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Albert Tarantola

This lecture follows Tarantola, Inverse problem theory, p. 1-88.
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Let X represent an  arbitrary set.

What is a measure over X?

A measure over X implies that to 
any subset A of X a real positive 
Number P(A) is associated with the 
properties:

a. If Ø is the empty set then P(Ø) = 0. 
b. If A1, A2, ... Are disjoint sequences of X then
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P(X) is not necessarily finite. 
If it is then we may call P a 
probability or a probabilty measure.

P is usually normalized to unity.

Example: Let X be {head,tail}

P(Ø)=P(neither head nor tail) = 0
P(head)=r
P(tail)=1-r

And P(head U tail) = 1

Head Tail
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As you expected we need to generalize this concept to continuous
functions. In Earth sciences we often have functions of space 
coordinates such as f(x,y,z) and/or further variables f(x1,x2,x3, …)
If these functions exist such that for
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… then f(x) is termed a measure density function. If P is finite
then f(x) us termed a probability density function … often called pdf .

Examples?
What are the physical dimensions of a pdf?
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Let x and y be two vector parameter sets

Example: xi describes the seismic velocity model
yi describes the density model

The marginal probability 
density is defined as
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And the conditional probability density for x given y=y0 is defined as
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… it follows that, the joint pdf f(x,y) equals the 
conditional probability density times the 
marginal probability density

)()|(),( | yfyxfyxf YYX=

or
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Bayes theorem gives the probability for event y to happen given event x
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Possible interpretations of probability theory (Tarantola, 1988):

1. A purely statistical interpretation: probabilities diescribe the 
outcome of random processes (in physics, economics, biology, etc.)

2. Probabilities describe subjective degree of knowledge of the 
true value of a physical parameter. Subjective means that the 
knowledge gained on a physical system may vary from experiment 
to experiment. 

The key postulate of probabilistic inverse theory is (Tarantola 1988):

Let X be a discrete parameter space with a finite number of parameters.
The most general way we have for describing any state of information on X 
is by defining a probability (in general a measure) over X. 
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… to be more formal …

Let P denote the probability for a given state of information on the 
parameter space X and f(x) is the probability density 

∫=
A

dxxfAP )()(

then the probability P(.) or the probability density f(.) represent 
the corresponding state of information on the parameter space (or 
sections of it).

Marginal probabilities: ∫= XY dxyxfyf ),()(

… contains  all information on parameter y. f(x,y) only contains information 
on the correlation (dependance) of x and y.
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The state of perfect knowledge:

If  we definitely know that the true value of x is x=x0 the 
corresponding probability density is

)()( 0xxx −= δf

∫ =− 1)( 0xxδwhere  δ(.) represents the Dirac delta function and 

This state is only useful in the sense that sometimes a parameter with 
respect to others is associated with much less error. 
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The state of total ignorance :

This is also termend the reference state of information (state of 
lowest information) called M(A) and the associated pdf is called 
the non-informative pdf µ(x)

xx dAM
A∫= )()( µ

∫ =− 1)( 0xxδwhere  δ(.) represents the Dirac delta function and 

Example: Estimate the location of an event (party, earthquake, sunrise …)
Does it make a difference whether we are in cartesian or in
spherical coordinates?
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… Shannon must rank near the top of the list of the 
major figures of 20th century science …

Shannon invented the concept of quantifying the 
content of information (in a message, a formal 
system, etc.). His theory was the basis for digital
Data transmission, data compression, etc. with 
enormous impact on today’s daily things 
(CD, PC, digital phone, mobile phones, etc.) Claude Shannon

1916-2001

Definition: The information content for a discrete probabilistic system is 

∑=
i

ii ppH log

… but what does it really mean?
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Let’s make a simple example:

The information entropy in the case of a of a system with two outcomes:

Event 1: p
Event 2: q=1-p

∑=
i

ii ppH log

)loglog(log 222 qqppppH
i

ii +−==∑

If we are certain of the outcome H=0. 

If uncertain, H is positive. 

If all pi are equal H has a maximum 
(most uncertainty, least order, maximum
disorder)

<- this graph contains the definition of 
the most fundamental unit in information 
theory: guess! 

1 bit
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Shannon’s formula is the basis for the 
units of information! ∑=

i
ii ppH log

Log2 ->     Bits, Bytes
Loge ->     Neps
Log10 ->     Digit

Some connections to physical entropy and disorder:

111111111111111111111 -> lots of order, no information, Shannon entropy small
001101001011010010 -> low order, lots of information, Shannon entropy high

The first sequence can be expressed with one or two numbers, the second 
Sequence cannot be compressed. 

In thermodynamics, entropy is a measure of microstates fileld in a crystal

Ice -> high order, small thermodynamic entropy, small Shannon entropy, not alot of information
Water -> disorder, large thermodynamic entropy, large Shannon entropy, wealth of information
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Shannon meets TarantolaShannon meets Tarantola

∑=
i

ii ppH logThe generalization of Shannon’s concept to the ideas
of probabilistic inverse problems is 

x
x
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… is called the information content of f(x). H(µ) represents the state of null 
information.

Finally: What is the 
information content of 
your name?

Frequency of letters 
in German
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With basic principles from mathematical logic it can be shown that with two 
propositions f(x) (e.g. two data sets, two experiments, etc.) the combination 
of the two sources of information (with a logical and) comes down to

)(
)()()( 21
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This is called the conjunction of states of information (Tarantola and Valette, 1982). Here 
µ(x) is the non-informative pdf and s(x) will turn out to be the a posteriori probability 
density function. 

This equation is the basis for probabilistic inverse problems:

We will proceed to combine information obtained from measurements with information 
from a physical theory. 
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Solving the forward problem is equivalent to predicting error free values of 
our data vector d, in the general case

)(mgdcal =

Examples:

- ground displacements for an earthquake source and a given earth model
- travel times for a regional or global earth model
- polarities and amplitudes for a given source radiation pattern
- magnetic polarities for a given plate tectonic model and field revearsal history
- shaking intensity map for a given earthquake and model
-....

But: Our modeling may contain errors, or may not be the right physical theory, 
How can we take this into account?
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Following the previous ideas the most general way of describing information 
from a physical theory is by defining – for given values of model m - a 
probability density over the data space, i.e. a conditional probability density 
denoted by Θ(d|m).

Examples:

1. For an exact theory we have

2. Uncorrelated Gaussian errors
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where c is the covariance operator (a diagonal matrix) containing  the
variances. 
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Θ(d,m) summarized: 

The expected correlations between model and data space can be described 
using the joint density function Θ(d,m). When there is an inexact physical 
theory (which is always the case), then the probability density for data d is 
given by Θ(d|m)µ(m).

This may for example imply putting error bars about the predicted data 
d=g(m) … graphically
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An experiment will give us information on the true values of observable 
parameters (but not actually the true values), we will call this pdf ρD(d).

Example: Uncertainties of a travel time reading

Good data

Noisy data

Uncertainty
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All the information obtained independently 
of the measurements on the model space is 
called a priori information. We describe 
this information using the pdf ρM(m). 

Example: We have no prior information 
ρM(m)=µ(m) , where µ(m) is the non-
informative prior.

Example: We are looking for a density 
model in the Earth (remember the treasure 
hunt). From sampling many many rocks we 
know what densities to expect in the Earth:

<- it looks like lognormal distributions are a
Good way of describing some physical 
parameters
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By definition, the a priori information on model parameters is independent of 
the a priori information on data parameters. We describe the information
in the joint space DxM by

ρ(d,m)= ρD (d) ρ M(m)

Example: 
We observe the max. acceleration (data d) at a given site as a function of 
earthquake magnitude (model m). We expect earthquakes to have a magnitude 
smaller than 9 and larger than 4 (because the accelerometer would not trigger 
before). We also expect the max. acceleration not to exceed 18m/s and not be
below 5 m/s2 . 
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ρ(d,m)

ρD (d)

ρ M(m)
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The information obtained a priori which we described with ρ(d,m) is now 
combined with information from a physical theory which we decribe with
Θ(d,m). Following the ideas of conjunction of states of information, we define 
the a posteriori probability density funtion as the solution to an inverse 
problem
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Let’s try and look at this graphically … 
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The (only) goal of this 
lecture is to understand 
these figures!

The rest is details …
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Probability theory can be used to describe the state of 
information on a physical system. Actually it can be argued
it is the only way of describing the necessarily subjective 
information we gain from physical experiments.

The key concept is to combine information which we know before 
the experiment (a priori information) with the information 
gained through observations and a physical theory. 

The resulting a posteriori probability density function is 
the solution to the inverse problem. 

The most difficult problem is how to obtain good samples of the 
A posteriori pdf, which will lead us to Monte Carlo methods, 
simulated Annealing and genetic algorithms. 


	Probability and information
	Measures and Sets
	Measures and Sets
	Probability density functions
	Marginal probabilities
	Conditional probabilities
	Bayes Theorem
	The interpretation of probability
	State of information
	States of information: perfect knowledge
	States of information: total ignorance
	Shannon’s information content
	Order, information, entropy
	Bits, bytes, neps, digit
	Shannon meets Tarantola
	Combining states of information
	Information from physical theories
	Information from physical theories
	Information from physical theories
	Information from measurements
	A priori information on model parameters
	Joint prior information in model and data space
	The solution to the inverse problem
	The solution to the inverse problem
	Summary

