for FWI has been
known for several decades (e.g. Tarantola 1984), only in recent
years have available computing resources caught up to the demands
of fully 3-D FWI at the exploration scale (e.g. Plessix 2009; Sirgue
et al. 2010; Vigh et al. 2010; Etienne et al. 2012). Such applications
may still consume 104–106 CPU hours per FWI iteration, however,
pushing the limits of institutional computer clusters. FWI is fur-
thermore hindered by a general lack of robustness with respect to
arbitrary starting model and inversion workflow: typically, precon-
ditioning strategies (both in data and model domains) are required
for FWI to converge to physically plausible models. By lowering
the cost per FWI iteration, one could speed up the cycle of workflow
testing and development. This forms the motivation for the present
study.

FWI is posed as an optimization problem, the goal of which is
to derive a seismic velocity model that minimizes misfit between

∗Now at: Schlumberger WesternGeco, 3750 Briarpark, Houston, TX 77042,
USA.

observed and synthetic seismograms. Typically, iterative methods
are deployed in which the gradient of misfit with respect to model
parameters is calculated to yield a model update direction. Calcu-
lation of the gradient requires computation of at least two (forward
and adjoint), and possibly more, numerical simulations of the seis-
mic wave equation per source per FWI iteration. Marine seismic
acquisition systems at the exploration scale typically have order
tens to hundreds of thousands of sources, thus posing a formidable
computational bottleneck. Acceleration of this component of the
inversion, therefore, has potential to significantly reduce overall
cost.

Recently (Capdeville et al. 2005; Vigh & Starr 2008; Krebs
et al. 2009; Boonyasiriwat & Schuster 2010; Baumstein et al. 2011;
Ben-Hadj-Ali et al. 2011; Routh et al. 2011), simultaneous-source
methods have been investigated as a means to reduce this cost, by
exploiting the linearity of the governing wave equation with re-
spect to source terms to reduce the total number of simulations
per FWI iteration. ‘Source encoding’, as is commonly referred to
in the literature, reduces the cost of each FWI iteration by a fac-
tor approximately equal to the number of simultaneous shots per
supershot. The resulting inverted velocity model, however, suffers
from crosstalk artefacts due to the (false) correlation between for-
ward and adjoint wavefields of shots encoded within a common
supershot. These artefacts can be partially mitigated by encoding
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shots via incoherent summation (Krebs et al. 2009; Ben-Hadj-Ali
et al. 2011), incoherent source locations (Boonyasiriwat & Schuster
2010) and preconditioning of the gradient search direction (Guitton
& Diaz 2011).

It has been argued (van Leeuwen & Herrmann 2013) that the over-
all convergence rate of encoded-source FWI (with respect to number
of wave equation simulations) is not demonstrably faster than con-
ventional, serial-source FWI with batching strategies. In the latter
approach, a subset of serial sources is drawn without replacement
for each iteration. Regardless, encoded-source FWI offers potential
for orders of magnitude speedup on a per-iteration basis, allowing
for fast computation of the misfit functional and its gradient (albeit
with less resolution). We believe therefore that encoded-source FWI
could be considered as a standard tool in fixed-spread FWI work-
flow. Baumstein et al. (2011) reported successful application to field
data, inverting surface waves for shear velocity model update. To
our knowledge, however, rigorous studies of encoded-source FWI
have yet to be performed.

In this paper we demonstrate the success of encoded-source FWI
applied to fully 3-D models in both synthetic and real-data cases
at the exploration scale using a time-domain numerical solver. The
paper is organized as follows. In Section 2, we review classical
FWI and the method of source encoding. In Section 3, we detail a
specific workflow implementation for encoded-source FWI, where
preconditioning in both data- and model-domains is applied. In
Section 4, we verify our workflow against synthetic tests, demon-
strating accurate model reconstruction even in the limiting case of
a single encoded supershot, and consider sensitivity of the inverted
model with respect to various workflow strategies. In Section 5, we
apply the workflow to ocean-bottom cable data from a survey of
the Valhall oilfield in the North Sea, demonstrating that one to two
orders of magnitude speedup per FWI iteration may be possible via
encoded simultaneous sources.

2 B A C KG RO U N D

2.1 Acoustic-wave propagation

We consider wave propagation in an isotropic, non-attenuating
acoustic medium, compactly stated as the time-dependent partial
differential equation:

F(p(m), f ) = 0, (1)

where the wave equation operator F is linear over source terms f, and
pressure p depends upon a heterogeneous medium of propagation m.
The exact physical description of our simulated models is detailed
in Peter et al. (2011; their eqs 8–13).

The acoustic approximation is typically limited to marine set-
tings, where surface wave effects (e.g. ‘ground roll’) are minimal
in comparison to land data. Soft-seabed marine environments pre-
vent significant P–S conversions, while hydrophone receivers do
not record S waves. Brossier et al. (2009) and Barnes & Charara
(2009) demonstrate the feasibility of acoustic FWI in soft-seabed
environments.

Although seismic waves are known to be sensitive to compara-
tively complex media in the Earth (e.g. elasticity, anisotropy and
viscoelasticity), the acoustic approximation remains the standard
model parametrization for exploration-scale FWI due to cheap nu-
merical cost and high sensitivity to acoustic waves. Furthermore, the
results of Sirgue et al. (2010), in which FWI was applied to OBC data
from the Valhall field, demonstrate that remarkably high-resolution

tomographic images can be recovered even in the approximation of
an acoustic isotropic medium.

2.2 Full-waveform inversion

The seismic inverse problem seeks to compute a seismic velocity
model by minimizing differences between synthetic and recorded-
data waveforms. Classically, ray-theoretical methods have been used
to invert for the Earth’s structure, relying upon simplified assump-
tions of the starting model medium and utilizing a small amount of
information per waveform (such as traveltimes of distinct phases).
An alternative approach is FWI, which can potentially utilize infor-
mation from the entire waveform. Application of FWI requires no
assumptions with respect to starting model, although a sufficiently
accurate starting model is needed to avoid cycle-skipping artefacts
(see e.g. Virieux & Operto 2009; Prieux et al. 2013c).

The theoretical foundation of FWI was introduced by Tarantola
(1984), although only in the past decade or so has it become com-
putationally feasible for 3-D models at the exploration scale (e.g.
Plessix 2009; Sirgue et al. 2010; Vigh et al. 2010; Etienne et al.
2012). FWI is posed as an optimization problem, where a velocity
model m is sought, which minimizes an objective functional χ ,

χ (m) = 1

2

N∑
i=1

‖pi (m) − di‖2, (2)

where N is the number of simulated events. The objective functional
quantifies the misfit between recorded and synthetic waveforms, di

and pi, respectively, and depends non-linearly upon m. Embedded
within the norm in eq. (2) is a summation over time samples and re-
ceivers. In this study we restrict ourselves to pressure (hydrophone)-
recorded waveforms and a purely acoustic medium, with synthetic
waveforms computed via numerical solution to eq. (1). FWI itera-
tively minimizes the objective functional, with model mk+1 formed
by computing a model perturbation �mk,

mk+1 = mk + �mk . (3)

In our case we choose a gradient descent approach to computing
the model perturbation,

�mk = −γk sk, (4)

where γ k represents a step length and sk is a preconditioned gra-
dient search direction (detailed in Section 3). The gradient itself is
computed by the cross-correlation of forward- and adjoint wave-
forms. For a thorough description of the mathematical framework
of FWI we refer to Tromp et al. (2005); a review specific for the
exploration scale is given in Virieux & Operto (2009). Our study
is restricted to the setting of purely acoustic sources and receivers;
the adjoint equations corresponding to this case are derived in Peter
et al. (2011).

2.3 Simultaneous-source methods

Although exploration-scale FWI applications have a smaller phys-
ical model to consider than their global-scale counterparts, the to-
tal number of events to simulate in the former case (e.g. airgun
sources) typically dwarfs the latter (e.g. earthquakes). Each itera-
tion of FWI minimally requires two numerical simulations of the
wave equation (forward and adjoint) per source event, with addi-
tional simulations over a subset of sources possibly necessary for
calculation of the step length and/or Hessian matrix. Conventional
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FWI therefore may require tens to hundreds of thousands of numer-
ically expensive wave equation simulations per iteration. Although
the cost per simulation can vary significantly whether one adapts a
time- or frequency-domain discretization of the wave equation, the
underlying bottleneck posed by many sources remains.

Recent developments in source encoding methods (e.g.
Capdeville et al. 2005; Krebs et al. 2009; Ben-Hadj-Ali et al. 2011)
propose to mitigate this bottleneck by exploiting the linearity of the
wave equation over source terms to simultaneously simulate multi-
ple encoded sources. These encoded-source supershots are formed
via an incoherent sum of the original sources:

f̂ (i) =
N∑

n=1

c(i)
n fn, (5)

generating synthetic waveforms p̂ and correspondingly encoded
data d̂. The ‘codes’ c(i)

n vary randomly with respect to source loca-
tion and are regenerated in every iteration (i) of the inversion. The
corresponding objective functional χ̂ ,

χ̂(m) = 1

2

Nss∑
i=1

∥∥∥ p̂i (m) − d̂i

∥∥∥2
(6)

is dependent upon the encoding, and thus changes every inversion
iteration. In eq. (6), Nss (� N) refers to the number of supershots.
In particular, we note that for the most extreme case of full-source
assembly, Nss = 1.

The main drawback of simultaneous source methods is crosstalk
artefacts, introduced by the false correlation of encoded forward
and adjoint wavefields in gradient calculations. Choosing random
(i.e. incoherent), iteration-varying codes, however, reduces crosstalk
noise by averaging it away over successive FWI iterations. This was
the key discovery from Krebs et al. (2009), where a time-domain
implementation with random codes c(i)

n = ±1 was demonstrated
to deliver high-accuracy models with a single encoded supershot.
Ben-Hadj-Ali et al. (2011) derived a similar approach for frequency-
domain modelling, with complex-value codes chosen from the unit
circle. Their studies demonstrated that encoded-source FWI is de-
pendent upon the number of encoded supershots, number of in-
version iterations and number of inverted frequencies chosen; this
suggests that a fair degree of fine-tuning may be required for opti-
mal efficiency gain. Boonyasiriwat & Schuster (2010) advocated a
further degree of randomness to suppress crosstalk noise, choosing
random shot locations for each supershot (e.g. c(i)

n ∈ {−1, 0, 1}).
A clear restriction of simultaneous source simulation is the re-

quirement for shots encoded within a common supershot to share
the same receivers; this is violated in acquisitions with variable
geometries (e.g. marine streamers). Routh et al. (2011) proposed
an approach to reduce this restriction by using a cross-correlation
objective functional. In this study, we restrict ourselves to fixed-
geometry, ocean-bottom cable data. We utilize the time-domain im-
plementation of encoded simultaneous sources proposed by Krebs
et al. (2009) and Boonyasiriwat & Schuster (2010).

Despite demonstrated successes in encoded-source FWI, an un-
derlying mathematical argument persists against the technique:
namely, that the (iterative) non-linear optimization problem will
converge slowly relative to conventional methods with non-encoded
sources. This argument was advocated in van Leeuwen & Herrmann
(2013), who explored the strategy of using increasingly larger sub-
sets of the (non-encoded) sources for each FWI iteration. In our
experience, the rate of misfit decrease (measured as a function of
iteration number) for early-stage FWI is roughly equivalent for en-
coded sources and non-encoded sources; this result is reported as

well in Krebs et al. (2009; their fig. 8). While at later iterations, the
convergence rate of encoded-source methods may be slow relative
to conventional FWI, we believe that encoded-source FWI could be
used effectively to accelerate the early stages of an inversion.

3 F W I W O R K F L OW

3.1 SEM discretization

The core component of a FWI workflow is the repeated numerical
solution of forward and adjoint wavefields. For this task we employ
the SPECFEM3D Version 2.0 ‘Sesame’ code (Peter et al. 2011),
an open-source community code that models seismic wave prop-
agation utilizing a spectral element discretization in space and an
explicit Newmark scheme in time. The spectral element method (e.g.
Komatitsch & Vilotte 1998; Chaljub et al. 2007; Tromp et al. 2008)
is a well-known numerical scheme in the field of seismic wave prop-
agation, combining the geometrical flexibility (h-adaptivity) of the
classic finite element method with a high-order solution basis that
is well-suited for wave propagation. Source terms are implemented
as point forces on the Gauss–Lobatto–Legendre (GLL) gridpoints,
and interpolated using Lagrange interpolants when a source coor-
dinate does not coincide with a gridpoint. Waveforms are similarly
recorded at receiver locations through Lagrange interpolation. At
the free surface of the domain, a zero-pressure Dirichlet boundary
condition is implemented, while at all other boundaries Clayton–
Engquist absorbing conditions are applied. Non-physical (numer-
ical) boundary reflections persist, however, acting as a source of
coherent noise.

3.2 Workflow implementation

For efficient implementation of the iterative inversion process, we
design a workflow (Table 1) that is intended to operate with minimal
user interaction. We adopt a modular design philosophy, whereby
heterogeneous workflow tasks (e.g. source encoding, kernel pro-
cessing and misfit computation) are implemented and integrated
with one another through Python scripts. The same scripts are used
to wrap around calls to the relatively more expensive wave equa-
tion solver, which is coded in Fortran. The SPECFEM3D solver
computes both forward and adjoint wavefields; in the latter case,
the forward simulation is recomputed simultaneously at a reversed
time from the adjoint simulation, so that sensitivity kernels may be
constructed on-the-fly. The adjoint simulation is thus two to three
times more expensive as the forward simulation, but we are saved
the cost of having to store the forward field in memory when com-
puting the gradient.

With typical data quantities involving hundreds of millions of
recorded traces, industrial FWI applications demand efficient data
processing implementations. In our workflow we integrate rou-
tines from the Obspy library (obspy.org; Beyreuther et al. 2010), a
Python-based open-source toolbox for computational seismology.
The Obspy library effectively standardizes our industry data set
and numerically derived synthetics into a common format where
all processing is performed, and subsequently fed back into the
workflow. Complimenting this toolbox is the additional, stand-
alone Python module pprocess (pypi.python.org/pypi/pprocess),
which we utilize for trivial parallelization of signal processing
operations.

Our workflow is specially designed for implementation on a Peta-
scale supercomputer. Specific consideration of system architecture
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Table 1. FWI workflow. Steps with ∗ are computed in SPECFEM3D while all other steps are imple-
mented in Python.

Pre-processing:

1. Encode hydrophone data via method of Krebs et al. (2009) for a sufficient number of FWI iterations
2. Filter, then taper, encoded data

For each depth threshold:

For each frequency band:

Iterate until desired stopping criteria:

a) For each event:
1. Compute forward wavefields∗
2. Compute adjoint source
3. Compute adjoint wavefields (and simultaneously, sensitivity kernels)∗

b) Sum sensitivity kernels
c) Precondition summed gradient search direction
d) (Optionally) compute step length and update model

was necessary for efficient implementation (e.g. I/O speeds on avail-
able file systems and allocation of memory and compute tasks per
node). The modular approach offered by the Python language al-
lows for a robust workflow construction, easing the transition from
institutional cluster to supercomputer.

3.3 Multiscale inversion strategies

As is common with non-linear inverse problems, FWI suffers from
the presence of local minima in the objective functional, particu-
larly when the least-squares (L2) norm (eqs 2 and 6) is adopted.
The use of a gradient-based search algorithm to solve the optimiza-
tion problem (eqs 2–4) is especially prone to convergence towards
local minima, depending on the accuracy of the starting model.
One may naturally consider preconditioning strategies in both the

data- and model-space domains to mitigate the non-linearity of
FWI.

It is well known (e.g. Bunks et al. 1995; Pratt 1999; Virieux &
Operto 2009) that a hierarchical inversion strategy, whereby low
frequencies are inverted before higher ones, can partially mitigate
the tendency to converge towards local minima. This is due to the
comparatively less oscillatory nature of the objective functional with
respect to larger spatial wavelengths (Alkhalifah & Choi 2012). We
adopt the classic time-domain multiscale strategy of Bunks et al.
(1995), applying a low-pass filter to the recorded data and input
source–time function. The cut-off frequency of this filter can then
be incrementally varied within the FWI workflow (Table 1). In
Figs 1(c) and (d) we compare the sensitivity kernels resulting from
cut-off frequencies of 1.0 Hz and 6.0 Hz with an encoded-source
simulation. The lower frequency cut-off results in larger spatial
wavelengths in the gradient, as expected.

Figure 1. Demonstration of model-domain (a and b) and data-domain (c and d) preconditioning strategies for acoustic sensitivity kernels. (a) Raw gradient for
a simulation, leaving high concentration in sensitivity near the ocean-floor receivers (150 m depth). (b) Preconditioned gradient, where an overall threshold has
been applied to extend sensitivity to 1500 m depth. (c) Preconditioned gradient for an encoded source, low-pass filtering data with 1.0 Hz cut-off frequency.
(d) Preconditioned gradient for an encoded source, low-pass filtering data with 6.0 Hz cut-off frequency. Colour scales for all panels are set according to the
maximum absolute values for each case.

 by guest on D
ecem

ber 2, 2013
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


1974 A. Schiemenz and H. Igel

Due to geometric spreading of the wavefield leading to high sensi-
tivity near source and receiver positions, it is furthermore necessary
to precondition model update directions, enhancing model sensitiv-
ity at depth. We consider a strategy whereby large values in the raw
gradient, K = ∇mχ , are reduced according to a depth-dependent
function:

K → K clipped =
{

K (x, y, z), for z > zthreshold

clip(K ), for 0 < z ≤ zthreshold

. (7)

The depth threshold zthreshold is chosen on an iteration-dependent
basis, and the clipping function is defined as

clip(K (x, y, z)) =
{

min(K (x, y, z), K+), K > 0

max(K (x, y, z), K−), K < 0
. (8)

The gradient threshold values are given as the extreme values of
the gradient at the depth threshold,

K+ = max(K (x, y, zthreshold))

K− = min(K (x, y, zthreshold))
. (9)

The strategy outlined by eqs (7)–(9) effectively levels all extreme
values of the gradient, K(x, y, z), for regions above the depth thresh-
old (0 < z ≤ zthreshold) to the value of the gradient threshold, K+ or
K−, depending on the sign of sign of K. In Figs 1(a) and (b) we
compare sensitivity kernels of an encoded-source, synthetic OBC
experiment in the cases of no preconditioning and with a depth
threshold of 1.5 km applied. In the former case the sensitivity is
strongly restricted to the nearest 100 m below the seafloor, whereas
in the latter case the preconditioned gradient contains strong sensi-
tivity down to the depth threshold.

4 S Y N T H E T I C A P P L I C AT I O N

To verify our workflow approach we consider synthetic application
of encoded-source FWI. Synthetic testing in a controlled environ-
ment eliminates many sources of error that exist in realistic FWI
applications, such as noise present in the data, unknown or poorly
constrained model parameters, and unknown source wavelet. The
resulting problem, albeit simplified, allows for testing of viable
workflow strategies to use on real data. In our case, we consider
high levels of source encoding, demonstrating that even in the max-
imal case of a full-source assembly (i.e. all sources simultaneously
simulated), accurate model reconstruction is possible. This confirms
earlier synthetic studies by Krebs et al. (2009) and Ben-Hadj-Ali
et al. (2011). We furthermore demonstrate robustness of the work-
flow with respect to noise and starting model accuracy, before finally
examining performance of partial-source assembly.

4.1 SEG/EAGE overthrust model

We perform encoded-source FWI on the synthetic 3-D SEG/EAGE
overthrust model (Aminzadeh et al. 1997). An acoustic model with
known, constant density is assumed for both true and initial mod-
els. 4.5 s of ‘data’ are generated by numerically simulating the wave
equation on the true model. The computational grid is discretized by
hexahedral spectral elements with characteristic edge length 150 m,
and local polynomial degree 4 (125 local gridpoints per element).
This resolution is sufficient for a minimal 2 elements per wavelength
in the subsurface of the model at the highest inversion frequency
(6 Hz). We use only a single element for the water layer, as a finer

Figure 2. Schematic of synthetic overthrust model acquisition. 40 000 re-
ceivers (blue region) are spaced equidistantly across the inner 361 km2. 576
receivers (red dots) are spaced equidistantly across the inner 324 km2. With
encoded sources we consider FWI approaches simulating all 576 sources
simultaneously (Figs 3–6) and with nine supershots containing 64 simulta-
neous sources (Fig. 7).

discretization in this region would substantially increase the numer-
ical cost, and resolution tests demonstrated negligible change in the
simulated waveforms between our chosen mesh and a refined one.

The P-wave velocity model, initially defined on a grid of
801 × 801 × 187 values and characteristic spacing 25 m, is in-
tegrated into the spectral element mesh via trilinear interpolation
onto the GLL computational gridpoints. We consider this inter-
polated model to be the ‘true’ model. No further interpolation is
required after this initial step, as the same grid is used for both
model and computation (i.e. the GLL gridpoints). To mimic an
ocean-bottom cable experiment, we append a 150 m water layer to
the top of the model, with fixed, known velocity of 1480 m s−1.
Invoking source–receiver reciprocity, we place within this water
layer a square 200 × 200 array of receivers near the water sur-
face and a 24 × 24 array of acoustic sources near the seafloor.
The receivers and sources are placed equidistantly across the inner
361 km2 and 324 km2 of the model, respectively (Fig. 2). An initial
model (Figs 3a–d) is derived by smoothing the true model via con-
volution with a Gaussian wavelet of characteristic width 300 m in
the y–z plane.

4.2 Results encoding 576 shots into one supershot

We implement encoded-source FWI with full-source assembly,
achieving maximal speedup per inversion iteration by encoding all
sources into a single supershot. 130 FWI iterations are performed
with a gradient descent method and fixed step length of 2.5 per cent.
Although this represents a simplistic approach to solving the non-
linear optimization problem, the goal of this study is to focus on
the efficiency of encoded-source FWI, and so we prefer to choose
simpler strategies wherever possible in the inversion workflow. With
respect to the workflow detailed in Table 1, we apply a low-pass filter
with sequentially larger cut-off frequencies of 1.0, 1.5, 2.5, 4.0 and
6.0 Hz, performing 10 iterations per frequency. Initially we choose
a gradient threshold depth at 1.5 km. At iterations 50 and 100, the
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Figure 3. Reconstruction of synthetic acoustic overthrust model using full-source assembly. Each iteration simulates one supershot containing 576 encoded
sources; (a–d) starting model, formed by smoothing the true model; (e–h) FWI-derived model; (i–l) true model. Final model (L1-norm) error is approximately
65 per cent of starting model error.
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Figure 4. Cross-sections of the (a) initial, (b) inverted and (c) true models corresponding to the synthetic encoded source FWI of Fig. 3 at y = 11.4 km. (d)
Well log for these models.

threshold depth is increased to 2.25 and 3 km depth, respectively.
The inversion is manually terminated when the rate of model and
data misfit become negligible, so we do not invert the two highest
frequencies at 3 km depth.

Results of initial, FWI-derived and true acoustic velocity mod-
els are given for variable depths in Fig. 3. Low-amplitude, short-
wavelength noise in the velocity models is consistent with previous
numerical study of source encoding methods (Krebs et al. 2009;
Ben-Hadj-Ali et al. 2011), and is attributed to crosstalk noise among
the encoded sources. Despite these features, the recovered model
is very highly accurate in shallower (<1 km) depths, effectively re-
constructing high-contrast interfaces as well as volumes. At greater
depths, interfaces are still accurately imaged, but volume informa-
tion suffers. We acknowledge that our results are favourably biased,
however, by including low frequencies. In Fig. 4 we consider a
model slice in the x–z plane. Although the crosstalk artefacts are
again present in the reconstructed model, reflecting interfaces are
well-reconstructed to 3 km depth. A well log (Fig. 4d) demonstrates
overall accuracy in the model reconstruction, but with significant
overshoots due to the crosstalk, particularly in the upper 1.5 km.

In Fig. 5 we show waveforms computed from the models in
Figs 3 and 4, for a single source (Figs 5a, c and e) and for a
supershot of 576 encoded sources (Figs 5b, d and f). For each
source type we show data simulated from the true model, and initial
and final data residuals for 200 receivers along a line. The single
source yields a conventional shot record, whereas the supershot
yields a complicated wavefield with no visual clarity after the direct
arrivals. Misfit decrease is nonetheless clear in each case, with
total misfit over the entire data space decreasing approximately
85 per cent throughout the course of the inversion. Characteristic
traces (Fig. 5g) for both source types reveal a reduction in phase
and amplitude misfit throughout the entire time window. We note
with caution that the initial model for tests displayed in Figs 3–5 is
quite accurate, yielding a higher accuracy final model than would
be reasonably expected for a similar setup on real data and poor
starting model.

Due to the high level of encoding we have applied, the blended
waveforms in Fig. 5 lack any easily identifiable signal beyond the
direct arrivals. Consequentially, standard tools in time-domain FWI,
such as time windowing to extract and invert for specific phases, are
not at our disposal (though such tools might partially be applicable
when using a less ambitious, partial-assembly encoding strategy).
Regardless, our basic goal to speed up the FWI workflow as much
as possible, while still yielding reasonably high accuracy for the
reconstructed models, succeeds. Despite the complexity introduced
through the simulation of blended waveforms, our results in Figs 3
and 4 indicate that tomographic inversion remains possible on these
waveforms, at least when sufficiently low frequencies are available.

4.3 Encoded-source FWI sensitivities: noise, starting
model and source assembly strategy

The inverted velocity models in Figs 3 and 4 contain (perhaps) sur-
prisingly high accuracy, given that with full-source assembly we are
applying the most ambitious form of source encoding. However,
in this controlled synthetic experiment, we have bypassed some of
the more realistic challenges that would be expected in real data:
noise in the data, which amplifies the effect of crosstalk noise from
encoded sources (Ben-Hadj-Ali et al. 2011), and a low-accuracy
starting model, which could require more iterations towards con-
vergence and/or the tendency to converge towards a less accurate
final model. In Fig. 6 we demonstrate these effects by modifying
the setup from Figs 3–5, considering the first 50 iterations (Fig. 6a).
Fig. 6(b) repeats the baseline inversion but with a less accurate
starting model, computed by smoothing the true model by a 3-D
Gaussian with characteristic length 500 m. In this example, high-
velocity artefacts are introduced in the near surface, as well as a
generally poorer overall model reconstruction. Fig. 6(c) repeats the
baseline experiment, but adds white noise to the data with charac-
teristic signal-to-noise ratio of 5.0.
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3-D encoded-source FWI on OBC data 1977

Figure 5. Seismogram misfit decrease demonstrated for single-source (a, c and e) and encoded-source (b, d and f) waveforms from synthetic inversions of
Figs 3 and 4. (a and b) Data simulated from true model; (c and d) waveform residuals from initial model; (e and f) waveform residuals from final model, derived
by encoded-source FWI; (g) single traces corresponding to receiver index 50 simulated on initial, FWI-derived and true models. Waveforms are computed
along a constant line of receivers with spacing 95 m. The same colour scale is used across panels (a, c and e) and (b, d and f).
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Figure 6. (a) Model after 50 iterations, applying same workflow as in Figs 3–5. (b) Same as (a) but with a less accurate starting model; note that high-velocity
artefacts are present in the near-surface. (c) Same as (a) but with white noise added to data. (d) 50 iterations are performed with lowest inverted frequency
3.5 Hz. (e) Same as (d) but with a less accurate starting model. (f) Same as (d) but with white noise added to data.

Results in Figs 3 and 4 utilized information at low frequen-
cies (<3.5 Hz), which typically, for field data, contain unacceptable
signal-to-noise ratio for FWI. A more realistic case is considered by
removing low-frequency content from the data. In Fig. 6(d) we per-
form 50 encoded-source FWI iterations, applying bandpass filter to
invert for 3.5–4.5 Hz data, and then 3.5–6.0 Hz (25 iterations each).
This result can be compared with the frequency-domain study from
Ben-Hadj-Ali et al. (2011), which used starting frequency 3.5 Hz.
As expected, omitting low frequencies leads to less accurate re-
construction of bulk structure, although interfaces are still aligned
correctly. Figs 6(e–f) replicates the workflow of Fig. 6(d), but with
poorer starting model and white noise added to data, respectively.
Results are consistent with Figs 6(b and c), with a notable exception:
noisy-data inversion (Figs 6c and f) appears to more severely impact
the lower frequency inversion than the higher frequency one. This
result was also discussed by Ben-Hadj-Ali et al. (2011), who con-
cluded that crosstalk noise is more sensitive at lower frequencies.
Model errors for all studies in Fig. 6 are shown in Table 2.

Noise present in (non-encoded) data is known to amplify the
effects of crosstalk noise (Krebs et al. 2009; Ben-Hadj-Ali et al.
2011), which is proportional to the number of encoded shots per
supershot. In between the extremes of full-source assembly and tra-
ditional serial sources exists a middle ground, partial-source assem-
bly, whereby a number of supershots with fewer encoded sources
are simulated. Ben-Hadj-Ali et al. (2011) studied this case in detail,
demonstrating that fine-tuning may be required to reach the optimal
level of speedup versus accuracy in the inverted model. In Fig. 7
we show results using partial-source assembly with nine supershots,
each of which consists of 64 encoded subsources. When using a par-
tial source assembly strategy, one must partition the total number
of sources into subsets of encoded subsources. We consider three
types of partitioning strategies: line-indexed (Figs 7a and d), random
(Figs 7b and e) and coarsely spaced (Figs 7c and f). Line-indexed
sources are chosen simply according to their index location on file,
random source locations are chosen by randomly drawing 64 of the
576 indices (similar to the method of Boonyasiriwat & Schuster

Table 2. L1-norm of model errors expressed as percentage of starting model misfit (displayed in Figs 3a–d
and 4a).

Initial model 1.0–6.0 Hz FWI (Figs 6a–c) 3.5–6.0 Hz FWI (Figs 6d–f)

Reference case 100.0 81.1 87.9
Lower resolution starting model 109.6 102.2 107.0
White noise added to data 100.0 84.9 88.0
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3-D encoded-source FWI on OBC data 1979

Figure 7. Study of source partitioning strategies for encoded-source FWI using partial-source assembly. 576 serial sources are partitioned into nine supershots
of 64 encoded subsources. Model cross-sections for three partitioning strategies are shown in (a)–(c); subsource locations of the first supershot are shown in
(d)–(f); (a and d) Line-indexed sources, where subsource locations are chosen according to their index on file; (b and e) random sources, where each subsource
is randomly drawn in each iteration; (c and f) coarsely spaced sources, where subsource locations are chosen to maximize their average distance. L1-norm
model errors for (a), (b) and (c) have reduced from initial model approximately 8, 12 and 12 per cent, respectively.

2010) and coarsely spaced locations are chosen by maximizing
the average spacing between sources. Random source locations are
regenerated each iteration, whereas the other two are held fixed
throughout the inversion (although still with random codes).

Adjacent to each model profile in Fig. 7, the location of the
64 encoded subsources for the first supershot is shown. We show
the reconstructed models after 15 FWI iterations, so as to fairly
compare the progress of each inversion relative to the amount of
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computational work done. The poorest result is delivered with line-
indexed sources, where subsources are chosen simply according
to their index location on file, leading to poor azimuthal illumi-
nation of the seismic ray paths. In this case, the model error has
decreased approximately 8 per cent from the starting model. The
models constructed from randomly chosen or coarsely spaced sub-
sources, however, are quite similar; each has reduced the model
error approximately 12 per cent from the starting value (coarsely
spaced was slightly better, but due to the randomness involved we
cannot make a general inference). We infer from these results that
interference from closely spaced encoded sources is a primary driver
of crosstalk error when using partial-source assembly.

Comparable model resolution to the results in Fig. 7 but with
application of full-source assembly (not shown) was found after
67 FWI iterations, a computational cost of less than 50 per cent
of that required for partial-source assembly when considering the
total cost per iteration involved. It is not surprising that with noise-
free synthetic FWI, the greatest efficiency gain occurs with full-
source encoding (similar results were reported by Ben-Hadj-Ali
et al. 2011). This result furthermore advocates that comparable
resolution may be generally achieved with less computational effort
when using encoded sources versus conventional, serial sources.
We demonstrate this result next on real data from the Valhall field.

5 A P P L I C AT I O N T O O C E A N - B O T T O M
C A B L E DATA F RO M T H E VA L H A L L
O I L F I E L D

Having verified our encoded-source FWI workflow approach
through synthetic tests and gained insight into the sensitivities of
varying encoding strategies, we next consider application to ocean-
bottom cable data from the Valhall oilfield. An ocean-bottom cable
array at Valhall was installed in 2003 (Kommedal et al. 2004), com-
prising 45 km2 of coverage of four-component sensors embedded in
the (70 m deep) seafloor. 2302 receivers are spaced approximately
50 m apart within each of the 12 cable lines, and cables are approx-
imately 400 m apart. Hydrophone data from a survey containing
49 954 shots at maximal offset of 13 km, and an initial acoustic
velocity model (derived from VTI reflection traveltime tomogra-
phy and converted into NMO velocity), have been provided by BP.
Density is held fixed throughout the inversion, and derived from the
initial P-wave velocity model via Gardner’s relation (Gardner et al.
1974), ρ = 310 V 0.25

p . We model acoustic-wave propagation with a
hexahedral mesh consisting of elements of approximate dimension
130 × 130 × 70 m3 in the water layer and 130 × 130 × 200 m3 in the
subsurface. Source–receiver reciprocity is invoked during the nu-
merical modelling; the ‘sources’ from this perspective are the 2302
hydrophones. A schematic of the acquisition geometry is given in
Fig. 8.

Acoustic isotropic FWI of the Valhall field was performed by
Sirgue et al. (2010), demonstrating a network of high-velocity chan-
nels at 175 m depth and extension of a gas-filled fracture extending
from a gas cloud at 1050 m depth. These features were confirmed
in later studies by de Ridder & Dellinger (2011), who used ambi-
ent noise tomography to image the near-surface, and Etienne et al.
(2012), who performed 3-D FWI by modelling in the time domain
and inverting in the frequency domain.

Significant anisotropy is known to exist in the Valhall field
(Barkved et al. 2003; Olofsson et al. 2003), the effects of which
will bias reflector positions (and more generally, the entire ve-
locity model) reconstructed by isotropic FWI (Prieux et al. 2011;

Figure 8. Schematic of Valhall field array acquisition, with 2302 ocean-
bottom cable (OBC) hydrophones and 49 954 shots. Triangle marker denotes
hydrophone 375. The 200 hydrophones from cable 27 are used to invert the
source wavelet (Fig. 9). Characteristic hydrophones spacing is 50 m inline
and 400 m crossline. Characteristic shot spacing is 50 m.

Gholami et al. 2012). Regardless, acoustic isotropic modelling re-
mains a valuable tool in seismic imaging, both for purposes in
generating background velocity models for depth migration (Sir-
gue et al. 2010) as well as for geostructural interpretation (Prieux
et al. 2011). A multiparameter hierarchical 2-D FWI was followed
by Prieux et al. (2013a,b) on the Valhall field to recover in cascades
the compressive and shear wave speeds, the density and the attenua-
tion. Our workflow can be of special interest to accelerate each step,
in particular acoustic velocity inversion, constituting a hierarchical
multiparameter inversion.

5.1 Source–time function inversion

The source wavelet is an unknown parameter in the inversion and
must be reconstructed as a preliminary stage to our time-domain
FWI workflow. Furthermore, the ‘raw’ data we start with have actu-
ally been pre-processed, although the details of this pre-processing
are not available to us. Pre-processing effects are most notable by the
non-causal nature of the nearest offset traces (Fig. 9f), and a (coarse)
time sampling of 32 ms in each shot record. All data pre-processing
is absorbed into the inverted source wavelet.

We derive a source wavelet by applying least-squares deconvo-
lution (Pratt 1999; Virieux & Operto 2009) over a subset of the
hydrophone data. The source wavelet, computed as a function of
temporal frequency ω, is given as

s(ω) = g∗d t

g∗ gt′ , (10)

where data, d, and Green’s functions, g, are vectors whose entries
correspond to the ω frequency coefficient over a select number of
traces. The superscripts ‘t’ and ‘∗’ represent vector transpose and
complex conjugate, respectively. To limit the effect of the Earth’s
structure in the trace record, we consider only the nearest traces (in
the x–y plane) to each source. Prieux et al. (2011; their figs 11a and c)
studied the effects of including both limited and large offsets in the
source wavelet approximation, demonstrating that model inaccuracy
degrades the wavelet in the latter case. Our Green’s functions are
computed via numerical simulation of an approximate delta pulse on
the starting model. We process the data with Butterworth bandpass
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3-D encoded-source FWI on OBC data 1981

Figure 9. (a–c) Inverted source wavelet across 200 hydrophones of cable 27 (see Fig. 8) using the workflow in Table 2 applied to 3, 10 and 100 nearest
source–receiver offsets. (d) Averaged, normalized source wavelet across all hydrophones in (a)–(c). (e) Spectrum for wavelets in (d). (f) Raw data from
hydrophone number 375 (see Fig. 8) for a horizontal line of shots; unknown pre-processing operations have been applied. (g) Reprocessed data from (f), where
a bandpass Butterworth filter with cut-off frequencies [2.0, 4.0] Hz and a cosine taper have been applied. (h) Synthetics computed from the initial model and
source–time function from (d) derived by averaging wavelets inverted by the nearest (three traces) offsets; note that we observe numerical artefacts relating to
source implementation and boundary reflections. The same colour scale is used for (f)–(h).

filter with low and high cut-off frequencies of 2 and 4 Hz. Signal-
to-noise ratio is believed to be poor below 3.5 Hz and our numerical
method is not well-resolved above 4 Hz. After solving eq. (10) for
each frequency, a small cosine taper is applied to enforce source
causality. We take the average of all inverted source wavelets over
the given data subset to arrive at the final wavelet. A workflow
detailing this approach is given in Table 3.

In Fig. 9 we invert for the source wavelet over receiver gath-
ers, considering 200 hydrophones of cable 27 (see Fig. 8) using
the nearest 3, 10 and 100 shots to each hydrophone (Fig. 9d). The
wavelet is derived then by stacking the 200 individual wavelets in

each case. Our approach notably uses far fewer traces than the study
of Prieux et al. (2011), who considered offset ranges of 2–13 km
when inverting the source wavelet. When using the fewest number
of traces, artefacts are observed in the wavelets constructed from
hydrophones near the cable edges (in particular for hydrophones
0–10). As these artefacts disappear by increasing the number of
traces included in the wavelet reconstruction, we interpret their
presence as due to local, coherent noise (either real or numerical)
present in the inverted frequency bands. Conversely, including more
traces increases the likelihood of model structure being mapped
into source wavelet, as shallow-water refractions sampling the
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Table 3. Workflow for source–time function inversion.

I. For each hydrophone:

1. Compute Green’s functions g for nearest traces
2. Bandpass filter d with cut-off frequencies [2.0, 4.0] Hz
3. Compute Fourier transform of g and d.
4. Deconvolve each frequency, per eq. (11)
5. Compute inverse Fourier transform of resulting wavelet
6. Apply cosine taper

II. Average all inverted source–time functions

near-subsurface are included in the data set. Our numerical experi-
ments indicated this latter issue to be a greater overall concern: data
misfit was lowest when using the wavelet computed from the small-
est number of offsets, and reconstructed models had greater overall
clarity and resolution. Therefore we select the wavelet derived by
averaging Fig. 9(a) as our source–time function.

We simulate data with the selected source wavelet on hydrophone
375, comparing against data that is reprocessed with the same work-
flow as the source wavelet (Figs 9g and h). At nearest offsets we
observe a close match with synthetics, whereas for farther offsets
we observe cycle skipping in first arrivals (see also Figs 12b and
d). This is due to a general failure of the NMO-derived acoustic
isotropic starting model to accurately honour the kinematics of the
medium; in particular, for large-offset diving waves. For a discus-
sion and appraisal of varying starting model choices we refer to
Prieux et al. (2011). We note also numerical artefacts in our mod-
elling in Fig. 9(h): boundary reflections are observed for 0–5 km
offsets and 4–5 s time window, and ‘triangle’-shaped features at
near-zero offsets are likely due to source artefacts in the thin water
layer.

5.2 Encoded-source FWI of the Valhall field

Having constructed a suitable source wavelet, we now apply our
FWI workflow to the Valhall data set. We compare our results to the
previous studies of Sirgue et al. (2010) and Etienne et al. (2012),
where a network of high-velocity channels in the shallow subsur-
face are observed (their figs 3 and 9, respectively), and a gas-filled
fracture extending from a gas cloud at depth is observed (their figs 3
and 4, respectively). We consider partial-source assembly with en-
coded sources of 23 and 230 supershots (henceforth denoted ‘ss23’
and ‘ss230’), equating to per-iteration cost reduction of two and
one orders of magnitude, respectively. We examine reconstructed
models from iterations 6 and 16 for the partial-source assembling
strategies ss230 and ss23, respectively; misfit decrease was negligi-
ble for later iterations (Fig. 14). Therefore the overall cost of ss23
was approximately 3.75 times cheaper than the cost of ss230, and
approximately 6.25 times cheaper in total than a single iteration of
serial-source FWI. We invert for the first 4 s of data, as later arriv-
ing waveforms are dominated by Scholte waves at near offset and
cycle-skipping artefacts at long offsets; both of which cannot be
accurately accounted for in our acoustic isotropic model. A depth
threshold of 1050 m is used for gradient preconditioning, chosen
to enhance sensitivity of the model update near the gas cloud. The
model is updated according to the (preconditioned) steepest-descent
direction with constant step length 2.5 per cent.

In Fig. 10 we plot the starting model and FWI-derived mod-
els for each encoding scheme. Cross-sections in the x–y plane at
depths of 237 m (Figs 10a–d) and 1213 m (Figs 10e–h) are shown.
In the near-surface, the channel network imaged in Sirgue et al.
(2010) and Etienne et al. (2012) is clearly observed, although we

differ slightly in the depth coordinate from their models (175 m
and 150 m, respectively). Relative to their studies, our model up-
dates are more strongly restricted to the OBC array, evidenced by
the lack of illumination of the near-surface channel at position (x,
y) = (9.5 km, 9.5 km). Conventional FWI without source encoding
(Fig. 10d) slightly improves this illumination. At depth 1213 m we
observe the extension of the low-velocity zone (Fig. 10h, yellow
arrow), similarly reported by Sirgue et al. (2010) and Etienne et al.
(2012) at depths of 1050 m and 1260 m, respectively. Their higher
resolution models demonstrate greater perturbation than ours, and
interpret this feature as a gas-filled fracture. In Fig. 11 we plot model
cross-sections in x–z and y–z plane for models derived with each
encoding scheme. While both schemes appear to duplicate similar
features (e.g. layered interfaces), crosstalk noise is most notably ap-
parent with the ss23-derived model, as is expected. Little difference
is observed between model ss230 and serial-source, conventional
FWI.

In Figs 12 and 13 we plot the waveform residuals along a hori-
zontal line of recorded waveforms for a single source (Figs 12a and
c) and a supershot of 100 encoded sources (Figs 13a and c), corre-
sponding to initial and final models of Figs 10 and 11. In each case
we use the final model derived from ss23. It is apparent that, despite
the model improvements as shown in Figs 10 and 11, only a moder-
ate decrease in seismogram misfit is observed. For the single-source
case of Fig. 12, misfit is most visibly reduced for shallow reflec-
tions in the near-zero offset (time ∼1 s), and subsequent reflections
arriving between 2 and 3.5 s. Large-amplitude Scholte waves, in-
duced by the water–solid interface, are not modelled by our acoustic
modelling engine and therefore have no misfit reduction (Fig. 12b).
Farther-offset traces observe cycle-skipped first arrivals (Fig. 12d).

The same observations hold for the encoded source residuals in
Fig. 13, but are less obvious due to the complexity of the blended
waveforms. Fig. 13(b) displays a single supershot record, whose
encoding contains a nearby shot (compare to neighbouring records
Fig. 13a). Misfit is reduced moderately at for the first arriving wave-
forms at times 0.3–0.5 s, but larger waveforms near time 2.0 s, sim-
ilar to the expected arrival of a Scholte wave as in Fig. 12(b), are
not accounted for. A supershot record consisting of 100 encoded
sources from Fig. 13(d), whose nearest source is at comparably
farther offset, demonstrates less misfit reduction. However, cycle
skipping is less severe as with the single shot record in Fig. 12(d).
With 100 encoded sources selected randomly from a set of 2302,
we expect that first arrivals from at least one or more sources will
be within the cycle-skip regime.

Terminal misfit decrease for encoding schemes ss230 and ss23
was found to be 22 per cent and 29 per cent, respectively (Fig. 14).
Interestingly, greater misfit reduction is observed when using greater
levels of encoding, although the derived models appear to be of
poorer quality. Despite attempting a number of encoding schemes,
the misfit reduction over all data space remained in the vicinity of
20 per cent. Attempting iterations with additional depth thresholds,
deeper than the initial 1050 m, did not decrease misfit. Poorer model
reconstruction and data misfit decrease were observed when invert-
ing for the entire 8 s of data available. Two other strategies (not
shown) were considered that yielded only a slight improvement in
misfit decrease. In one case we progressively modelled larger time
windows (inverting for 1, 2, 4 and 8 s of data, sequentially). In an-
other case we considered batches of encoded sources, where each
assembly of 230 encoded supershots was distributed across 10 iter-
ations (rather than one). In both of the cases, however, the marginal
improvement in misfit reduction was offset by a substantial increase
in number of FWI iterations, thus removing the overall gain of
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3-D encoded-source FWI on OBC data 1983

Figure 10. Encoded-source FWI of the Valhall oilfield, with velocity model cross-sections at depths (a–d) 234 m, where a network of high-velocity channels
are observed, and (e–h) 1200 m, where low-velocity extension of a gas cloud is observed (yellow arrow). Both of these model features are reported in the
previous works of Sirgue et al. (2010) and Etienne et al. (2012). (a and e) Initial model; (b and f) 23 supershots per iteration (ss23), each containing 100
encoded sources; (c and g) 230 supershots per iteration (ss230), each containing 10 encoded sources; (d and h) 2302 sources per iteration with no encoding.
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Figure 11. Encoded-source FWI of the Valhall oilfield: x–z cross-sections (a–d) and y–z cross-sections (e–h). (a and e) Initial model; (b and f) 23 supershots
per iteration (ss23), each containing 100 encoded sources; (c and g) 230 supershots per iteration (ss230), each containing 10 encoded sources; (d and h) 2302
sources per iteration with no encoding. Similar layered interfaces are observed with each encoding scheme, but ss23 contains notably larger crosstalk noise, as
well as greater acquisition footprint.

source encoding. We therefore speculate that strategies chosen in
the non-linear optimization problem, and not encoding, are more
crucial to improving upon the current results.

6 C O N C LU S I O N S

We have demonstrated the utility of encoded-source FWI in large-
scale application to real data. We have presented an FWI workflow
that is optimized to iterate over encoded sources, efficiently pro-
ducing acoustic velocity model updates. Encoded-source FWI gen-

erates blended waveforms where conventional inversion and data-
processing strategies may not be readily applicable. Therefore, we
choose simple, robust strategies that are suitable for simultaneously
simulated sources. These include inverting low-frequency bands,
and preconditioning the gradient search direction via an absolute
threshold given as a function of depth. Whereas conventional FWI
tends to rely on scale separation in the data domain by distinguishing
differing wave arrivals as a function of time and offset, encoded-
source FWI with random source locations simplifies this (for better
or worse) by removing the concept of ‘offset’.
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Figure 12. Waveform residuals for the Valhall inversion computed from initial model (a) and final model (c), the latter of which was derived from partial-source
assembly strategy ss23. Inline traces for hydrophone 375 (see Fig. 8) are shown. The same colour scale is used. (b) Near-offset traces shown convergence in
early (<1.5 s) arrivals but acoustic FWI fails to fit the (elastic) Scholte wave (1.5–2.25 s). (d) Cycle-skipped at farther offsets. Traces in (b–d) correspond to
the derived models in Figs 10 and 11. All traces are bandpass filtered over [2.0, 4.0] Hz.

Although models derived from encoded-source FWI contain
crosstalk artefacts, the potential remains for their exploitation in a
seismic processing workflow. In particular, for fixed-spread acqui-
sitions where the modelling cost is independent of source location,
encoded sources offer the ability for fast evaluation of the misfit
functional and model sensitivities. The computational cost of iter-
ating the Valhall model with 23 encoded supershots, an approach
that clearly imaged subsurface channels, was only on the order of a
few hundreds of CPU hours. This relatively cheap cost, in addition
to the quite general methods of data- and model preconditioning
that we have applied, suggests that the presented workflow could be

applied in an automated fashion to raw data for immediate results,
either for purposes of tomography or quality control.

In a synthetic application, we have demonstrated the ability of
encoded-source FWI to finely reconstruct large-scale models in the
most extreme case of full-source assembly. Although we do not
believe such an optimistic result to be reasonable on real data,
the successful demonstration of Figs 3 and 4 does provide a few
important results. First, encoded-source FWI offers an extremely
cheap means to verify early-stage results of a general FWI work-
flow. Second, synthetic acoustic FWI on data with the same physical
modelling engine, that is, the case of the so-called ‘inversion crime’,
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Figure 13. Waveform residuals for the Valhall inversion computed from initial model (a) and final model (c), the latter of which was derived from partial-source
assembly strategy ss23. A supershot of 100 encoded sources is simulated, corresponding to a typical wavefield of the inversion. The same colour scale is used.
Selected traces for shot numbers 80 (b) and 200 (d) for each of the derived models in Figs 10 and 11 demonstrate varying behaviour for encoded-source
seismograms depending on offset of nearest source.

is quite robust with respect to crosstalk noise. Although this could
be fairly criticized as far too simplistic a scenario in which to draw
conclusions on real data (our attempts to invert the Valhall data
with a single encoded supershot failed to produce coherent veloc-
ity models), the experiment nevertheless yielded results that were
valuable for real data application, evidenced by the tomographic
images reconstructed by less ambitious encoding schemes (Figs 10
and 11).

There is a well-known trade-off in FWI with respect to noise in
low frequencies (and thus large spatial wavelengths) versus start-
ing model quality. Our synthetic studies (Fig. 6) demonstrate a
frequency-dependent response of encoded-source FWI concerning

this trade-off. Noise degrades the efficiency gain that can be ex-
ploited by encoded sources; this was demonstrated in the frequency-
domain study of Ben-Hadj-Ali et al. (2011) as need for a greater
number of inverted frequencies. In both synthetic and real-data ap-
plication, we observe an overall efficiency gain (judged by the num-
ber of encoded supershots per iteration multiplied by the number of
iterations for a given model resolution) favouring heavier levels of
source compression. For noise-free synthetics, full-source assembly
is the most efficient approach. Although full-source assembly failed
to produce an interpretable velocity model on the Valhall field data,
partial-source assembly with as few as 23 encoded supershots suc-
ceeded. Clearer resolution (in terms of less visible artefacts) was
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Figure 14. Decrease in data misfit versus iteration for encoding strategies.
One conventional iteration is approximately 10 times the cost as one ‘ss230’
iteration, and 100 times the cost as one ‘ss23’ iteration. While ‘ss23’ achieves
lower data misfit, the corresponding reconstructed models are more prone
to crosstalk noise and crossline aliasing (Figs 10 and 11).

shown with the less-compressed scheme of 230 encoded supershots,
but at the expense of greater overall cost.

Despite attempting a number of different encoding strategies on
the Valhall data, each in the range of one to two orders of magnitude
speedup per FWI iteration, reduction in data misfit remained in the
vicinity of 20–30 per cent. We believe that, with the workflow pro-
posed in this study, encoded sources offer an accurate and efficient
way to compute the model gradient. Further convergence could be
achieved by accurately accounting for anisotropic effects, as well as
with more sophisticated strategies to solve the underlying non-linear
optimization problem (e.g. utilizing an approximate Hessian). Our
approach remains to be demonstrated on high frequencies, however,
as we only inverted up to 4 Hz. Still, the results attained demonstrate
potential to greatly accelerate the early stages of acoustic velocity
inversion on fixed-spread data.
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