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1. Introduction



• Earthquakes
 

or
 

active
 

sources
 

excite

waves

 

that

 

travel

 

through

 

the

 

Earth.

• Recorded

 

as seismograms.

• Waveforms

 

depend

 

on the

 

Earth‘s

structure.

• Seismic
 

tomography: Infer

 

Earth 

structure

 

from

 

seismograms.t=200 s t=600 s

INTRODUCTION: seismic
 

tomography

• High Performance Computing: Simulation of elastic

 

wave

 

propagation

 

through

 

highly
heterogeneous

 

Earth models

• Exploit

 

more
 

information
 

from

 

seismograms

 

→ More
 

accurate
 

Earth models.

wave

 

field

 

snapshots, horizontal slices

 

@ 100 km depth



INTRODUCTION: objectives

Principal
 

objectives
 

of seismic
 

tomography:

• infer
 

the
 

present
 

dynamics
 

and evolution
 

of the
 

Earth

• produce
 

accurate
 

Earth models
 

for
 

reliable
 

tsunami
 

warnings
 

…

• … and the
 

monitoring
 

of the
 

Comprehensive
 

Nuclear
 

Test-Ban
 

Treaty

• search
 

for
 

natural
 

resources

• assessment
 

of construction
 

ground
 

properties

• monitoring
 

of subsurface
 

processes
 

(CO2

 

storage, magma
 

chambers)

• …

Principal
 

objectives
 

of seismic
 

tomography:

• non-destructive
 

testing
 

in material sciences

• medical
 

imaging

• …



INTRODUCTION: difficulties
 

of seismic
 

tomography

What
 

makes
 

seismic
 

tomography
 

difficult?

• receivers:
 

unevenly

 

distributed

• sources:
 

few

 

and poorly

 

distributed

• source
 

mechanisms:
 

unknown

• wave
 

field:
 

highly

 

complex

• measurement: very

 

challenging

• inversion:
 

non-linear

 

and ill-posed

• receivers:
 

well distributed

• sources:
 

well distributed

• source
 

mechanisms:
 

known

• wave
 

field:
 

rather

 

simple

• measurement:
 

rather

 

simple

• inversion: rather

 

well-posed, linear

seismic
 

tomography medical
 

tomography

World seismic

 

map



2. Waveform
 

tomography
 

(general)



WAVEFORM TOMOGRAPHY: Setup as optimisation
 

problem

Seismic
 

tomography
 

is
 

usually
 

set
 

as a non-linear
 

optimisation
 

problem.

Solution of the
 

forward
 

problem

- Elastic

 

wave

 

equation

- No analytical

 

solutions

 

in realistically

heterogeneous

 

Earth model

-

 

Numerical

 

methods

 

(FD, FEM, SEM, …)

1 Comparison
 

of data
 

and synthetics

- Physically

 

meaningful

 

measures

 

of misfit

that

 

are

 

applicable

 

to imperfect

 

data

-

 

Physical

 

intuition

 

required

2

Gradient of misfit
 

functional
 

w/r model

- Sensitivity

 

densities

 

(Fréchet

 

kernels) via

the

 

adjoint

 

method

-

 

Choice

 

of the

 

model

 

parameterisation

3 Iterative misfit
 

minimisation

- steepest

 

descent, conjugate

 

gradients, …

- regularisation

- pre-conditioning

4



WAVEFORM TOMOGRAPHY: Character
 

and size
 

of the
 

problem

≈
 

500 000 free
 

parameters

ModelData

≈
 

3000 waveforms



500 000 free
 

parameters

+
gradient

 
methods

 
for

misfit
 

minimisation

500 000 partial derivatives
 of the

 
misfit

 
with

 
respect

 
to 

the
 

model
 

parameters

WAVEFORM TOMOGRAPHY: Character
 

and size
 

of the
 

problem



Different ways
 

of computing
 

partial derivatives:

• Finite differencing:

500,001 forward

 

simulations

x

 

0.5 h per simulation

x

 

126 processors

x

 

50 earthquakes

x

 

4 simulations

 

per conjugate

 

gradient

 

iteration

x

 

10 conjugate

 

gradient

 

iterations

6.3e10 cpu

 

hours

 

≈

 

720,000 cpu

 

years

Inaccurate

 

because

 

we

 

divide

 

small

 

numbers

 

by

 

small

 

numbers.

• Automatic differentiation: knows

 

nothing

 

about

 

physics

 

→ inefficient

• Adjoint
 

method:

iΔparameter

ameters)misfit(par)iΔparameterametersmisfit(par

iparameter
ameters)misfit(par −+

≈
∂

∂

WAVEFORM TOMOGRAPHY: How
 

to compute
 

half a million
 

derivatives



3.    The
 

adjoint
 

method

3.1. General concept



The

 

adjoint

 

method

 

is

 

a mathematical

 

trick

 

that

 

allows

 

us

 

to compute

 

the

 

exact

 

partial derivatives

 with

 

2 instead

 

of 500,001 simulations.

Very

 

general

 

and widely

 

used

 

(meteorology, ground

 

water

 

modelling, optimal control

 

problems, …)

The

 

relevant equations

 

can

 

be

 

derived

 

in different ways:

1) Lagrange

 

multiplier

 

method

 

(e.g. Liu & Tromp, GJI 2008)

2) Perturbation

 

theory

 

(e.g. Tarantola, PAGEOPH 1988)

3) Operator formulation

 

(Fichtner et al., PEPI 2006)

-

 

very

 

compact

-

 

applicable

 

to any

 

PDE, including

 

the

 

elastic

 

wave

 

equation

ADJOINT METHOD



ADJOINT METHOD: Application
 

to the
 

elastic
 

wave
 

equation

∫
∞

∞−
τ∇τ−⋅∇−∂= dt),(:)t,(t),()ρ()ρ,,( 2

t xuxCxuxCuL &

0== 0tt|t),(xu 0=∂ = 0ttt |t),(xu ∫ ∞− ∈ =ττ∇τ−⋅
t 

Γ|d),(:)t,( 0xxuxCn &

Elastic wave equation:

Subsidiary conditions:

f=),( CuL ρ,

Adjoint
 

wave equation:

∫
∞

∞−
τ∇−τ⋅∇−∂= dt),(:t),(t),()ρ(ρ),( 2

t
t xuxCxuxCuL ttt &,

tt ρ),( f=CuL t , ← determined
 

by
 

the
 

misfit
 

measure

Adjoint

 

subsidiary conditions:

0xut == 1tt|t),( 0xut =∂ = 1ttt |t),( ∫ ∞− ∈ =ττ∇−τ⋅
t

Γ|d),(:t),( 0xuxCn x
t&



3.2. Derivatives
 

with
 

respect
 

to selected
 

structural
 

parameters



ADJOINT METHOD: Derivatives
 

in an isotropic
 

medium

jkiljlikklijijkl δμδδμδδλδC ++=

Elastic
 

tensor
 

for
 

isotropic
 

media:

λ, μ: Lamé

 

parameters

Partial derivatives:

The
 

terms
 

under
 

the
 

volume
 

integral are
 

the
 

sensitivity kernels or
 

Fréchet kernels …



ADJOINT METHOD: Derivatives
 

in an isotropic
 

medium

Fréchet
 

kernels
 

for
 

an isotropic
 

medium:



ADJOINT METHOD: Derivatives
 

in an isotropic
 

medium

Partial derivatives
 

with
 

respect
 

to different sets
 

of parameters:



ADJOINT METHOD: Derivatives
 

in a medium
 

with
 

radial symmetry

The
 

elastic
 

tensor
 

in a medium
 

with
 

radial symmetry
 

axis:

[→ Polarisation anisotropy]



ADJOINT METHOD: Derivatives
 

in a medium
 

with
 

radial symmetry

Fréchet
 

kernels
 

for
 

a medium
 

with
 

radial anisotropy:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∂
+

∂
=

i

j

j

i
ij dx

u
dx
u

2
1ε strain

 

tensor



3.3. Derivatives
 

with
 

respect
 

to the
 

right-hand
 

side
 

(the
 

source)



ADJOINT METHOD: Derivatives
 

with
 

respect
 

to the
 

right-hand
 

side

• How
 

does
 

the
 

misfit
 

change
 

as I change
 

the
 

source?

• Instead
 

of L(u,m) = f, we
 

consider
 

L‘(u,m,f) = L(u,m)-f
 

= 0.

• Repeat
 

the
 

adjoint
 

method
 

recipe:



ADJOINT METHOD: Derivatives
 

with
 

respect
 

to the
 

right-hand
 

side

• How
 

does
 

the
 

misfit
 

change
 

as I change
 

the
 

source?

• Instead
 

of L(u,m) = f, we
 

consider
 

L‘(u,m,f) = L(u,m)-f
 

= 0.

• Repeat
 

the
 

adjoint
 

method
 

recipe:

→ The
 

adjoint
 

equations
 

are
 

the
 

same
 

as before, namely:

Adjoint
 

wave equation:

∫
∞

∞−
τ∇−τ⋅∇−∂= dt),(:t),(t),()ρ(ρ),( 2

t
t xuxCxuxCuL ttt &,

tt ρ),( f=CuL t , ← determined
 

by
 

the
 

misfit
 

measure

Adjoint

 

subsidiary conditions:

0xut == 1tt|t),( 0xut =∂ = 1ttt |t),( ∫ ∞− ∈ =ττ∇−τ⋅
t

Γ|d),(:t),( 0xuxCn x
t&

→ The
 

derivative
 

of E with
 

respect
 

to f is:

U
t

f uδf,f) f)(δm,E(u,D 〉−〈=



ADJOINT METHOD: Derivatives
 

with
 

respect
 

to the
 

right-hand
 

side

Example: Moment tensor
 

point source

ξ
 

= point source
 

location

M = moment
 

tensor

Derivatives:

… with
 

respect
 

to moment
 

tensor
 

comp.

… with
 

respect
 

to source
 

location



3.4. Objective
 

functionals



OBJECTIVE FUNCTIONALS

The
 

choice
 

of physically
 

meaningful
 

objective
 

functionals
 constitutes

 
the

 
art of seismic tomography.

Examples:

1. E(u,u0) = ui

 

(xr,tr)

of theoretical

 

interest

2. E(u,u0) = ||u-u0||

simple but

 

not

 

very

 

useful

3. E(u,u0) = cross-correlation
 

time shift
frequently

 

used, robust measurement

4. (u,u0) = rms
 

amplitude
 

difference
work

 

in progress

5. Time frequency
 

misfits
that‘s

 

what

 

we

 

use



OBJECTIVE FUNCTIONALS: Time-frequency
 

misfits

We
 

want
 

to use
 

full
 

waveforms
 

but
 

…

phase information:

• can

 

be

 

measured

 

reliably
• ±

 

linearly related to Earth structure
• physically interpretable

amplitude information:

• hard

 

to measure

 

(earthquake
magnitude

 

often

 

unknown)
• non-linearly

 

related to structure



∫
∞

∞−

−−== dτet)g(τ)u(
2π
1G(u):t),û( iωττω

∫
∞

∞−

−−== dτet)g(τ)(u
2π
1)G(u:t),(û i

000
ωττω

[ t-ω
 

representation
 

of synthetics, u(t)
 

]

[ t-ω
 

representation
 

of data, u0

 

(t)
 

]

We
 

want
 

to use
 

full
 

waveforms
 

but
 

…

phase information:

• can

 

be

 

measured

 

reliably
• ±

 

linearly related to Earth structure
• physically interpretable

amplitude information:

• hard

 

to measure

 

(earthquake
magnitude

 

often

 

unknown)
• non-linearly

 

related to structure

OBJECTIVE FUNCTIONALS: Time-frequency
 

misfits



( ) dtdωE
2

0phase ∫∫ −= ϕϕ

envelope
 

misfit

( ) dtdω|û||û|E
2

0envelope ∫∫ −=

phase
 

misfit

adjoint

 

method

sensitivity

 

densities

(Fréchet

 

kernels)

We
 

want
 

to use
 

full
 

waveforms
 

but
 

…

phase information:

• can

 

be

 

measured

 

reliably
• ±

 

linearly related to Earth structure
• physically interpretable

amplitude information:

• hard

 

to measure

 

(earthquake
magnitude

 

often

 

unknown)
• non-linearly

 

related to structure

OBJECTIVE FUNCTIONALS: Time-frequency
 

misfits



ve
rt

ic
al

ve
lo

ci
ty

da
ta

sy
nt

he
tic

• Quantify
 

phase
 

difference
 

as a function
 

of time and frequency.

• Phase advance
 

= positive phase
 

difference
 

(red).

• Phase delay
 

= negative phase
 

difference
 

(blue).

• Concentrate
 

on phase
 

information.

• Compute
 

time-frequency
 

representations
 

of data
 

& synthetics.

OBJECTIVE FUNCTIONALS: Time-frequency
 

misfits



3.5. Kernel
 

gallery
Regional-scale

 

examples.

Global-scale

 

examples.

Anisotropy.



KERNEL GALLERY: Fundamental-mode
 

Rayleigh wave
 

(Monday‘s
 

example)

• measurement
 

of cross-correlation
 

time shift
 

on

a 50 s Rayleigh wave

• dominant first
 

Fresnel
 

zone

• increase
 

of the
 

S wave
 

speed
 

β
 

leads
 

to an

increase
 

of Δt → synthetic
 

waveform
 

arrives

earlier



• measurement
 

of cross-correlation
 

time 

shifts

• regional-scale
 

layer
 

over
 

half space

• homogeneous

direct

 

S wave

surface-reflected

 

SS wave

direct

 

P wave

KERNEL GALLERY: Regional-scale
 

homogeneous
 

model
 

(Liu & Tromp, BSSA 2006)



18 s direct S wave 18 s ScS wave

9 s PKPdf wave 9 s PKPab wave

KERNEL GALLERY: Global-scale PREM model (Liu & Tromp, GJI 2008)



KERNEL GALLERY: Global-scale PREM model (Sieminski et al., GJI 2007)



KERNEL GALLERY: Time-frequency phase misfit (Fichtner et al., GJI 2008)

S wave speed (β) kernel P wave speed (α) kernel

•

 

significant sensitivity off the 

ray path

•

 

complex geometry

•

 

little sensitivity w.r.t. P velocity 

& density

density (ρ) kernel



3.6. The little important details
From kernels to gradients.

How do we solve the adjoint equations?

Accuracy-adaptive time integration.



IMPORTANT DETAILS: From Fréchet kernels to gradients

We have

∫ ⋅=
G

3
mm xdEδδmm) E(δD

For gradient-based misfit minimisation we need

i
m dm

dEE =∇

where mi

 

is a model parameter.



IMPORTANT DETAILS: From Fréchet kernels to gradients

We have

∫ ⋅=
G

3
mm xdEδδmm) E(δD

For gradient-based misfit minimisation we need

i
m dm

dEE =∇

where mi

 

is a model parameter.

∫ ⋅==∇
G

3
mi

i
m xdEδb

dm
dEE

• The gradient is the projection of the sensitivity kernels onto the basis functions.

• The gradient depends on the basis functions!

• The basis functions are used for regularisation.



IMPORTANT DETAILS: From Fréchet kernels to gradients

Example:

• Sensitivity of 50 s Rayleigh wave amplitude w.r.t. S wave speed

• Basis functions: blocks (1°
 

x 1°
 

x 10 km)

• Small-scale features integrate out!

• The gradient resembles a smoothed ray.

→ Using 3D kernels instead of rays makes the largest difference in cases

where ray theory breaks down (3D Earth structure, caustics,
 

…)



∫
∞

∞−
τ∇τ−⋅∇−∂= dt),(:)t,(t),()ρ(),( 2

t xuxCxuxCuL ρ,

0== 0tt|t),(xu 0=∂ = 0ttt |t),(xu ∫ ∞− ∈ =ττ∇τ−⋅
t 

Γ|d),(:)t,( 0xxuxCn

Elastic wave
 

equation:

Subsidiary

 

conditions:

f=),( CuL ρ,

Adjoint
 

wave equation:

∫
∞

∞−
τ∇−τ⋅∇−∂= dt),(:t),(t),()ρ(ρ),( 2

t
t xuxCxuxCuL ttt ,

tt ρ),( f=CuL t , ← determined by the misfit measure

Adjoint subsidiary

 

conditions:

0xut == 1tt|t),( 0xut =∂ = 1ttt |t),( ∫ ∞− ∈ =ττ∇−τ⋅
t

Γ|d),(:t),( 0xuxCn x
t

IMPORTANT DETAILS: How do we solve the adjoint equations?



∫ ∂⋅= 1

0

t

t

2
t dtt),(t),()E( xuxux t

ρδ dtdτt)τ,(τ),(E 1

0

1

0

 t

tt τ

t

t ∫∫ +=Φ −∇⊗∇= xuxutδ

Fréchet kernels of the misfit functional:

• regular wavefield: initial
 

conditions
 

→ simulated forward
 

in time

• adjoint wavefield: terminal
 

conditions
 

→ simulated backwards
 

in time

• regular
 

and adjoint wave fields must be known simultaneously
 

at time t

because:

→ The regular wavefield must be stored.

→ At every time step (10.000): 7 TB per earthquake

This can be reduced with physics:

IMPORTANT DETAILS: How do we solve the adjoint equations?



S wave speed (β) kernel P wave speed (α) kernel

density (ρ) kernel

1st Fresnel zone

2nd Fresnel zone

3rd Fresnel zone

4th Fresnel zone

major feature

minor features

The higher Fresnel zones become increasingly unimportant for the
 

tomography.

→ No need to model all of them very accurately.

IMPORTANT DETAILS: Accuracy-adaptive time integration



S wave speed (β) kernel P wave speed (α) kernel

density (ρ) kernel

1st Fresnel zone

2nd Fresnel zone

3rd Fresnel zone

4th Fresnel zone

major feature

minor features

Physical arguments:

accurate mth Fresnel zone: save wavefield at least every

time steps .

IMPORTANT DETAILS: Accuracy-adaptive time integration

( )1mm
TβC

α
2
5

3
max −−

l

=
=
=
=

=

l

C
T
β
αmax max. P wave speed

approx. S wave speed

dominant period

Courant number

epicentral distance



S wave speed (β) kernel P wave speed (α) kernel

density (ρ) kernel

1st Fresnel zone

2nd Fresnel zone

3rd Fresnel zone

4th Fresnel zone

major feature

minor features

Physical arguments: save every
 

50
 

time steps → 1st -
 

3rd Fresnel zones
 

correct.

→ 140 GB
 

storage per earthquake (instead of 7 TB)

accuracy-adaptive storage interval

IMPORTANT DETAILS: Accuracy-adaptive time integration



4. Iterative solution of the waveform tomographic problem



PREPARATORY STEPS: Data

1.
 

Data selection
-

 

Few high-quality data (thousands instead of millions)

-

 

Earthquakes recorded by many stations (efficiency of the adjoint method)

-

 

Good coverage of the target region

Our work:

• 57 earthquakes in the Australasian region

• approximately 3000 usable three-

component recordings (mostly surface

waves)

• periods down to 50 s



PREPARATORY STEPS: Initial Model

2. Initial Models
-

 

ensure convergence to the global optimum

elastic: Smoothed surface wave tomography (Fishwick et al., 2005)

anelastic: 3D Q model from multi-frequency body wave amplitudes (Abdulah, 2007)



ITERATIVE OPTIMISATION: General strategy

Preconditioned conjugate-gradient method (Fletcher & Reeves)

• Start with long periods (≈
 

100 s) and successively increase bandwidth

-

 

preserves quasi-linearity

-

 

requires intuition and experience

• Step length through quadratic line search
-

 

guess two reasonable step lengths (again intuition and experience …)

-

 

interpolate with quadratic polynomial and choose the minimum



ITERATIVE OPTIMISATION: Preconditioning

• Singularity at source &receiver.

• Changes of the Earth structure near the source and the

receiver are not well represented by first derivatives.

• Using the kernels blindly, would result in nonsense

tomographic images.

• Kernels must be modified in the source and receiver

regions to ensure convergence to global optimum.

→ Preconditioning.



ITERATIVE OPTIMISATION: Preconditioning

preconditioner                                    raw gradient  preconditioned gradient

• Preconditioner is found empirically (2D experiments).

• Preconditioner is inversely proportional to the amplitudes of the regular and 

adjoint wavefields (inverse geometrical spreading, Igel et al., 1996).

• Preconditioner emphasises kernel contributions further away from sources and

receiver.



ITERATIVE OPTIMISATION: Remark

This optimisation scheme is not automatic even though it appears
 

to be!

Seismic tomography requires human intervention in every single step!



5. Some results of our work so far



S wave speed

RESULTS: S wave speed in the upper mantle beneath the Australian continent



RESULTS: Waveform fit

data initial model final model



data initial model final model

RESULTS: Waveform fit



RESULTS: Interpretation

S wave speed -
 

100 km depth

northward
 continuation

 

of 
the

 

Australian
 continent

Precambrian
 units:

Pilbara

 

Block,

Yilgarn

 

Block,

Kimberley Craton

Phanerozoic:

elevated

 

surface

 heat

 

flow,  

recent

 

volcanism,

seismicity

New Caledonia-
 Norfolk

 

Ridge, 
Lord Howe

 

Rise

micro-continental

 ribbons



Fin …

… thanks

 

for

 

your

 

attention!
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