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Abstract. We present an application of the discontinu-
ous Galerkin (DG) method to regional wave propagation.
The method makes use of unstructured tetrahedral meshes,
combined with a time integration scheme solving the arbi-
trary high-order derivative (ADER) Riemann problem. The
ADER-DG method is high-order accurate in space and time,
beneficial for reliable simulations of high-frequency wave-
fields over long propagation distances. Due to the ease with
which tetrahedral grids can be adapted to complex geome-
tries, undulating topography of the Earth’s surface and inte-
rior interfaces can be readily implemented in the computa-
tional domain. The ADER-DG method is benchmarked for
the accurate radiation of elastic waves excited by an explo-
sive and a shear dislocation source. We compare real data
measurements with synthetics of the 2009 L’Aquila event
(central Italy). We take advantage of the geometrical flex-
ibility of the approach to generate a European model com-
posed of the 3-D EPcrust model, combined with the depth-
dependent ak135 velocity model in the upper-mantle. The
results confirm the applicability of the ADER-DG method
for regional scale earthquake simulations, which provides an
alternative to existing methodologies.

1 Introduction

Understanding the influence of 3-D Earth structure on re-
gional seismic wave propagation (continental scale) requires
numerical algorithms that accurately simulate ground mo-
tions towards high frequencies on today’s computing archi-
tectures. The schemes have to flexibly handle complicated
geological formations such as the structure of subduction and
rifting zones, the shape of mantle plumes, the topography of
elastic discontinuities, or the heterogeneities of continental

Correspondence to: S. Wenk (wenk@geophysik.uni-
muenchen.de)

crust. In this study, we present an application of the discon-
tinuous Galerkin (DG) method to regional scale earthquake
simulations up to periods of 20 s, offering considerable flex-
ibility to accurately take into account 3-D Earth models, par-
ticularly in the meshing part of the workflow.

The first regional to global scale simulations, based on
spherically symmetric Earth models, were obtained by the
summation of normal modes (Alterman et al., 1959). The
approach was extended, to account for effects of 3-D Earth
structures and localized heterogeneities using perturbation
theory (e.g., Woodhouse, 1983). Besides semi-analytical
algorithms, full numerical schemes evolved such as the
Finite-Difference (FD) method. FD approximates solutions
to the wave equation on a structured grid using low-order
(e.g., Virieux, 1984), and later also high-order (e.g., Bayliss
et al., 1986) numerical operators in 3-D, in order to improve
the accuracy and computational efficiency. Due to restric-
tions in the geometrical flexibility of standard FD methods
using structured grids with regular grid spacing, later also ap-
proaches using variable grids have been introduced (Pitarka,
1999; Ely et al., 2008; Kristek et al., 2010; Kozdon et al.,
2012).

As an alternative, Finite-Element (FE) methods have been
applied in seismology (e.g., Bao et al., 1998). The techniques
make use of orthogonal basis functions to approximate the
solution in finite subspaces (elements) of the modeling do-
main. This concept enables the use of various element types
(e.g. tetrahedra, hexahedra, pyramids, prisms and combina-
tions of them) to flexibly discretize the computational do-
main.

A particular FE scheme is the Spectral-Element (SE)
method, which is state-of-the-art in regional and global earth-
quake simulations at the moment (e.g., Priolo et al., 1994;
Komatitsch, 1997; Seriani, 1998; Chaljub, 2000; Capdeville
et al., 2003; Nissen-Meyer et al., 2008; Fichtner et al., 2009;
Cupillard et al., 2012). The SE method supports computa-
tional grids of deformable hexahedral elements to simulate



2 S. Wenk et al.: ADER-DG Regional Wave Propagation

fully 3-D wavefields with high-order spatial accuracy and ex-
plicit time extrapolation schemes.

Motivated by the difficulties in mesh generation for com-
plex geometries using structured or unstructured deformable
hexahedral grids, the discontinuous Galerkin method was in-
troduced to extend the modeling capabilities to unstructured
tetrahedral grids (e.g., Käser and Dumbser, 2006; Dumbser
and Käser, 2006; Käser et al., 2007; de la Puente et al., 2007;
Dumbser et al., 2007, and Etienne et al., 2010). To honor
complex 3-D shapes, tetrahedra offer the largest flexibility,
because the elements can easily be aligned to small scale
structures of the Earth, and the size of the elements can lo-
cally be adapted (h-adaptivity). Furthermore, the adaptation
of the polynomial degree inside each element (p-adaptivity)
enables the computational load to be focused on areas of
interest. In addition to the spatial flexibility, the accumu-
lation of errors, due to numerical dispersion, needs to be
minimized. Therefore, an arbitrarily high-order derivative
(ADER) scheme (Toro, 1999) was combined with the DG
method for elastodynamic problems to achieve the same ac-
curacy for the temporal as for the spatial approximation of
the wavefield. The ADER-DG approach supports local time
stepping schemes to balance the varying computational costs
of elements with different size and polynomial order (Dumb-
ser et al., 2007).

In this paper, we show that the ADER-DG method can
serve as an alternative algorithm to established numerical
methods for regional scale earthquake simulations. In partic-
ular, we investigate the applicability of the approach in terms
of mesh generation and simulation accuracy.

The paper is structured as follows. In Sect. 2 we describe
the proposed ADER-DG approach for the numerical simula-
tion of wave propagation in 3-D media. In addition to the nu-
merical properties of the ADER-DG implementation, we ex-
plain in detail the mesh generation process for geometrically
complex 3-D media. In Sect. 3 we verify the radiation of
elastic waves excited by an explosive and a shear dislocation
source. Synthetics of the SE and our ADER-DG approach
calculated on a 1-D isotropic PREM model (Dziewonski and
Anderson, 1981) are compared. Finally, in Sect. 4 we show
numerical results obtained on a composite model of Europe,
where the 3-D crustal model EPcrust (Molinari and Morelli,
2011) is imposed on top of the 1-D model reference Earth
model ak135 (Kennett et al., 1995), and compare them to ob-
servations.

2 Wave propagation in 3-D media

2.1 The ADER-DG approach

To give an introduction to the numerical scheme of the
ADER-DG method, we will qualitatively describe the fea-
tures and usability of the approach with a special focus on
the model discretization. For details on the theoretical frame-

work and the implementation of the method, the reader is
referred to the work of Käser and Dumbser (2006); Dumb-
ser and Käser (2006); Käser et al. (2007); de la Puente et al.
(2007), and Dumbser et al. (2007).

Like every Finite-Element method, the DG method solves
the weak form of a partial differential equation, here the elas-
tic wave equation. Therefore, the wave equation is multiplied
by a test function, and integrated over a finite element sub-
space. In our implementation of the DG scheme, the com-
plete 3-D computational domain can be divided into a mesh
of unstructured tetrahedra. The unknown solution is approx-
imated inside each element by a linear combination of space
dependent polynomial basis functions of arbitrary degree N
and its purely time dependent coefficients, the so-called de-
grees of freedom (DOF), which advance in time. As most
of the FE type methods used in computational seismology
(e.g., the classical FE and SE method) also DG is a Galerkin
scheme, because test functions are chosen from the same ba-
sis function space. We use an orthogonal, modal basis sug-
gested by Dubiner (1991).

In contrast to classical FE or SE schemes, the polynomial
representation of the physical solution is not forced to be
continuous across element boundaries in DG. At this point,
the DG approach adopts the well-known concept of fluxes to
exchange information between neighboring elements, as de-
fined in the Finite-Volume (FV) approach. The flux terms are
computed via the upwinding exact Riemann solver, known as
Godunov flux (Toro, 1999). Note, that differently from high-
order FV schemes only adjacent elements communicate, and
a reconstruction process is not required. Furthermore, the
amount of data necessary for the flux computation reduces to
a rather small number of DOF, so that in the case of a parallel
run only minor MPI communication occurs, and the code is
highly scalable (Käser et al., 2010).

The method can be implemented efficiently by transform-
ing each individual shaped and located tetrahedron from the
physical space into a uniform reference element, since , in
the discrete form of the scheme, the occurring mass, stiffness
and flux matrices can be precomputed.

The elastic material properties vary in the subsurface, de-
pending on the physical model applied. In our approach,
elastic parameters are averaged over each vertex of an ele-
ment and only a single value is assigned to the entire element.
The piece-wise constant approximation simplifies the imple-
mentation, but it is not an intrinsic limitation of the scheme,
as shown by Castro et al. (2010).

The quadrature free DG discretization is advanced in time
by the arbitrary high-order derivatives (ADER) approach
of Toro (1999). A Cauchy-Kovalewski procedure is applied
to recursively replace the temporal derivatives in the Taylor
expansion by spatial derivatives. In this way, we obtain au-
tomatically the same order of accuracy for the time integra-
tion as well as for the spatial approximation, while allocating
the same memory as a first-order explicit Euler time integra-
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tion. The code has been proven to achieve spectral conver-
gence (Dumbser and Käser, 2006).

2.2 Local adaptivity and load balancing

In our implementation of the ADER-DG method, unstruc-
tured tetrahedral grids can easily be refined to local structures
(h-adaptivity). This increases the spatial sampling of geo-
metrical complex structures or the wavefield itself. Within
the computational domain, the size of the elements can vary
tremendously, without any known restrictions (e.g., up to an
element size ratio of 1000 in Dumbser et al. (2007)), de-
pending on the problem and the refining strategy. Corol-
lary the time increment according to the Courant-Friedrichs-
Lewy (CFL) condition can change dramatically between the
elements. In order to reduce the computational effort and
balance the different time step lengths, the polynomial de-
gree can be adapted in each tetrahedral element individually
(p-adaptivity). Furthermore, computational efficiency can be
enhanced using an optimal time step length for each individ-
ual element (local time stepping). This enables the use of
elements with completely different size without affecting the
high-order accuracy of the method (Dumbser et al., 2007).

On the other hand, asynchronous element updates due to
local time stepping combined with a p-adaptive mesh can
cause irregular load balancing on parallel machines. This is-
sue can be handled by zoning equally sized elements of simi-
lar material properties and dividing these individual domains
using the graph-partitioning technique of METIS (Karypis
and Kumar, 1998), according to the total number of com-
putational tasks. This aims at an equal distribution of small
and large elements over all processing units to balance the
work load (Käser et al., 2010).

Since the zones are assigned randomly to each task, ex-
changing updated field values can increase MPI communi-
cation. However, compared to the numerous calculations in-
side each domain and the small MPI communication effort
for DG, this overhead is small (Dumbser and Käser, 2006).

2.3 Mesh generation in geometrically complex 3-D me-
dia

Geoscientific models include geometrically complex 3-D
structures such as rough surface topography, as well as com-
plicated undulating interfaces at subsurface velocity con-
trasts, that governs the propagation of seismic waves.

The generation of a computational mesh, incorporating
such features, can be the most time-consuming part of
the whole forward modeling process. Therefore, we want
to review different meshing concepts, with respect to the
model complexity, using structured and unstructured mesh-
ing schemes. Structured meshing denotes the subdivision of
the computational domain in a regular-spaced mesh. Unlike
structured meshes, unstructured meshes are composed by an

irregular pattern of elements, which are not arranged in a log-
ical sequence.

Furthermore, we want to define the explicit and implicit
meshing paradigms, which can be applied in structured as
well as unstructured meshing schemes. Explicit meshing de-
notes the concept to adjust element boundaries exactly along
known material interfaces of the physical model. In contrast,
implicit meshing schemes do not respect internal material
discontinuities in the mesh.

The meshing approach with respect to the approximation
of the material values, can significantly influence runtime
and simulation accuracy in consideration of the numerical
method. Recent studies investigated whether internal mate-
rial discontinuities of complex 3-D structural models should
be geometrically respected by the mesh or not (Komatitsch
et al., 2004; Lee et al., 2008; Casarotti et al., 2008a; Stupazz-
ini et al., 2009; Pelties et al., 2010; Cupillard et al., 2012).
In general, the explicit meshing of complex boundaries leads
to the most accurate results. However, using an implicit rep-
resentation, comparable results can be obtained at a lower
meshing effort, but at much higher computational costs.

2.3.1 Structured meshing

An approach of discretizing a geological subsurface model
is using structured meshes that are computationally very ef-
ficient to implement. The structured sampling of material
properties at FD gridpoints, FE integration nodes or com-
plete elements usually allows only for an implicit discretiza-
tion strategy at curved boundaries, which results in a stair-
case approximation of the Earth’s surface or complex inter-
nal interfaces. This leads to first-order errors, proportional to
the grid spacing or time step, that are insensitive to the ap-
proximation order of the numerical scheme (Gustafsson and
Wahlund, 2004). To achieve high accuracy of the simulation,
the regular grid spacing is forced to be very small, leading
to an increasing computational effort especially for strong
material heterogeneities (Bohlen and Saenger, 2006; Pelties
et al., 2010).

There are more sophisticated approaches to implicitly in-
corporate material interfaces using structured grids. For ex-
ample, Kristek and Moczo (2003) are using values of effec-
tive grid material parameters to account for discontinuities.

For regional wave propagation problems in 3-D, numeri-
cal algorithms evolved solving the wave equation efficiently
in spherical coordinates on smaller sections of the Earth us-
ing curved hexahedral grids (Igel, 1999; Igel et al., 2002;
Fichtner and Igel, 2008; Fichtner, 2009). The spherical dis-
cretization leads to singularities in the solution of the wave
equation, which inhibits an application to fully global sim-
ulations. Therefore, the Cubed-Sphere approach (Ronchi,
1996) was introduced, which became very successful, in par-
ticular, in combination with the SE method (Komatitsch and
Tromp, 2002).
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Hereby, the projection scheme is based on mapping a cube,
divided by an equidistant quadrilateral grid, to an angular-
distant quadrilateral grid at the surface of a sphere. In ra-
dial direction interpolation produces hexahedra with constant
size, while the lateral size decreases towards the center of the
sphere due to the spherical geometry. This results in an un-
necessary oversampling of the wavefield since, generally, ve-
locity values increase with depth. To avoid this problem, the
mesh is re-gridded to double the mesh spacing at different
radial depths. Furthermore, grid doubling techniques have
the potential to improve the efficiency as the total number of
elements can be reduced. However, grid doubling is difficult
to implement and can produce undesired numerical artifacts
like instabilities or spurious reflections at the grid interfaces.

The Cubed-Sphere approach and spherical discretizations
overcome the limitation to implicit meshing of spherical in-
terfaces, and can respect strong material discontinuities ex-
plicitly by element boundaries in a structured mesh. How-
ever, the most simple implicit, structured meshing approach
we described at the beginning, is still widely used.

2.3.2 Unstructured meshing

In contrast to structured meshes, the elements in an unstruc-
tured mesh have to be defined by a list of vertex coordi-
nates and its connectivity to the elements, which increases
the algorithmic complexity of corresponding numerical ap-
proaches. Furthermore, deriving a scheme that is as ac-
curate and efficient as a method implemented on structured
grids, is challenging. But on the other hand, a strong flexi-
bility in mesh generation of complicated 3-D structures can
be gained. Therefore, to utilize the flexibility of the approach
and to increase numerical accuracy, unstructured meshing is
mainly performed explicitly.

In general, unstructured grids for complex structures can-
not be obtained automatically and a meshing tool is required.
An external meshing software such as Cubit (Blacker et al.,
1994) can be employed to generate unstructured hexahedral
grids for example for regional seismological applications,
see Casarotti et al. (2008b); Stupazzini et al. (2009); Peter
et al. (2011); Cupillard et al. (2012).

The generation of high-quality unstructured hexahedral
meshes, as applied in the examples given above, often re-
quires a strong user interaction, which is time consuming and
cumbersome. FE and FV methods, for example, can make
use of fully unstructured grids with various element types,
but can usually be implemented efficiently only in low-order
formulations that are very dispersive. This motivated the
development of numerical methods that can handle unstruc-
tured tetrahedral meshing approaches such as the high-order
accurate DG method.

Especially for arbitrary shaped 3-D models including, for
example, interface and surface topography, tetrahedral grids
are much more flexible to adapt. This tremendously reduce
the meshing effort, potentially at the expense of longer simu-

lation time. This is due to the overhead generated by the book
keeping of the element nodes and its connectivity. On the
other hand, the extensive use of mesh coarsening capabilities
using DG on unstructured tetrahedral meshes, as it is shown
for an exploration scale study in Käser et al. (2010), also will
save numerical costs. If a net reduction of the computational
time is achieved or not, highly depends on the given problem
setup.

2.4 Workflow of tetrahedral mesh generation using
Cubit

The general workflow to generate computational meshes can
be divided into the geometry setup and the meshing process
itself. For both parts, we are using the commercial software
Cubit. This meshing tool contains numerical libraries to rep-
resent the underlying geometry of a computational domain
using Non-uniform rational B-splines (NURBS) that can ac-
curately describe arbitrary geometrical shapes. Furthermore,
it provides a flexible tetrahedral meshing algorithm to gener-
ate high-quality meshes.

In the following subsections, the geometry and mesh gen-
eration workflow using Cubit is demonstrated for an Earth
model of Europe (Sect. 4), composed of the 3-D EPcrust
model (Molinari and Morelli, 2011) imposed on the depth
dependent ak135 velocity model (Kennett et al., 1995).

2.4.1 Geometry generation – European model

Implicit meshing of strong material contrasts requires a high
resolution in our ADER-DG implementation, because a
constant material approximation is used. Consequently, the
computational costs could be unnecessary expensive, al-
though the dispersion properties would allow for larger ele-
ments. In order to reduce the runtime, improving the accu-
racy of model approximation, and utilizing the flexibility of
tetrahedral meshing, we respect interfaces such as the Moho
or upper-mantle discontinuities in the European model.

For 3-D models, these interfaces often are given by struc-
tured or unstructured point clouds, which have to be com-
posed to parametric surfaces. For example, the 3-D EPcrust
model is parametrized by angular-distant points given on
a structured grid of (0.5◦×0.5◦) and variable depth. It is
provided in a TomoJSON format, proposed by the NERIES
project (Network of Research Infrastructures for European
Seismology). The file contains the material information
and locations of the 3 D interfaces. The upper-mantle dis-
continuities of the ak135 model are represented in the model
as smooth spherical shells. The surfaces are reconstructed in
Cubit using the radius of the respective discontinuity, and the
same lateral sampling points of the crustal interfaces.

The geometrical representation of the European model is
shown in the left part of Fig. 5. The pointset describing the
topography and each individual interface in the model can be
imported into Cubit from an ASCII file, including a list of
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vertex locations in Cartesian coordinates. To reconstruct the
surface a set of parallel spline curves along a row or column
of a pointset has to be created using the vertices as a spatial
support. From the generated lineset, an accurate represen-
tation of the surfaces can be reconstructed within Cubit. For
large datasets these steps can be automated using the Python-
interface of Cubit.

NURBS surfaces not necessarily coincide with their local
control points. However, in case of the reconstruction of the
3-D Moho discontinuity, the distance in normal direction of
the parametric surface, to points given by the EPcrust model,
is less than 0.01% relative to their absolute location. Further-
more, the spacing of the pointsets is smaller than the element
size, whereby mesh spacing determines the accuracy of the
surface reconstruction.

For each layer of the model, corners of upper and lower
surfaces are connected by line segments to generate the
boundary faces of the domain. Therefore, interfaces and
boundaries are connected at common edges and a closed vol-
ume can be obtained.

As part of the workflow, the geometry generation is sum-
marized by the first four boxes in the flow-chart Fig. 1. The
frames highlighted in gray illustrate the surface reconstruc-
tion, which was performed for each model interface sepa-
rately.

As already mentioned the pointsets representing subsur-
face structures of the Earth can be arbitrarily distributed.
Therefore, it is necessary to use robust surface reconstruc-
tion algorithms. Computer-Aided-Design (CAD) tools fo-
cused on geometry generation may be an alternative to gen-
erate surfaces directly from pointsets, but still, in most cases
these are commercial packages.

2.4.2 Tetrahedral mesh generation – European model

Mesh generation and in particular the size of elements in-
side different areas of the computational domain depend on
three main factors: (1) the wavefield approximation, (2) the
approximation of the material model, and (3) on the approx-
imation of the geometrical model.

In Cubit the tetrahedral mesh generator GHS3D (George
et al., 1990) is used to fill arbitrary 3-d volumes with tetrahe-
dral elements. But, surfaces first have to be triangulated, for
example, by a Delaunay triangulation.

Cubit also provides sizing functions to control the element
size and its growth rate in a volume during meshing, where
the element size is defined by its edge length. This allows
for a local mesh refinement or coarsening, considering a well
balanced aspect ratio (AR = rc/3ri, with rc circumsphere
radius and ri insphere radius) of the tetrahedral elements. In
addition, quality measures can provide information on the
shape of the elements. Statistics on the mesh elements is
necessary, because element distortions can lead to very small
time steps increasing the computational costs or even lead to
instabilities interrupting the numerical simulation.

The right part of Fig. 5 shows the result of the mesh gen-
eration for the European model. Meshing tests of different
constant element sizes have shown a strong dependency of
the mesh quality on the chosen edge length of the elements,
even if little changes to the element size were applied. This
was particularly apparent for crustal meshes, since the ratio
of the element edge length and the layer thickness is small. In
case, the aspect ratio of elements has been large (rc� 3 ·ri),
re-meshing with a different element size or manual changes

of the mesh nodeset improved mesh quality.
For a numerical simulation, boundary conditions have to

be assigned to the corresponding element faces. In our im-
plementation of the DG method, absorbing boundary condi-
tions are applied (Käser and Dumbser, 2006). Together with
a list of the connectivity between vertices and elements, the
list of boundary elements is output and converted into a mesh
file used by our ADER-DG solver SeisSol. The mesh gener-
ation is summarized by the last three boxes in the flow-chart
Fig. 1.

We emphasize that despite the mentioned difficulties, the
generation of a high-quality tetrahedral mesh took one day
for the given example (see statistics of mesh generation in Ta-
ble 5), which clearly indicates the flexibility of unstructured
tetrahedral meshing for complex 3-D models. Furthermore,
a strategy to provide a mesh generation workflow using non-
commercial software, has further to be elaborated.

3 Benchmarks

To verify the accuracy of our ADER-DG solver SeisSol on
a regional scale, synthetic seismograms are compared to so-
lutions of the well established SE method implementation
SpecFEM3D-Globe. For regional to global scale simula-
tions SpecFEM was successfully benchmarked against quasi-
analytical normal mode solutions (Komatitsch and Tromp,
2002).

In the first experiment, we investigate elastic wave prop-
agation excited by an explosive source. Afterwards, the ra-
diation of seismic waves is studied for a shear dislocation
source.

In SeisSol as well as in SpecFEM, the source can be lo-
cated at an arbitrary position inside the element, and does
not necessarily have to coincide with a mesh point or Gaus-
sian integration node. But, since different polynomial basis
functions are used, the discrete representation of the source
term is different. In SeisSol, the basis functions are evalu-
ated directly at the source position, whereas in SpecFEM the
point source gets spread over the entire source element. If the
source point coincides with an element boundary or vertex,
only one element is allowed to contain the source.

For the simulations, in both schemes, a spatial approxi-
mation order of O = 5 is chosen. Whereas the ADER ap-
proach provides the same order of spatial and temporal ac-
curacy, the SE method uses a time integration scheme of
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second order accuracy. Ground displacements calculated by
SpecFEM are differentiated in time to compare them to the
velocity output of SeisSol. With respect to the results of the
SE method, a seismogram difference can be quantified by
the time-frequency misfit analysis introduced by Kristekova
et al. (2006). Here, the signals are decomposed in the time-
frequency plane to characterize the difference by separation
of phase and envelope misfits.

3.1 Explosive source

3.1.1 Setup

In this test, we analyze the numerical radiation of seismic
waves excited by an explosive source using SeisSol. The
point dislocation is represented by a moment tensor where
the only non-zero entries areMxx =Myy =Mzz = 1018Nm.
The origin of the coordinate system is located in the center of
the Earth at (x0,y0,z0) = (0 km, 0 km, 0 km). The source is
located at (xs,ys,zs) = (0 km, 0 km, 6361 km), which cor-
responds to a depth of 10 km beneath the North Pole. The
source time function (STF) is given by a Ricker wavelet with
a dominant period of T = 20 s, which we want to accurately
recover in our simulations. Note that the signal contains a
considerable amount of energy within the range of approx-
imately half the dominant period. Since, these low periods
can be distorted by the simulation, the synthetics are lowpass
filtered.

The physical domain of the SeisSol simulation is a cuboid
of Ω = [−1000 km, 1000 km] × [−500 km, 3500 km] ×
[2400 km, 6400 km] cut by spherical interfaces at depths ac-
cording to the elastodynamic discontinuities of PREM (see,
Fig. 5). In fact, we consider the complete 1-D isotropic
PREM model with an uppermost fluid layer replaced by
crustal material. The spherical sections Ωi are meshed sep-
arately. Here, the flexibility of the unstructured mesh is ex-
ploited to map material gradients within Ωi to corresponding
changes in the element size. This keeps a constant number of
3 tetrahedral elements per shortest wavelength in each sub-
domain, to model a dominant wave period of T = 20 s. We
applied a severe spatial discretization of the mesh, to ensure
a very high accuracy of the simulation.

SpecFEM provides a mesh for the whole Earth adapted
to the PREM model. The number of spectral elements at
the Earth’s surface, along one side of a Cubed-Sphere chunk
(1/4 of Earths perimeter), is set to 384. Due to the spherical
geometry the mesh is doubled in size three times towards
the Earth’s core. According to benchmark results of Ko-
matitsch and Tromp (2002) the setup allows for the simu-
lation of Tmin = 12 s as a shortest wave period.

At five stations, which are located at latitudes from 89◦N
to 81◦N and longitude 0◦W, seismograms of 800 s are out-
put. The propagation distance in terms of the number of
wavelengths between source and receivers #λ= 16. Data of

SeisSol and SpecFEM are filtered for long period signals at a
cut-off period of 20 s using an order three Butterworth-filter.

3.1.2 Results

Figure 2 shows synthetics of the radial (vr) and vertical ve-
locity component (vv) as a function of time. For each station,
the traces are normalized with respect to the vv component,
which is excited most strongly by the explosive source.

The signals of body and surface waves simulated by
SeisSol and SpecFEM match almost perfectly at all sta-
tions. This visual impression is confirmed by low values of
phase and envelope misfits. Envelope misfits vary around
0.9− 1.5 % while phase misfits do not exceed the level of
1 %. The lower phase misfits indicate a lower sensitivity of
SeisSol to numerical dispersion effects but stronger numeri-
cal dissipation, which was already determined by Käser et al.
(2008) who compared the algorithm to analytical solutions.
Note, the synthetics of SeisSol and SpecFEM are both be
prone to phase and amplitude misfits within their numerical
accuracy.

In case of an explosive source excitation, transverse mo-
tion (not shown) should be recorded only at the numerical
noise level, which holds for the SE method simulation. How-
ever, in the vt component of the SeisSol output clear wave-
form signals emerge, which gain up to 5 % of the peak am-
plitude at the vv component. This is expected to be caused
by the application of unstructured grids and will be discussed
more in detail in Sect. 3.3.

3.2 Shear dislocation source

3.2.1 Setup

The main purpose of this simulation is to verify accurate nu-
merical wave radiation in SeisSol using a shear dislocation
source, again applied to the 1-D isotropic PREM model. We
chose a magnitude 6.0 event, which occurred on the 20th of
August 2009 (06:35 GMT) located in the Norwegian sea at
latitude 72.22◦N and longitude 0.84◦E at a depth of 12 km.
The six independent components of the centroid moment ten-
sor (CMT) solution are given in a spherical reference system
provided by the CMT catalog of the Lamont-Doherty Earth
Observatory, Columbia University, see Table 2.

For the SeisSol simulation, we adapted the size of the
block model of Sec. 3.1 around the source region to a
spherical domain of Ωsurf = [67◦ ,77◦ ]× [−5◦ ,5◦ ], with
a depth range of 500 km. Except for the source charac-
teristics, SpecFEM results correspond to the same setup as
in the previous example. The propagation distance in terms
of the number of wavelengths between source and receivers
#λ= 8. At four stations, which are located at latitudes from
78◦N to 73◦N and longitude 0◦W synthetic seismograms of
350 s length are recorded. The signals are processed using
the same STF and low-pass filter as specified in Sec. 3.1.
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3.2.2 Results

Figure 3 illustrates the velocity components plotted as a func-
tion of time at stations northward of the source. Here, ampli-
tude values are normalized to the strongest transverse veloc-
ity component vt. As expected , the signals of SeisSol and
SpecFEM are almost identical. Except for near offset sta-
tions the envelope and phase misfits have largest values of
1%, where in general, as for the first experiment, the enve-
lope misfit level is higher than the phase misfit. The large
envelope misfit value of 2.9 % at station X73N.0, which is
closest to the source, could be due to a different excitation
characteristic of tetrahedral compared to hexahedral element.

3.3 Discussion

Accurate simulations of elastic wave propagation using the
ADER-DG approach could be verified applying different
source mechanisms on regional sections of the 1-D isotropic
PREM model. The overall match of waveforms simulated by
SeisSol compared with SpecFEM results are excellent.

However, at far offset stations a remaining, very low en-
velope and phase misfit of around 1 % is observed. The
misfit values represent the expected accuracy of the simula-
tions. However, the different sampling of the material values
of SeisSol and SpecFEM has an influence on the numerical
accuracy, and could explain small differences in the results.
As already mentioned, in SeisSol, a constant value for each
material parameter is averaged over all vertices in one single
tetrahedral element, whereas in SpecFEM material values are
evaluated at each GLL point within a hexahedron leading to
a higher (subcell) sampling of the PREM background model.

Castro et al. (2010) demonstrated that an element-wise
material sampling using constant parameters is not an intrin-
sic restriction of the DG approach. In case of the PREM
model, the relatively low material gradient (max. 1.5 % ve-
locity variation in one element) is already accurately sam-
pled, if the spatial discretization is adapted to the smallest
wavelength. The smallest wavelength has to be resolved by
the simulation in consideration of the propagation distance of
the signal. That means, the sampling of the material distribu-
tion does not require a smaller mesh spacing even a constant
material approximation is used.

At near offset stations, larger envelope misfits occurred,
which are thought to be caused by the radiation of the source
pulse within an asymmetric tetrahedral element. This is con-
nected to the radiation of SH-energy obtained for an explo-
sive source in the SeisSol simulations, which is not allowed in
theory. Käser and Igel (2001) claimed that, for an explosive
source excited in an isotropic elastic medium, the application
of numerical operators on unstructured meshes can lead to S-
wave artifacts at the transverse velocity component vt. Con-
vergence tests we carried out in an isotropic elastic medium
have shown a decreasing vt signal amplitude with decreasing

mesh spacing, i.e. the effect is purely numerical and can be
diminished by refining the mesh around the source.

The performance of the numerical implementations was
estimated by a theoretical calculation of de la Puente et al.
(2008). The analysis is reduced to the number of matrix op-
erations O of SeisSol and SpecFEM, which led to an estima-
tion ofODG≈ 2.8·OSE at a polynomial degree ofN = 3. As
mentioned in the thesis, one has to be aware that the perfor-
mance of a software additionally depends for example on the
programming, the size of the time step, number of elements,
number of field variables or the cost of the time integration.
Since the simulations of this study provide a different level of
accuracy on different meshes and physical domains a quanti-
tative comparison is not possible, in fair terms.

To quantitatively analyze the efficiency of numerical
codes, a conceptual basis has to be defined depending on
an accurate definition of the problem to be solved and the
criterion of comparison. For example, errors due to the or-
der of spatial and temporal discretization in the numerical al-
gorithm can be independently dominating depending on the
modeling parameters such as the applied Earth model or the
wave propagation distance. These tradeoffs must be explored
separately and will be addressed in a future study to evaluate
the ADER-DG and SE code efficiency.

4 Application of the ADER-DG method to real data:
The 2009 L’Aquila
earthquake

In the previous tests, it could be demonstrated that SeisSol
is able to accurately simulate elastic wave propagation on
layered 1-D Earth models like PREM (viscoelastic effects
are neglected). In this section, we qualitatively compare
SeisSol synthetics with real data of the magnitude MW = 6.3
L’Aquila event (central Italy) to examine the applicability of
the ADER-DG method on modeling real earthquake scenar-
ios using 3-D Earth models. Again, attenuation of seismic
signals is neglected.

The earthquake source area evolved by subduction of the
Adria micro-plate, by continental collision of Eurasia and
Africa and by the opening of the Tyrrhenian back-arc basin.
Therefore, the region of the central Apennines is tectonically
very complex, and thus has one of the highest seismic hazard
in Italy (Chiarabba et al., 2009).

On the 6th of April 2009 (01:32 GMT) the main shock of
a seismic sequence struck the Abruzzi region due to normal
faulting along a NW-SE striking fault system at a depth of
about 12 km. The earthquake devastated the city of L’Aquila
and surrounding villages, leading to 308 deaths, about 1500
injured and an economic loss of 15 Billion Euro.
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4.1 Model setup

To consider a realistic representation of the Earths crust, we
introduce lateral variations of the elastic material values us-
ing the recent 3-D model EPcrust of Molinari and Morelli
(2011). This model is imposed on top of the 1-D reference
Earth model ak135 of Kennett et al. (1995) to form a com-
posite model of Europe for the ADER-DG simulations.

The EPcrust model was deduced from literature informa-
tion of different global and local models using active-source
seismic profiles, receiver function studies and digital maps
(e.g., Bassin et al. (2000); Tesauro et al. (2008)). It is divided
into 3 layers (sediments, upper and lower crust) of variable
thickness, which cover the whole European Plate on a geo-
graphical grid of 0.5◦×0.5◦. Surface topography is incorpo-
rated by the ETOPO1 model of Amante and Eakins (2008).
The geologic formations are parametrized on curved layer
interfaces by the isotropic P-, S-wave velocity and density.
The P-wave velocity varies between 1.5< vP < 7.2 km/s,
while, due to scaling relations of Brocher (2005), the S-
wave velocity and density range by 0.4<vS < 4.1 km/s and
0.9<ρ< 3.0 g/cm3, respectively.

The 1-D reference model ak135 (Kennett et al., 1995) was
constructed from a set of empirical traveltime curves of re-
located earthquake events. It provides good fits to a vari-
ety of seismic phases, but does not respect the effect of lat-
eral heterogeneities inside the Earth. In our European model,
ak135 supplies the upper-mantle (35−660 km) material val-
ues for P-wave velocity 8.0< vP < 10.2 km/s, S-wave ve-
locity 4.5<vS < 5.6 km/s and density 3.3<ρ< 4.1 g/cm3.

4.2 Geometrical representation and mesh generation

The physical representation used for the ADER-DG simu-
lation is spherically bounded by 20◦N−60◦N latitude and
10◦W−30◦E longitude, shown in the left sketch of Fig. 5.
In this domain, the topography of the Earth surface and the
Mohorovic̆ić discontinuity (Moho) are represented by 3-D
splines. They form the top and bottom of the crustal layer
with a thickness of 6.3−52.1 km, while interior interfaces of
the upper and lower crust are not respected. The upper man-
tle region is composed of three layers bounded by smooth
spherical interfaces according to the elastic discontinuities in
ak135 at 210,410,660 km depth.

To generate a mesh inside the volume, an appropriate mesh
size has to be defined. The specification depends on ge-
ometrical restrictions of the physical domain, the prospec-
tive approximation accuracy of the material model and the
spatial sampling of the wavefield. According to an average
minimum crustal velocity (PREM model) of vS = 3200m/s
the number of propagated wavelengths is assumed to be
#λ≈ 20. Due to Käser et al. (2008), we expect high sim-
ulation accuracies over regional propagation distances at a
spatial sampling of 2 tetrahedral elements per smallest wave-
length, if an O= 5 scheme is applied.

As already mentioned, in SeisSol, the material values of
tetrahedral elements are averaged over all vertex values.
Therefore, using an average element edge length of 18 km,
for the crustal mesh generation, the interpolation of material
values smooths the underlying crustal model, which leads to
a lowest surface wave velocity of 1.1 km s−1. Assuming a
seismic source signal at a dominant period of 33 s, the small-
est wavelength of 36 km can be sampled correctly. The re-
sulting mesh incorporates high-quality tetrahedral elements
as illustrated in the enlarged sketches of Fig. 5.

The significant change in the velocity model cannot be
avoided, unless the sedimentary layer is respected explicitly
in the mesh, or an inhomogeneous material distribution in-
side elements is applied in case of implicit meshing. How-
ever, this would lead to such a high number of additional
elements that the simulation would not be feasible anymore
on available HPC resources.

In the mantle, the mesh size is adapted according to the 1-
D velocity distribution of ak135 to ensure a spatial sampling
of 2 elements per shortest wavelength. For the whole mesh,
this results in a total number of 3.7 million elements lead-
ing to 1164 million degrees of freedom for an O5 ADER-
DG simulation. On an IBM system using 50 Intel Xeon
Westmere-EX processors (10 cores, 2.4 GHz) a runtime of
24 h was necessary to output seismograms of 800 s.

4.3 Data processing

For the L’Aquila earthquake, broadband data of a high signal-
to-noise ratio are provided by several seismological net-
works such as IRIS, GEOFON or GEOSCOPE. From these
networks, we chose 9 stations (BFO, ESK, KIEV, KONO,
MATE, PAB, PSZ, TAM, TIRR) at an epicentral distance
of 330−2300 km azimuthal located around the source, see
Fig. 7 and 8. The event-based raw data were extracted from
the data centers and corrected for the instrument response.

Synthetic data is generated using SeisSol applied to the
composite European model described above. For the simula-
tion, a source mechanism specified by the centroid moment
tensor solution of the event is used, see Table 3. The data
processing further involves the convolution by a source time
function, shown in Fig. 6. To obtain the STF, an inversion
scheme using a Neighbourhood-algorithm is applied as de-
scribed in Stähler et al. (2012). Subsequently, the real and
synthetic data are filtered for long period signals at a cut-off
period of 33 s.

4.4 Results and discussion

For real and synthetic data, the amplitude normalized traces
of the vertical velocity component are shown in Fig. 7. Here,
we want to emphasize, that especially P-wave phases remark-
ably fit the measured phases at all observed stations. Surface
wave arrivals usually show a larger misfit in phase and am-
plitude compared to real data. However, the overall signal
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duration matches well using the inverted source time func-
tion. The misfit between data and synthetics can be attributed
mainly to the approximation of the material values inside the
Earth by the applied velocity models. As already mentioned,
also the fact that not every small feature can be modeled ex-
actly with the given resolution (e.g. shallow low velocity
zones) can have an influence on the simulation results. Since
the surface waves tend to arrive earlier in the simulations,
what suggests an overestimation of the velocities, an influ-
ence of the model discretization cannot be excepted.

Concluding, we want to mention, that an interference of
the synthetics by artificial boundary reflections cannot be ex-
cepted. However, clear signal onsets could not be identified.

5 Conclusions

We presented a study to verify the application of the ADER-
DG method for regional scale earthquake simulations. In
particular, the flexibility of unstructured tetrahedral mesh-
ing allows the creation of high-quality computational grids
to study wave propagation in 3-D media.

In two benchmark tests obtained using a 1-D isotropic
PREM model, we quantitatively evaluated wave propagation
over intermediate distances (< 15 ◦) using an explosive and
a shear dislocation source. In comparison to the Spectral-
Element method, we could show that the ADER-DG method
provides accurate synthetic results of low phase and envelope
misfits. Due to the use of unstructured tetrahedral meshes,
numerical artefacts were obtained, which decrease in ampli-
tude for successive mesh refinements.

In the second part, the simulation of the L’Aquila earth-
quake confirms the applicability of the method using a re-
gional scale 3-D composite model of Europe. The results
expose an excellent fit of first arrival P-wave signals with
real data measurements at a shortest period of 33 s. Sur-
face waves, most sensitive to crustal structures, exhibit phase
and amplitude misfits indicating the deficiencies in the rep-
resentation of the material values inside the Earth using the
EPcrust and ak135 model.

As described in Sec. 2.2, the design of unstructured tetra-
hedral meshes is fast and flexible. In addition, features like
p-adaptivity and local time stepping can focus the compu-
tational effort using the ADER-DG method. This allows for
accurate simulations in regions such as the Alps where strong
lateral heterogeneities in the material distribution as well as
geometrical complexities due to surface and interface topog-
raphy strongly perturbs 3-D wave propagation. In a future
study, we want to asses the quality of new Earth models and
explore in detail the benefits of the local spatial and temporal
adaptivity provided by the ADER-DG algorithm.
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Castro, C. E., Käser, M., Brietzke, G. B., C.∼E.∼Castro,
and G.∼B.∼Brietzke: Seismic waves in heterogeneous mate-
rial: subcell resolution of the discontinuous Galerkin method,
Geophys. J. Int., 182, 250–264, doi:10.1111/j.1365-246X.
2010.04605.x, http://doi.wiley.com/10.1111/j.1365-246X.2010.
04605.x, 2010.

Chaljub, E.: Modélisation numériques de la propagation d’ondes
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Table 1. Mesh statistics European mesh
Subvolume Number of Edge length Aspect ratio
(start/end depth) elements min/max min/max
crust/Moho 484768 13/18km 1.0/5.0
Moho/80km 463232 20/25km 1.0/3.7
80km/210km 714213 20/25km 1.0/3.4
210km/410km 1067948 22/26.5km 1.0/3.4
410km/660km 965513 28/31.5km 1.0/3.7
Total 3695674 13/31.5km 1.0/5.0
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Table 2. CMT solution of the 2009 Norwegian sea event.

Mrr Mθθ Mϕϕ Mrθ Mrϕ Mθϕ Scaling

−9.69 3.82 5.86 0.15 −3.83 8.11 1017Nm
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Table 3. CMT solution of the 2009 L’Aquila event.

Mrr Mθθ Mϕϕ Mrθ Mrϕ Mθϕ Scaling

−3.30 1.43 1.87 −1.43 −0.27 −1.77 1018 Nm
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Fig. 1. Workflow of the mesh generation process using Cubit.
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Fig. 2. Synthetic seismograms obtained on the 1-D isotropic PREM
model by the ADER-DG (solid) and Spectral-Element method
(dashed) compared at epicentral distances ∆ for an explosive source
located at the North Pole. The data are convolved with a Ricker
source time function and filtered to periods of T ≥ 20 s. Amplitudes
of the radial vr and vertical vv velocity component are normalized
with respect to vv . The fit between the different synthetic results
is quantified by the phase (PM) and envelope (EM) time-frequency
misfits. Artificial boundary reflections are cropped.



S. Wenk et al.: ADER-DG Regional Wave Propagation 17

= 1°

= 2°

= 3°

= 4°

= 1°

= 2°

= 3°

= 4°

= 1°

= 2°

= 3°

= 4°

Fig. 3. Synthetic seismograms obtained on the 1-D isotropic PREM
model by the ADER-DG (solid) and the Spectral-Element method
(dashed) compared at epicentral distances ∆ for a real source lo-
cated in the Norwegian Sea. The data are convolved with a Ricker
source time function and filtered to periods of T ≥ 20 s. Ampli-
tudes of the radial vr , transverse vt and vertical vv velocity compo-
nent are normalized with respect to vt. The fit between the different
synthetic results is quantified by the phase (PM) and envelope (EM)
time-frequency misfits. Artificial boundary reflections are cropped.
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Fig. 4. Computational mesh for benchmark simulations using the
1-D isotropic PREM model (density values are color coded). For
visualization purposes the mesh is separated into 15 chunks.
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Fig. 5. European model composed of the 3-D EPcrust model of
Molinari and Morelli (2011) and the 1-D ak135 model of Kennett
et al. (1995) (left). The computational domain is subdivided into a
mesh of unstructured tetrahedral elements (right). 3-D Topography
of the Earth surface and the crust-mantle boundary is respected by
the mesh.
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Fig. 6. Inverted source time function of the 2009 L’Aquila event
unfiltered (solid) and filtered to periods of T ≥ 33 s (dashed).
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Fig. 7. Synthetic seismograms of the ADER-DG method obtained
on the European model shown in Fig. 5 compared to real data of the
2009 L’Aquila earthquake (yellow star) at 9 different stations (red
triangles). The vertical velocity component is shown for seismo-
grams of 800 s length, filtered to periods of T ≥ 33 s.
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Fig. 8. Synthetic seismograms of the ADER-DG method obtained
on the European model shown in Fig. 5 compared to real data of the
2009 L’Aquila earthquake at 9 different stations. The radial, trans-
verse and vertical velocity components are shown for seismograms
of 800 s length, filtered to periods of T ≥ 33 s.


