
Numerical methodsNumerical methods

Specific methods:
• Finite differences
• Pseudospectral methods
• Finite volumes

Specific methods:
• Finite differences
• Pseudospectral methods
• Finite volumes

… applied to the acoustic wave equation …



Example: seismic wave propagation

Why numerical methodsWhy numerical methods

Generally heterogeneous
medium

Seismometers

explosion
… we need numerical 

solutions! … we need grids! …
And big computers …



Partial Differential Equations in Geophysics
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- seismology
- acoustics
- oceanography 
- meteorology

Diffusion, advection, 
Reaction
- geodynamics
- oceanography 
- meteorology
- geochemistry
- sedimentology
- geophysical fluid dynamics

P pressure
c acoustic wave speed
s sources

P pressure
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C tracer concentration
k diffusivity
v flow velocity
R reactivity
p sources



Numerical methods: properties

Finite differences

Finite volumes

- time-dependent PDEs
- seismic wave propagation
- geophysical fluid dynamics
- Maxwell’s equations
- Ground penetrating radar
-> robust, simple concept, easy to 

parallelize, regular grids, explicit method

Finite elements - static and time-dependent PDEs
- seismic wave propagation
- geophysical fluid dynamics
- all problems
-> implicit approach, matrix inversion, well founded,

irregular grids, more complex algorithms,     
engineering problems

- time-dependent PDEs
- seismic wave propagation
- mainly fluid dynamics
-> robust, simple concept, irregular grids, explicit  

method



Other Numerical methods:

Particle-based 
methods  

Pseudospectral
methods

- lattice gas methods
- molecular dynamics
- granular problems
- fluid flow
- earthquake simulations
-> very heterogeneous problems, nonlinear problems

Boundary element
methods

- problems with boundaries (rupture)
- based on analytical solutions
- only discretization of planes 
--> good for problems with special boundary conditions

(rupture, cracks, etc)

- orthogonal basis functions, special case of FD
- spectral accuracy of space derivatives
- wave propagation, GPR
-> regular grids, explicit method, problems with  

strongly heterogeneous media



What is a finite difference?What is a finite difference?

Common definitions of the derivative of f(x):
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These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE



What is a finite difference?What is a finite difference?

The equivalent approximations of the derivatives are:
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centered difference



The big question:The big question:

How good are the FD approximations?

This leads us to Taylor series....



Our first FD algorithm (ac1d.m) !Our first FD algorithm (ac1d.m) !
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P pressure
c acoustic wave speed
s sources

Problem: Solve the 1D acoustic wave equation using the finite 
Difference method.
Problem: Solve the 1D acoustic wave equation using the finite 
Difference method.

Solution:Solution:
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Problems: StabilityProblems: Stability
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1≈≤ ε
dx
dtc

Stability: Careful analysis using harmonic functions shows that 
a stable numerical calculation is subject to special conditions 
(conditional stability). This holds for many numerical problems.

Stability: Careful analysis using harmonic functions shows that 
a stable numerical calculation is subject to special conditions 
(conditional stability). This holds for many numerical problems.



Problems: DispersionProblems: Dispersion
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Dispersion: The numerical 
approximation has 
artificial dispersion,
in other words, the wave 
speed becomes frequency 
dependent. 
You have to find a 
frequency bandwidth 
where this effect is small.
The solution is to use a 
sufficient number of grid 
points per wavelength.

Dispersion: The numerical 
approximation has 
artificial dispersion,
in other words, the wave 
speed becomes frequency 
dependent. 
You have to find a 
frequency bandwidth 
where this effect is small.
The solution is to use a 
sufficient number of grid 
points per wavelength.

True velocity



Our first FD code!Our first FD code!
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% Time stepping

for i=1:nt,

% FD

disp(sprintf(' Time step : %i',i));

for j=2:nx-1
d2p(j)=(p(j+1)-2*p(j)+p(j-1))/dx^2; % space derivative

end
pnew=2*p-pold+d2p*dt^2;                % time extrapolation
pnew(nx/2)=pnew(nx/2)+src(i)*dt^2;     % add source term
pold=p; % time levels
p=pnew;
p(1)=0; % set boundaries pressure free
p(nx)=0;

% Display 
plot(x,p,'b-')
title(' FD ')
drawnow

end



Snapshot ExampleSnapshot Example
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Seismogram DispersionSeismogram Dispersion



Finite Differences - SummaryFinite Differences - Summary

• Conceptually the most simple of the numerical methods and 
can be learned quite quickly

• Depending on the physical problem FD methods are 
conditionally  stable (relation between time and space 
increment)

• FD methods have difficulties concerning the accurate 
implementation of boundary conditions (e.g. free surfaces, 
absorbing boundaries)

• FD methods are usually explicit and therefore very easy to 
implement and efficient on parallel computers

• FD methods work best on regular, rectangular grids

• Conceptually the most simple of the numerical methods and 
can be learned quite quickly

• Depending on the physical problem FD methods are 
conditionally  stable (relation between time and space 
increment)

• FD methods have difficulties concerning the accurate 
implementation of boundary conditions (e.g. free surfaces, 
absorbing boundaries)

• FD methods are usually explicit and therefore very easy to 
implement and efficient on parallel computers

• FD methods work best on regular, rectangular grids



Numerical Methods in Geophysics The Fourier Method

The Fourier Method

- What is a pseudo-spectral Method?

- Fourier Derivatives

- The Fast Fourier Transform (FFT)

- The Acoustic Wave Equation with the Fourier Method  

- Comparison with the Finite-Difference Method

- Dispersion and Stability of Fourier Solutions



Numerical Methods in Geophysics The Fourier Method

What is a pseudo-spectral Method?

Spectral solutions to time-dependent PDEs are formulated 
in the frequency-wavenumber domain and solutions are 
obtained in terms of spectra (e.g. seismograms). This 
technique is particularly interesting for geometries where 
partial solutions in the ω-k domain can be obtained 
analytically (e.g. for layered models). 

In the pseudo-spectral approach - in a finite-difference like 
manner - the PDEs are solved pointwise in physical space 
(x-t). However, the space derivatives are calculated using 
orthogonal functions (e.g. Fourier Integrals, Chebyshev
polynomials). They are either evaluated using matrix-
matrix multiplications or the fast Fourier transform (FFT).



Numerical Methods in Geophysics The Fourier Method

Fourier Derivatives
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.. let us recall the definition of the derivative using Fourier integrals ...

... we could either ...

1) perform this calculation in the space domain by convolution

2) actually transform the function f(x) in the k-domain and back



Numerical Methods in Geophysics The Fourier Method

The Fast Fourier Transform

... the latter approach became interesting with the introduction of the
Fast Fourier Transform (FFT). What’s so fast about it ?

The FFT originates from a paper by Cooley and Tukey (1965, Math. 
Comp. vol 19 297-301) which revolutionised all fields where Fourier 
transforms where essential to progress.

The discrete Fourier Transform can be written as 
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Numerical Methods in Geophysics The Fourier Method

The Fast Fourier Transform

... this can be written as matrix-vector products ...
for example the inverse transform yields ...

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−

−

1

2

1

0

1

2

1

0

)1(1

22642

132

ˆ

ˆ
ˆ
ˆ

1

1
1

11111

2

NN
NN

N

N

u

u
u
u

u

u
u
u

M

M

M

M

LLL

MMM

MMM

K

K

K

ωω

ωωωω
ωωωω

.. where ... 
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Numerical Methods in Geophysics The Fourier Method

The Fast Fourier Transform

... the FAST bit is recognising that the full matrix - vector multiplication
can be  written as a few sparse matrix - vector multiplications 

(for details see for example Bracewell, the Fourier Transform and its 
applications, MacGraw-Hill) with the effect that:

Number of multiplicationsNumber of multiplications

full matrix                                          FFT  

N2 2Nlog2N

this has enormous implications for large scale problems.
Note: the factorisation becomes particularly simple and effective 

when N is  a highly composite number (power of 2). 



Numerical Methods in Geophysics The Fourier Method

The Fast Fourier Transform

.. the right column can be regarded as the speedup of an algorithm 
when the FFT is used instead of the full system. 

Number of multiplicationsNumber of multiplications

Problem                   full matrix             FFT           Ratio full/FFT  

1D (nx=512)                    2.6x105 9.2x103 28.4
1D (nx=2096)                                                          94.98
1D (nx=8384)                                                          312.6



Numerical Methods in Geophysics The Fourier Method

Acoustic Wave Equation - Fourier Method

let us take the acoustic wave equation with variable density
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the left hand side will be expressed with our 
standard centered finite-difference approach 
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... leading to the extrapolation scheme ... 



Numerical Methods in Geophysics The Fourier Method

Acoustic Wave Equation - Fourier Method

where the space derivatives will be calculated using the Fourier Method. 
The highlighted term will be calculated as follows:
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... then extrapolate ...



Numerical Methods in Geophysics The Fourier Method

Acoustic Wave Equation - 3D
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.. where the following algorithm applies to each space dimension ...



Numerical Methods in Geophysics The Fourier Method

Comparison with finite differences - Algorithm

let us compare the core of the algorithm - the calculation of the derivative
(Matlab code)

function df=fder1d(f,dx,nop)
% fDER1D(f,dx,nop) finite difference
% second derivative

nx=max(size(f));

n2=(nop-1)/2;

if nop==3; d=[1 -2 1]/dx^2; end
if nop==5; d=[-1/12 4/3 -5/2 4/3 -1/12]/dx^2; end

df=[1:nx]*0;

for i=1:nop;
df=df+d(i).*cshift1d(f,-n2+(i-1));
end



Numerical Methods in Geophysics The Fourier Method

Comparison with finite differences - Algorithm

... and the first derivative using FFTs ... 

function df=sder1d(f,dx)
% SDER1D(f,dx) spectral derivative of vector
nx=max(size(f));

% initialize k
kmax=pi/dx;
dk=kmax/(nx/2);
for i=1:nx/2, k(i)=(i)*dk; k(nx/2+i)=-kmax+(i)*dk; end
k=sqrt(-1)*k;

% FFT and IFFT
ff=fft(f); ff=k.*ff; df=real(ifft(ff));

.. simple and elegant ...



Numerical Methods in Geophysics The Fourier Method

Fourier Method - Dispersion and Stability

... with the usual Ansatz
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Numerical Methods in Geophysics The Fourier Method

Fourier Method - Dispersion and Stability

What are the consequences?

a) when dt << 1, sin-1 (kcdt/2) ≈kcdt/2 and w/k=c
-> practically no dispersion

b) the argument of asin must be smaller than one.

2
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Numerical Methods in Geophysics The Fourier Method

Fourier Method - Comparison with FD - 10Hz

Example of acoustic 1D wave simulation.
FD 3 -point operator

red-analytic; blue-numerical; green-difference
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 3 point - 2 order; T = 6.6 s, Error = 50.8352% 



Numerical Methods in Geophysics The Fourier Method

Fourier Method - Comparison with FD - 10Hz

Example of acoustic 1D wave simulation.
FD 5 -point operator

red-analytic; blue-numerical; green-difference
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 5 point - 2 order; T = 7.8 s, Error = 3.9286% 



Numerical Methods in Geophysics The Fourier Method

Fourier Method - Comparison with FD - 10Hz

Example of acoustic 1D wave simulation.
Fourier operator

red-analytic; blue-numerical; green-difference
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 Fourier - 2 order; T = 35 s, Error = 2.72504% 



Numerical Methods in Geophysics The Fourier Method

Fourier Method - Comparison with FD - 20Hz

Example of acoustic 1D wave simulation.
FD 3 -point operator

red-analytic; blue-numerical; green-difference
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 3 point - 2 order; T = 7.8 s, Error = 156.038% 



Numerical Methods in Geophysics The Fourier Method

Fourier Method - Comparison with FD - 20Hz

Example of acoustic 1D wave simulation.
FD 5 -point operator

red-analytic; blue-numerical; green-difference
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 5 point - 2 order; T = 7.8 s, Error = 45.2487% 
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Fourier Method - Comparison with FD - 20Hz

Example of acoustic 1D wave simulation.
Fourier operator

red-analytic; blue-numerical; green-difference
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 Fourier - 2 order; T = 34 s, Error = 18.0134% 
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Fourier Method - Comparison with FD - Table
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Numerical Methods in Geophysics The Fourier Method

Numerical solutions and Green’s Functions

The concept of Green’s Functions (impulse responses) plays an 
important role in the solution of partial differential equations. It is also 

useful for numerical solutions. Let us recall the acoustic wave equation

pcpt Δ=∂ 22

with Δ being the Laplace operator. We now introduce a delta source in
space and time

pctxpt Δ+=∂ 22 )()( δδ

the formal solution to this equation is
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(Full proof given in Aki and Richards, Quantitative Seismology, Freeman+Co, 1981, p. 65)



Numerical Methods in Geophysics The Fourier Method

Numerical solutions and Green’s Functions

In words this means (in 1D and 3D but not in 2D, why?) , that in 
homogeneous media the same source time function which is input at the 

source location will be recorded at a distance r, but with amplitude 
proportional to 1/r.

An arbitrary source can evidently be constructed by summing up different 
delta - solutions. Can we use this property in our numerical simulations?

What happens if we solve our numerical system with delta functions as 
sources?
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Numerical Methods in Geophysics The Fourier Method

Numerical solutions and Green’s Functions
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Numerical Methods in Geophysics The Fourier Method

Numerical solutions and Green’s Functions

3 point operator 5 point operator Fourier Method
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Numerical Methods in Geophysics The Fourier Method

Fourier Method - Summary

The Fourier Method can be considered as the limit of the finite-difference 
method as the length of the operator tends to the number of points along 
a particular dimension. 

The space derivatives are calculated in the wavenumber domain by 
multiplication of the spectrum with ik. The inverse Fourier transform 
results in an exact space derivative up to the Nyquist frequency.

The use of Fourier transform imposes some constraints on the 
smoothness of the functions to be differentiated. Discontinuities lead to 
Gibb’s phenomenon. 

As the Fourier transform requires periodicity this technique is particular 
useful where the physical problems are periodical (e.g. angular 
derivatives in cylindrical problems).



Finite Elements – the conceptFinite Elements – the concept

How to proceed in FEM analysis:

• Divide structure into pieces (like LEGO)

• Describe behaviour of the physical quantities   
in each element

• Connect (assemble) the elements at the nodes
to form an approximate system of equations 
for the whole structure

• Solve the system of equations involving unknown 
quantities at the nodes (e.g. displacements)

• Calculate desired quantities (e.g. strains and 
stresses) at selected elements



Finite Elements – Why?Finite Elements – Why?

FEM allows discretization of bodies with arbitrary shape. 
Originally designed for problems in static elasticity.

FEM is the most widely applied computer simulation method in 
engineering.

Today spectral elements is an attractive new method with 
applications in seismology and geophysical fluid dynamics

The required grid generation techniques are interfaced with 
graphical techniques (CAD).

Today a large number of commercial FEM software is available 
(e.g. ANSYS, SMART, MATLAB, ABACUS, etc.)



Finite Elements – ExamplesFinite Elements – Examples



Discretization – finite elementsDiscretization – finite elements

As we are aiming to find a numerical solution to our problem it 
is clear we have to discretize the problem somehow. In FE 
problems – similar to FD – the functional values are known at a 
discrete set of points. 

... regular grid ...

... irregular grid ...

Domain D
The key idea in FE analysis is to approximate all 
functions in terms of basis functions ϕ, so that
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Finite elements – basic formulationFinite elements – basic formulation

Let us start with a simple linear system of equations

| * y

and observe that we can generally multiply both sides of 
this equation with y without changing its solution. Note 
that x,y and b are vectors and A is a matrix.

bAx =

nyybyAx ℜ∈=→

We first look at Poisson’s equation (e.g., wave equation 
without time dependence)
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where u is a scalar field, f is a source term and in 1-D
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Formulation – Poisson’s equationFormulation – Poisson’s equation

fvuv =Δ−

We now multiply this equation with an arbitrary function 
v(x), (dropping the explicit space dependence)

... and integrate this equation over the whole domain. For 
reasons of simplicity we define our physical domain D in 
the interval [0, 1].

∫∫ =Δ−
DD

fvuv

dxfvdxuv ∫∫ =Δ−
1

0

1

0

... why are we doing this? ... be patient ...



Partial IntegrationPartial Integration

... partially integrate the left-hand-side of our equation ...

dxfvdxuv ∫∫ =Δ−
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1
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we assume for now that the derivatives of u at the boundaries vanish 
so that for our particular problem
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... so that we arrive at ...

... with u being the unknown function. This is also true for our
approximate numerical system

dxfvdxvu ∫∫ =∇∇
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was our choice of approximating u using basis functions.

dxfvdxvu ∫∫ =∇∇
1

0

1

0

~



The basis functionsThe basis functions

... otherwise we are 
free to choose any 
function ...

The simplest choice 
are of course linear 
functions:

+ grid nodes

blue lines – basis 
functions ϕi
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we are looking for functions ϕi
with the following property ⎩

⎨
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=
ijxxfor

xxfor
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The discrete systemThe discrete system

The ingredients:
kv ϕ=

i

N

i
icu ϕ∑

=

=
1

~

dxfvdxvu ∫∫ =∇∇
1

0

1

0

~

dxfdxc kk

n

i
ii ϕϕϕ ∫∫ ∑ =∇⎟
⎠

⎞
⎜
⎝

⎛
∇

=

1

0

1

0 1

... leading to ...



The discrete systemThe discrete system

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... the coefficients ck are constants so that for one 
particular function ϕk this system looks like ...

kiki gAb =
... probably not to your surprise this can be written in matrix form

ki
T
ik gbA =



The solutionThe solution

... with the even less surprising solution

( ) k
T
iki gAb 1−

=

remember that while the bi’s are really the coefficients of the 
basis functions these are the actual function values at node points 

i as well because of our particular choice of basis functions.



Basis functions and elementBasis functions and element

Linear Quadratic 
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The Acoustic Wave Equation 1-DThe Acoustic Wave Equation 1-D

How do we solve a time-dependent problem such
as the acoustic wave equation?

where v is the wave speed. 
using the same ideas as before we multiply this equation with 
an arbitrary function and integrate over the whole domain, e.g. [0,1], and
after partial integration

fuvut =Δ−∂ 22

dxfdxuvdxu jjjt ∫∫∫ =∇∇−∂
1

0

1

0

2
1

0

2 ϕϕϕ

.. we now introduce an approximation for u using our previous 
basis functions...



The Acoustic Wave Equation 1-DThe Acoustic Wave Equation 1-D

)()(~
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i
i ϕ∑
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=≈

together we obtain

)()(~
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222 xtcuu i
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i
ittt ϕ∑
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∂=∂≈∂

note that now our coefficients are time-dependent!
... and ...

∫∑ ∫∑ ∫ =⎥
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⎤
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⎦
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⎣
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i
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i
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which we can write as ...



Time extrapolationTime extrapolation

∫∑ ∫∑ ∫ =⎥
⎦

⎤
⎢
⎣

⎡
∇∇+⎥

⎦

⎤
⎢
⎣

⎡
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1

0
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0

2
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i
iij

i
iit fdxcvdxc ϕϕϕϕϕ

... in Matrix form ...

gcAvcM TT =+ 2&&

M A b

... remember the coefficients c correspond to the 
actual values of u at the grid points for the right choice
of basis functions ...

How can we solve this time-dependent problem?

stiffness matrixmass matrix



FD extrapolationFD extrapolation

... let us use a finite-difference approximation for
the time derivative ...

gcAvcM TT =+ 2&&

... leading to the solution at time tk+1:

gcAv
dt

cccM k
TkkT =+⎟

⎠
⎞

⎜
⎝
⎛ +− −+ 2

2
11 2

[ ] 1
221

1 2)()( −
−

+ −+−= kkk
TT

k ccdtcAvgMc

we already know how to calculate the matrix A but 
how can we calculate matrix M?



Matrix assemblyMatrix assembly

% assemble matrix Mij

M=zeros(nx);

for i=2:nx-1,

for j=2:nx-1,

if i==j, 

M(i,j)=h(i-1)/3+h(i)/3;

elseif j==i+1

M(i,j)=h(i)/6;

elseif j==i-1

M(i,j)=h(i)/6;

else

M(i,j)=0;

end

end

end

% assemble matrix Aij

A=zeros(nx);

for i=2:nx-1,

for j=2:nx-1,

if i==j,

A(i,j)=1/h(i-1)+1/h(i);

elseif i==j+1

A(i,j)=-1/h(i-1);

elseif i+1==j

A(i,j)=-1/h(i);

else

A(i,j)=0;

end

end

end

Mij Aij



Numerical example – regular gridNumerical example – regular grid

This is a movie obtained with the sample Matlab program: femfd.m



Finite Elements - SummaryFinite Elements - Summary

• FE solutions are based on the “weak form” of the partial 
differential equations

• FE methods lead in general to a linear system of equations
that has to be solved using matrix inversion techniques 
(sometimes these matrices can be diagonalized)

• FE methods allow rectangular (hexahedral), or triangular 
(tetrahedral) elements and are thus more flexible in terms of 
grid geometry

• The FE method is mathematically and algorithmically more 
complex than FD

• The FE method is well suited for elasto-static and elasto-
dynamic problems (e.g. crustal deformation)


