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ABSTRACT

We introduce a novel variant of seismic tomography based on collocated measurements of

rotational and translational ground motions. This is to assess whether rotations may in the

future be incorporated successfully into seismic inverse problems in order to produce better

resolved and more realistic tomographic images. Our methodology is based on the definition

of the apparent shear wave speed, which is the ratio of the rms velocity and rotation

amplitudes. The principal advantages of this definition are (1) that no traveltimes need

to be measured and (2) that the apparent shear wave speed is independent from both the

source magnitude and the source timing. We derive finite-frequency kernels for the apparent

shear wave speed using a combination of the adjoint method and the ray approximation.

The properties of these kernels as a function of frequency bandwidth are illustrated and their

usefulness for seismic tomography is discussed. In two multi-frequency synthetic inversions

we consider a local crosshole tomography and a regional-scale earthquake tomography. Their
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results indicate that S wave speed variations can be retrieved accurately from collocated

rotation and translation measurements. This suggests that our methodology is a promising

extension of conventional seismic tomography.
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INTRODUCTION

Highly resolved tomographic images are essential for a variety of applications ranging from

global-scale geodynamics to local-scale engineering and exploration. There are two general

strategies towards a further improvement of seismic tomography: (1) The development of

more elaborate modelling and inversion techniques, such as for example finite-frequency

tomography (e.g. Yoshizawa & Kennett, 2004) or nonlinear full waveform inversion (e.g.

Fichtner et al., 2008). (2) The incorporation of previously unexploited data such as sur-

face wave amplitudes, exotic phases and measurements of seismically induced strain (e.g.

Mikumo & Aki, 1964) or rotations. In this paper we focus on possible improvements of

seismic tomography through the incorporation of rotation measurements.

The observation of seismically induced rotational ground motions is becoming increasingly

feasible and reliable thanks to the recent developments of high-precision rotation sensors

(e.g. Schreiber et al., 2006, 2009). Several authors observed rotations excited by teleseismic

waves (e.g. Pancha et al., 2000; Igel et al., 2005, 2007, Cochard et al., 2006). Reports

on rotational ground motions recorded in the near-source region may be found in Nigbor

(1994), Takeo (1998), Nigbor et al. (2009), Lee et al. (2009), or Wassermann et al. (2009).

Seismically induced rotational ground motions contain information about the structure of

the Earth: Igel et al. (2005, 2007) and Cochard et al. (2006) inferred local phase veloci-

ties from collocated measurements of translations and rotations. Wang et al. (2009) and

Stupazzini et al. (2009) used the same amplitude ratio between transverse motion and

rotation rate (vertical axis) to identify the low-subsurface velocities associated with sedi-

mentary basin structure. Pham et al. (2009) used rotational signals in the coda of P-waves

to constrain crustal scattering. They exploited the fact that rotational motions around the

vertical axis are predominantly sensitive to SH-type motions. Based on Full Ray Theory
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modelling, Ferreira & Igel (2009) demonstrated a clearly observable effect of near-receiver

heterogeneities on rotational motions of Love waves − suggesting that they could be used

systematically to infer Earth structure.

A first step towards the solution of structural inverse problems using measurements of ro-

tational ground motions was taken by Fichtner & Igel (2009). They studied the apparent

shear wave speed βa, defined as the ratio of the rms displacement velocity, ||v||2, and the

rms rotation amplitude ||ω||2 of a seismic phase or waveform (the measurement time window

has to be carefully chosen):

βa(xr) =
||v(xr)||2
||ω(xr)||2

. (1)

The symbol v(xr) denotes the displacement velocity at position xr, ω is the curl of u, i.e.

ω = ∇× u, and ||.||2 is the L2 norm.

We list some of the properties of βa that are particularly interesting in the context of struc-

tural inverse problems: (1) No traveltimes need to be measured to determine βa. (2) For a

body S wave in an unbounded and homogeneous medium, βa is equal to the true S wave

speed, i.e. βa = β. This suggests that βa contains directly observable information about

Earth structure. (3) The apparent shear wave speed, βa is independent of both the source

timing and the source magnitude − two parameters that are often not well constrained. (4)

As demonstrated by Fichtner & Igel (2009), the sensitivity of βa with respect to the true S

wave speed, β, is largest in the near-receiver region. This is in contrast to sensitivities for

travel times or amplitudes that are nonzero in a volume around the entire ray path (e.g.

Dahlen et al., 2000, 2002).

The characteristics of the apparent shear wave speed suggest that it may be used for local to-

mography with both active or passive sources. Inferring Earth structure from measurements

of βa may be a complement to classical receiver function studies and to local earthquake to-
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mography in regions with little or no seismicity. Applications to engineering or exploration

problems can equally be envisioned.

In this paper we explore how the apparent shear wave speed, βa, may be used for the so-

lution of structural inverse problems. Our principal objectives are the development of an

efficient tool that allows us to compute sensitivity kernels for βa measured on body S waves

and to use them in synthetic inversions for near-receiver structure.

This paper is organised as follows: We start with the theory needed for the computation

of sensitivity kernels using a combination of the adjoint method with the ray approxima-

tion. Subsequently, we show sensitivity kernels for βa measurements in different frequency

ranges, and we compare them to the kernels for measurements of the rms velocity and the

rms rotation. In the synthetic inversions we focus on applications to local-scale crosshole

tomography and regional-scale earthquake tomography.

RAY-THEORETICAL COMPUTATION OF SENSITIVITY KERNELS

Theory

We combine the adjoint method with ray theory to compute sensitivity kernels for βa. The

adjoint method (e.g. Lions, 1968; Tarantola, 1988; Tromp et al., 2005; Fichtner et al., 2006)

allows us to avoid the lengthy expressions and approximations of scattering theory that was

used for the same purpose by Yomogida & Aki (1987), Yomogida (1992), Dahlen et al.

(2000) and Dahlen & Baig (2002). The resulting formulas can be solved efficiently, and

they are correct within the well-known validity range of ray theory (e.g. Červený, 2001).

This does not impose restrictions in the context of this study because we focus on the direct

S wave phase and we generally consider media with sufficiently smooth heterogeneities.
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From the quotient rule applied to the definition (1) we deduce that the relative sensitivity

density of βa with respect to β, denoted by β−1
a δββa = δβ lnβa, can be expressed in terms

of the sensitivity densities of ||v||2 and ||ω||2:

δβ lnβa = δβ ln ||v||2 − δβ ln ||ω||2 . (2)

In the interest of notational brevity we omit the dependencies on xr wherever possible. The

principal result of the adjoint method is that sensitivity densities can be written as a time

integral that involves the forward field u and an adjoint field ψ. In the special case of the

sensitivity densities δβ ln ||v||2 and δβ ln ||ω||2 we have

δβ ln ||v||2 = 2ρβ−1
∫

T
ψ̇v · v dt , (3)

and

δβ ln ||ω||2 = 2ρβ−1
∫

T
ψ̇ω · v dt , (4)

where ψv and ψω denote the adjoint fields corresponding to measurements of ||v||2 and

||ω||2, respectively. We symbolise by T the time interval from the source origin time to the

end of the observation. The regular velocity field v is governed by the elastic wave equation

ρü−∇ · (C : ∇u) = f , (5)

where the symbols C and f denote the fourth-order elastic tensor and an external force den-

sity, respectively. The displacement u and the displacement velocity v are related through

v = u̇. We omit the visco-elastic dissipation because we found its effect on the shape of

sensitivity kernels to be negligible. Both adjoint fields ψv and ψω are determined as the

solutions of an adjoint wave equation that is equivalent to the regular wave equation (5):

ρψ̈v −∇ · (C : ∇ψv) = fv , ρψ̈ω −∇ · (C : ∇ψω) = fω . (6)
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The symbols fv and fω are the adjoint sources for ψv and ψω, respectively. In contrast to the

initial conditions of the regular wave equation, the adjoint wave equations are complemented

by homogeneous terminal conditions. They require that the adjoint field be zero at any

time after the end of the observation time span (e.g. Tarantola, 1988). As demonstrated

by Fichtner and Igel (2009), the components of fv and fω are given by

fv
i (x, t) = ||u̇(xr)||−2

2 üi(xr, t) δ(x− xr) (7)

and

fω
i (x, t) = −||ω(xr)||−2

2 εijk ωk(xr, t)
∂

∂xj
δ(x− xr) , (8)

where εijk denotes the Levi-Civita alternating symbol. Thus, both adjoint sources act at the

receiver location xr and their temporal evolution is determined by the observed acceleration

and rotation fields. Interestingly, fω corresponds to an anti-symmetric moment tensor source

that does not radiate far-field S waves. This highlights the purely mathematical and abstract

nature of the adjoint fields and their sources.

Instead of solving the regular wave equation (5) and adjoint equations (6) numerically −

as done for example by Fichtner & Igel (2009) − we use the ray-theoretical solutions that

are valid in the absence of caustics and strong heterogeneities:

u(x, t) = A(x) s(t− Ts(x)) , (9)

ψv(x, t) = Av(x) sv(Tr(x)− t) , (10)

ψω(x, t) = Aω(x) sω(Tr(x)− t) . (11)

The vectors A, Av and Aω incorporate the amplitudes and polarisations of the different

fields while the functions s, sv and sω represent their respective wave forms. The travel time

field Ts is measured from the regular source of the forward field, and the travel time field Tr

is measured from the receiver. Note that the term (Tr− t) appears in the expressions for ψv
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and ψω as a consequence of the terminal conditions. We abstain from a detailed discussion

of ray theory because it can be found in standard text books (e.g. Červený, 2001; Aki &

Richards, 2002). Combining equations (2) to (4) and (9) to (11) yields the following working

formula for the computation of the sensitivity density δβ lnβa as a function of position x:

δβ lnβa(x) = −2 ρ(x)
β(x)A(x) (12)

· [Av(x)
∫
ṡv(Tr(x)− t) ṡ(t− Ts(x)) dt−Aω(x)

∫
ṡω(Tr(x)− t) ṡ(t− Ts(x)) dt] . (13)

Equation (12) suggests a simple computational recipe for the computation of the sensitivity

kernels δβ lnβa: 1) Compute the ray-theoretical solution (9) of the regular wave field u,

travelling from the source to the receiver. 2) Use this solution to determine the adjoint

sources (7) and (8). 3) Compute the regular wave field plus the adjoint wave fields (10) and

(11) at a point x in space by solving the ray tracing and dynamic ray tracing equations. 4)

Assemble the sensitivity kernel according to equation (12).

Examples

We illustrate the computation of sensitivity kernels for a medium with a linear velocity

gradient from β = 3.2 km/s at the surface to β = 5.5 km/s at 350 km depth (figure 1). The

sensitivities of the rms rotation, δβ ln ||ω||2 and the rms velocity, δβ ln ||v||2, both exhibit a

well-known dependence on the frequency band width of the signal. Comparatively narrow

frequency bands generate broad kernels with significant contributions at larger distances

from the geometric ray path. As the bandwidth increases, the kernels become successively

narrower and stronger in amplitude. This effect is visualised in the different columns of figure

1, where the frequency bandwidth increases from 0.3 Hz (left column) to 2.5 Hz (right col-

umn). Visually, the kernels δβ ln ||ω||2 and δβ ln ||v||2 are hardly distinguishable. However,
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their differences become apparent in the kernel for the apparent shear wave speed, δβ lnβa,

computed − according to equation (2) − as the difference δβ lnβa = δβ ln ||v||2−δβ ln ||ω||2.

The βa kernels in the bottom row of figure 1 reveal some general characteristics, already

discussed by Fichtner & Igel (2009): The sensitivity decreases with increasing distance from

the receiver, the only exception being the immediate vicinity of the source where all kernels

are singular. In the first Fresnel zone the sensitivity is comparatively small, whereas it

remains large in the higher Fresnel zones near the receiver. The regions of high sensitiv-

ity of the βa kernel occupy less space than in the kernels for rotation amplitudes, velocity

amplitudes or finite-frequency traveltimes (Dahlen et al., 2000). This suggests that mea-

surements of the apparent shear wave speed, βa, may be used to infer small-scale structure

especially in the near-receiver region.

FIGURE 1 HERE

SYNTHETIC INVERSIONS

In the following paragraphs, we give two examples of synthetic inversions with βa mea-

surements: a local crosshole tomography and a regional earthquake tomography. This is

to illustrate the possible range of applicability of our approach. To obtain optimal results,

we employ a nonlinear optimisation scheme with a successively increasing frequency band-

width.

We denote by β0
a,i and βa,i the apparent shear wave speeds for the reference S wave model

β0(x), and for the perturbed model β0(x) + δβ(x), respectively. The subscript i refers to

different source and receiver locations, different frequencies or combinations of them. In
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the interest of simplicity, we henceforth refer to βa,i and β0
a,i as data and synthetics, keep-

ing in mind that the following examples are synthetic inversions. We wish to recover the

perturbation δm through the minimisation of the least-squares misfit functional

E =
1
2

n∑
i=1

(βa,i − β0
a,i)

2 . (14)

The Earth model is parameterised by a set of N basis functions, hk(x), k = 1, ..., N . They

allow us to express the S wave speed model, β(x) as β(x) =
∑N

k=1 βkhk(x), where the βk are

scalar parameters. In the interest of simplicity, we choose the basis functions to be cubic

blocks. The derivative of the objective function E with respect to the coefficients βk is now

given by the projection of the sensitivity kernel δββa,i(x) onto the basis function hk:

∂E

∂βk
=

n∑
i=1

(βa,i − β0
a,i)

∫
G
hk(x) δββa,i(x) d3x , k = 1, ..., N . (15)

The symbol G denotes the volume of the Earth model. For multiple source/receiver ge-

ometries the total gradient is equal to the weighted sum of the single-source/single-receiver

gradients, where the weights are the residuals βa,i − β0
a,i. Using the derivatives E, we

iteratively minimise the misfit with a preconditioned steepest descent algorithm. The pre-

conditioner tapers the singularity of the sensitivity kernels directly at the receiver. It thus

prevents the minimisation scheme from converging towards a local minimum where all het-

erogeneities are concentrated at the receiver locations. In the course of the iterative misfit

minimisation we successively increase the frequency content. This allows us to ensure the

quasi-linearity of the misfit functional with respect to Earth model perturbations.

Scenario I: Local-scale crosshole tomography

Crosshole tomography is a standard tool used to infer small-scale structures that are rel-

evant in engineering and exploration applications (e.g. Angioni et al., 2003; Wong, 2000)
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and in studies of local tectonics (Bleibinhaus et al., 2007). In our first example, visualised in

the left panel of figure 2, we consider two 80 m deep boreholes at a distance of 80 m. Eight

seismic sources at 5 to 75 m depth generate S waveforms recorded at 70 equally spaced

receivers between 5 and 75 m depth. In the course of the iteration we successively use the

following frequency bands: 0.1 - 0.6 kHz, 0.1 - 0.9 kHz, 0.1 - 1.2 kHz, 0.1 - 1.5 kHz and

0.1 - 1.8 kHz. The target model that we wish to invert for consists of two high-velocity

perturbations and a low-velocity perturbation superimposed on a homogeneous background

S velocity of 2 km/s. They represent strong changes of the medium properties in the shallow

subsurface. To comply with the requirements of ray theory, used to compute waveforms

and sensitivity kernels, we choose the perturbations to be smooth. They are similar in

complexity to synthetic structures chosen by various authors (e.g. Zhou et al., 2008; Linde

et al., 2008).

The fictitious data set used for the synthetic tomography contains 40 different recording

series (eight sources, five frequencies), a collection of which is shown in figure 3. While in-

terpretations of βa should be done with caution, we note that the strength of βa variations is

proportional to the frequency bandwidth. Moreover, data produced by sources close to the

perturbations (right panel of figure 3) give a hint to changes between high- and low-velocity

zones as well as to the perturbation intensities.

The inversion starts with a misfit minimisation for a homogeneous initial model and the

smallest frequency band from 0.1 - 0.6 kHz. After seven iterations the synthetics reproduce

the observations well (figure 4), and the resulting image can be used as initial model for

the inversion in the next higher frequency band. We repeat this procedure until we reach

the fifth frequency band (0.1 - 1.8 kHz). The final model is presented in the right panel of

figure 2.
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The inversion result localises low- and high-velocity zones correctly. The shapes and the

intensities of the perturbations are similar to the original model. Small differences in the

shape of the perturbations remain. They may be attributed to an imperfect data coverage.

We note that this example is a proof of concept and not a systematic resolution study that

would need to be performed for each specific application.

FIGURES 2, 3 & 4 HERE

Scenario II: Regional-scale earthquake tomography

The purpose of the second example is to show that our method is as well applicable to

regional-scale tomography problems. For this we mimic an earthquake tomography across

a subduction zone, as performed for example in the Southern Andes (Bohm et al., 2002) or

Central America (Syracuse et al., 2008). Inferring structural heterogeneity in tectonically

active zones is essential for studies of the Earth’s dynamics (e.g. Schuberth et al., 2009).

The target model, shown in the left panel of figure 5, contains a −1 km/s low velocity region

that represents a zone of subduction-related melt ascent. This is flanked by two +1 km/s

high velocity regions. The background velocity is 4.5 km/s.

The seismic experiment includes six earthquake sources located regularly along a fictitious

downgoing plate at depths between 80 km and 200 km. 120 receiver stations are equally

spaced in a surface profile of 238 km length. The frequency bands for the inversion are

0.1-1.0 Hz, 0.1-1.5 Hz and 0.1-2.0 Hz. They provide a data set of 18 different recording

series (six sources, three frequencies). In figure 6 data curves are plotted for all frequency

bands and sources at the profile locations x = 100 km, x = 180 km and x = 260 km. An ad
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hoc interpretation of data plots is restricted to the same level as in the first example. Also

the inversion principle is analogous to the description in scenario I.

Figure 7 reproduces the minimisation of the data misfit between data and synthetics for the

smallest frequency band in nine iteration steps. The inversion result (figure 5, right panel)

highlights clearly the main characteristics of the subduction zone model. Nevertheless, some

artefacts appear especially in source regions. This may be a consequence of the singularity

of the βa kernels directly at the source locations.

FIGURES 5, 6 & 7 HERE

DISCUSSION

We presented a novel variant of seismic tomography based on collocated measurements of

translational and rotational ground motions. For the iterative solution of the inverse prob-

lem we combined the adjoint method and the ray approximation. The use of ray theory was

motivated by its low computational costs that allow us to perform a large number of numer-

ical experiments, and thus to gain intuitive understanding of inverse problems that involve

measurements of the apparent shear wave speed, βa. While being numerically efficient,

the limitations of ray theory restricted this study to smooth models and high-frequency S

waves. This may be improved in future applications by fully numerical wave propagation

schemes that allow us to include lower frequencies and any type of seismic wave.

The measurement of the apparent shear wave speed is attractive because it is indepen-

dent of both the source timing and the source magnitude. This simplifies the combined

source/structure inverse problem. Moreover, no arrival times need to be measured. In fact,
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fully numerical wave propagation in principle allows us to use any part of a seismogram for

βa measurements (Fichtner & Igel, 2009).

A disadvantage of the proposed method lies in the difficulty of measuring both the am-

plitudes of translational and rotational ground motions with high precision. While the

synthetic inversions in the previous paragraphs have clearly shown that βa measurements

allow us to obtain well-resolved tomographic images, the variations of βa induced by yet

undiscovered Earth structure may be difficult to identify. A detailed analysis of βa variations

is work in progress.

CONCLUSIONS & OUTLOOK

The principal objective of this study was to assess whether measurements of seismically

induced rotational ground motions may in the future be incorporated successfully into

seismic inverse problems in order to produce better resolved and more realistic tomographic

images. From the synthetic tests presented in the previous paragraphs we conclude that

collocated displacement and rotation measurements, combined to the apparent shear wave

speed βa, indeed do have this potential. Some of the next steps to be taken are (1) the

extraction of structural information from real data measurements of βa, (2) the transition

from ray theory to fully numerical wave propagation, (3) the incorporation of more seismic

phases and surface waves, (4) the performance of systematic resolution analyses and (5)

the comparison with standard tomographic methods. It is important to note that the

applicability of the porposed method rests on the availability of more data and the further

development and improvement of appropriate sensor technology.

14



ACKNOWLEDGEMENTS

The authors wish to thank the members of the Munich seismology group for many critical

and fruitful discussions. This study would not have been possible without the technical

support provided by Jens Oeser.

15



REFERENCES

[1] Aki, K., Richards, P. G., 2002, Quantitative seismology, 2nd edition: University Science

Books.

[2] Angioni, T., Rechtien, R. D., Cardimona, S. J., Luna, R., 2003, Crosshole seismic

tomography and borehole logging for engineering site characterization in Sikeston, MO,

USA: Tectonophysics, 368, 119-137.

[3] Bleibinhaus, F., Hole, J. A., Ryberg, T., Fuis, G. S., 2007, Structure of the California

Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and

reflection imaging: J. Geophys. Res., 112, B06315.
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FIGURES

Figure 1: Finite-frequency kernel gallery for rms amplitude, rms rotation and apparent

shear wave speed measurements.

Figure 2: Target model and inverted model for the synthetic crosshole tomography.

Figure 3: Relative variations of the apparent shear wave speed in the crosshole synthetic

inversion. Plots are for different depths and frequency bands.

Figure 4: Development of the misfit in the course of the multi-frequency inversion in the

crosshole synthetic tomography.

Figure 5: Target model and inverted model for the synthetic regional earthquake tomog-

raphy.

Figure 6: Relative variations of the apparent shear wave speed in the synthetic earthquake

tomography. Plots are for different frequency bands and positions along the receiver line.

Figure 7: Development of the misfit in the course of the multi-frequency inversion in the

synthetic earthquake tomography.
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Figure 1: Sensitivity kernels for the rms rotation, ||ω||2 (top row), the rms velocity, ||v||2

(middle row) and the apparent shear wave speed, βa (bottom row). The columns correspond

to different frequency bandwidths of the recorded velocity waveform: 0− 0.3 Hz (left), 0− 1.5

Hz (middle) and 0 − 2.5 Hz (right). Superimposed curves are normalised cuts through the

sensitivity kernels in horizontal and vertical directions. All sensitivities are with respect to the S

wave speed, β. The source is at 250 km depth and the receiver is near the surface.
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Figure 2: Left: Crosshole tomography scenario with two 80 m deep boreholes (vertical white

columns) at 80m distance. Sources and receivers are equally spaced between 5 and 75 m depth.

The right borehole contains 70 receivers (black sawtooth line) recording the signals from eight

sources (black bullets) in the left borehole. The synthetic model contains low- and high-speed

variations on a constant S velocity background of 2 km/s. Right: Final model after inversion in

the successively broader frequency bands. The original model on the left is well reproduced.
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Figure 3: Relative variations of the apparent S wave speed, ∆βa/βa, for seismic sources at 5

m (left), 35 m (middle) and 65 m (right) depth and the following frequency bands: 0.1 - 0.6

kHz (dotted line), 0.1 - 1.2 kHz (solid line) and 0.1 - 1.8 kHz (dashed line).
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Figure 4: Misfit optimisation between observed and synthetic data in seven iteration steps

applied to the data set produced by a source at 5 m depth and the frequency band 0.1 - 0.6

kHz. Data and synthetics match well after seven iterations.
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Figure 5: Left: Typical subduction scenario with a low-speed region, caused by melting

processes, and two surrounding high-speed zones. Along the downgoing plate six earthquake

sources (black bullets) located regularly at depths between 80 km and 200 km yield seismic

signals. The black triangles symbolise a receiver profile on the surface with 120 recording

stations. Right: Inversion model including six sources, 120 receivers and three frequency

bands. The figure shows that the inversion approach combining translational and rotational

measurements is well usable for regional-scale tomography.
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Figure 6: Relative variations of the apparent S wave speed, ∆βa/βa, for three different

earthquake sources. In the left panel the source is located at x = 100 km, depth = 96 km,

in the middle panel at x = 180 km, depth = 134 km and in the right panel the source is

at x = 260 km, depth = 192 km. The data curves represent the following frequency bands:

0.1− 1.0 Hz (dotted line), 0.1-1.5 Hz (solid line) and 0.1-2.0 Hz (dashed line).
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Figure 7: Misfit optimisation between observed and synthetic data. The data curve is

produced by an earthquake source at x = 180 km, depth = 134 km and by the frequency

band 0.1-1.0 Hz. After nine iterations data and synthetics match well.
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