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Abstract

The objective of this work is to develop a new method of seismic tomogra-
phy that combines standard translational and new rotational ground motion
measurements - embedded in a mathematically consistent framework.

The theory is based on the definition of an apparent shear wave speed, βa,
which is the ratio of the rms displacement velocity and the rms displacement
rotation. βa is only for a plane S-wave in unbounded, homogeneous media
equal to the true shear wave speed, β. For the calculation of the sensitivity
of βa with respect to β (sensitivity kernel) the adjoint method is used (see
chapter 3). The adjoint method provides the exact first derivative of a phys-
ical observable, in this case of the apparent shear wave speed, βa.

Moreover, the computation of sensitivity kernels requires a solution of the
elastic wave equation. This was already done by Fichtner and Igel (2008)
using a spectral element method, which is quite accurate but suffering from
numerically expensive algorithms. The new approach in this work is the
computation of sensitivity kernels using the classical ray method (see chap-
ter 2 and 4). The method includes the concept of characteristic curves for
non-linear partial differential equations. The benefits are fast and flexible
algorithms.

It is shown that the sensitivity of βa with respect to β is confined to a vol-
ume sorrounding the receiver and that sensitivity kernels can be regarded as
functions of frequency (see chapter 4). Being independent of the magnitude
and timing of an event makes βa-measurements an attractive observable for
seismic tomography. Further sensitivity kernels are calculated in elementary
models as well as in complex media with a 1-D velocity gradient leading to
the result that the complexity of the model is not meaningful for the sen-
sitivity kernel. It is the angle of incident of the incoming wave field at the
receiver that affects sensitivity kernels significantly.

Finally, the sensitivity kernels are used to solve several synthetic inverse
problems (see chapter 5). Due to the singularity of the sensitivity kernel at
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the receiver it is problematic to use sensitivity kernels directly for inversions.
Therefore a pre-conditioner for sensitivity kernels is presented that allows
successful inversions. Based on an iterative minimisation of the least squares
misfit between observed and synthetic data it can be demonstrated that the
inversion method converges to acceptable results. In the context of seismic
tomography with rotational ground motion measurements a central state-
ment of the work is that successful inversions depend mainly on the choice
of optimal frequency bands together with efficient pre-conditioners.

6



Contents

1 General Introduction 11

1.1 Elasticity theory in seismology . . . . . . . . . . . . . . . . . . 12
1.2 Green’s function and Representation theorem . . . . . . . . . 14
1.3 The ring-laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Wave equation and ray theory 19

2.1 The isotropic elastic wave equation . . . . . . . . . . . . . . . 19
2.2 Ray theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The adjoint method 31

3.1 Operator derivatives . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Bilinear operators . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Application to the isotropic elastic wave equation . . . . . . . 43

4 Ray method based computation of sensitivity kernels 45

4.1 The adjoint field for velocity amplitude measurements . . . . . 47
4.2 The adjoint field for rotation amplitude measurements . . . . 49
4.3 Sensitivity kernels . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Free surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 1-D velocity model . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Inversion 71

5.1 The non-linear inverse problem . . . . . . . . . . . . . . . . . 71
5.2 A study of synthetic apparent shear wave speed data . . . . . 73
5.3 An inversion experiment . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusions and Outlook 91

7



8



List of Figures

1.1 Ring-laser gyroscope . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Ring-laser data . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Ring-laser concept . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Ray model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Ray tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Theorem on intersecting lines . . . . . . . . . . . . . . . . . . 29

4.1 Time- and frequency-domain representations of a Gauss signal 53
4.2 Vector couples for point sources . . . . . . . . . . . . . . . . . 56
4.3 Model block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Time integral for sensitivity kernels . . . . . . . . . . . . . . . 62
4.5 Velocity and rotation kernel . . . . . . . . . . . . . . . . . . . 62
4.6 βa kernel - vertical slice . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Horizontal slices through a βa kernel . . . . . . . . . . . . . . 63
4.8 βa kernels for different frequency bandwidths . . . . . . . . . . 64
4.9 S-wave reflection at the free surface . . . . . . . . . . . . . . . 66
4.10 Comparison of kernels: 1-D vs. homogeneous model . . . . . . 69

5.1 Synthetic perturbation model 1 . . . . . . . . . . . . . . . . . 73
5.2 Synthetic apparent shear wave speed data - testing different

perturbation depths . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 βa kernel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Synthetic apparent shear wave speed data - testing smaller

perturbation size . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Synthetic apparent shear wave speed data - testing larger per-

turbation size . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Synthetic apparent shear wave speed data - testing lateral per-

turbation shift: to the left . . . . . . . . . . . . . . . . . . . . 76
5.7 βa kernel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.8 Synthetic apparent shear wave speed data - testing lateral per-

turbation shift: to the right . . . . . . . . . . . . . . . . . . . 77

9



5.9 βa kernel 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.10 Synthetic apparent shear wave speed data - testing different

perturbation intensities and source frequencies . . . . . . . . . 78
5.11 Synthetic perturbation model 2 and 3 . . . . . . . . . . . . . . 79
5.12 Synthetic apparent shear wave speed data - testing different

lateral perturbation expansions . . . . . . . . . . . . . . . . . 79
5.13 Synthetic perturbation model 4 and 5 . . . . . . . . . . . . . . 80
5.14 Synthetic apparent shear wave speed data - chess board pat-

tern perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.15 Perturbation model - one source . . . . . . . . . . . . . . . . . 81
5.16 βa kernel with pre-conditioner . . . . . . . . . . . . . . . . . . 82
5.17 Model update gradient with and without pre-conditioner . . . 82
5.18 Apparent shear wave speed data and inversion model after the

first update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.19 Apparent shear wave speed data and inversion model after ten

updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.20 Apparent shear wave speed data and inversion model after

twenty updates . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.21 Misfit for iteration steps - one source, 0 − 2Hz . . . . . . . . . 84
5.22 Inversion experiment with a smaller frequency band . . . . . . 85
5.23 Misfit for iteration steps - one source, 0 − 1Hz . . . . . . . . . 85
5.24 Inversion experiment with a broader frequency band . . . . . . 86
5.25 Misfit for iteration steps - one source, 0 − 3Hz . . . . . . . . . 86
5.26 Perturbation model - three sources . . . . . . . . . . . . . . . 87
5.27 Apparent shear wave data and inversion model, three sources,

one iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.28 Apparent shear wave data and inversion model, three sources,

five iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.29 Apparent shear wave data and inversion model, three sources,

ten iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10



Chapter 1

General Introduction

Already more than two thousand years ago the greek scientist Eratosthenes
of Cyrene determined the Earth’s radius. But the question of what hap-
pens in the interior of the Earth was for a long time governed by mythology.
This is not surprising because explicit tomographic Earth models are only
available since information provided by seismic waves can be interpreted by
computational seismology techniques.

The objective of this work is to contribute to the development of a new
method of seismic tomography that combines standard translational and
new rotational ground motion measurements - embedded in a mathemati-
cally consistent framework.

Chapter 1 is dedicated to a review of some basic knowledge of classical con-
tinuum mechanics in seismology. This is necessary to introduce fundamental
expressions, to establish terminological precision and to define some notation
conventions. Furthermore it should be emphasised that recent developments
in modern ring-laser technology gave the impulse for the following consid-
erations. So a brief survey of modern ring-laser technology in seismology
completes the chapter.
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1.1 Elasticity theory in seismology

The basic question that underlies this investigation is: What do seismograms
tell us about Earth’s structure? In principle a seismogram is a kinetic en-
ergy impulse recorded by a receiver (seismometer). Before this kinetic energy
impulse arrives at the receiver it was initialised by a source (earthquake, ex-
plosion etc.) somewhere in the Earth or on its surface and then transported
through the medium between source and receiver. The energy transport is
achieved by continuous local oscillations of particles between source and re-
ceiver. That is the definition of a mechanical wave. In seismology mechanical
waves are called seismic waves.
To describe the motion of particles in a continuum each particle is specified
by its original position x at some reference time t0 (Lagrangian description).
We use the cartesian coordinate system, x = (x1, x2, x3). The vector distance
of a particle at time t from the position x that it occupies at some reference
time t0 is called displacement u. The displacement is a function of space and
time, in symbols:

u = u(x, t).

The displacement u is a vector field. To calculate the gradient (grad), diver-
gence (div) and curl of u we adopt common notation in vector calculus:

grad(u) =





∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3



 = ∂jui = ∇u

div(u) = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= ∂iui = ∇ · u

curl(u) =

∣

∣

∣

∣

∣

∣

i j k
∂1 ∂2 ∂3

u1 u2 u3

∣

∣

∣

∣

∣

∣

= êiǫijk∂juk = ∇× u

div(grad(u)) = ∂j∂jui = ∇ · ∇u = ∇2u.

The distortion of a medium is analysed by the strain tensor eij . In the
case of an infinitesimal displacement gradient, |∂jui| ≪ 1, the strain tensor
can be written as

eij ≡
1
2
(∂iuj + ∂jui).
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The stress tensor τij describes internal forces acting between adjacent points
within a continuum. Under the assumption of infinitesimally small particle
motion the Earth can be regarded as an elastic medium. An elastic medium
possesses a natural state with zero strain and stress to which it will return
when applied external forces are removed. Thermodynamic arguments then
lead to a linear stress-strain relation, which is just a generalisation of Hooke’s
law

τij = cijklekl.

The tensor cijkl is called the elasticity tensor. Finally elasticity theory re-
sults in the general wave equation, valid in classical continuum mechanics for
infinitesimal motions in an elastic medium with linear stress-strain relation
and density distribution ρ

ρ∂2
t ui − ∂jcijkl∂kul = 0.

Until now external body forces (seismic sources) were neglected. The de-
scription of a seismic source f is based on the unidirectional unit impulse
applied to one particular point at x = ξ and time t = τ in the direction of
the xn -axis:

fi(x, t) = Fδ(x − ξ)δ(t− τ)δin. (1.1)

F is the strength of the impulse, δ the Dirac delta function and δin the Kro-
necker delta.

Let now L be a vector differential operator defined on the components of
u by

(L(u))i ≡ ρ∂2
t ui − ∂jcijkl∂kul. (1.2)

Hence the equation for elastic displacement is

L(u) = f. (1.3)
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1.2 Green’s function and Representation the-

orem

This section shows how one can represent the displacement at a general point
in space and time in terms of the quantities that originated the motion. These
techniques are needed mostly in chapter 4.
The description of the displacement u = u(x, t) throughout the volume V
with surface S for a unidirectional unit impulse is called the elastodynamic
Green’s function. If the unit impulse is applied at x = ξ and time t = τ in
the direction of the xn -axis, then we denote the ith component of displace-
ment at general (x,t) by Gin(x, t; ξ, τ). Gin satisfies the equation

ρ∂2
tGin = δinδ(x − ξ)δ(t− τ) + ∂jcijkl∂lGkn (1.4)

As initial conditions we always use that G(x, t; ξ, τ) and ∂tG(x, t; ξ, τ) are
zero for t ≤ τ and x 6= ξ. G is uniquely specified by the boundary conditions
on S. If the boundary conditions are independent of time, then the following
reciprocal relation for source and receiver times is valid

G(x, t; ξ, τ) = G(x, t− τ ; ξ, 0) = G(x,−τ ; ξ,−t) (1.5)

In order to express the displacement u due to body forces f throughout V
and to boundary conditions S there is a fundamental theorem in seismology
called Representation theorem. It states a way in which the displacement u

at a certain point is made up from contributions due to the force f throughout
V , plus contributions due to the traction T(u,n) and to the displacement u

itself on S. In symbols:

un(x, t) =

∫ ∞

−∞

dτ

∫ ∫ ∫

V

fi(ξ, τ)Gin(ξ, t− τ ;x, 0)dV (ξ)

+

∫ ∞

−∞

dτ

∫ ∫

S

(

Gin(ξ, t− τ ;x, 0)Ti(u(ξ, τ),n)

− ui(ξ, τ)cijklnjGkn,l(ξ, t− τ ;x, 0)

)

dS(ξ) (1.6)

It is not the aim of that work to proof this theorem nor to derive all later
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results step by step beginning at that level but the Representation theorem
is fundamental especially for considerations in chapter 4. Therefore it should
be mentioned at this point. For a detailed proof and further derivations con-
cerning the Representation theorem the reader is refered to e.g. Aki/Richards
(2002).

Before we actually start with the theory some words shall be said to modern
ring-laser instruments that initiated the approach of doing inversion with
rotations.
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1.3 The ring-laser

Figure 1.1: Ring-laser (taken from: Schreiber, U., Ring Laser Principles and
Design Considerations )

Seismological observations are still primarily based on three-component trans-
lational ground motion measurements (displacement, velocity or acceleration
recorded in three orthogonal directions, usually N-S, E-W, up-down). But for
a complete description of the motion of a deformable body at a given point
in the context of infinitesimal deformation, one needs three components of
translation, six components of strain and three components of rotation. The
measurement of the deformation of the Earth (strain) is also quite routinely
used.
But practically rotational motions induced by seismic waves have been ig-
nored for a long time, first because rotational effects where thought to be
small, and second because sensitive measuring devices where not available.
This has been changed since modern ring-laser technology has provided the
means to develop instruments that allow in principle the observation of rota-
tional motions in a wide frequency band and epicentral distance range. Yet
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the fact that inertial seismometers commonly used in seismology are sensitive
to and thus polluted by rotational motions should motivate further investi-
gation of this new observable. As an example ring-laser recordings of the
Sumatra earthquake (26.12.2004) are shown in figure 1.2.

Figure 1.2: Ring-laser data from the Sumatra earthquake (vertical component,
taken from Zürn, W., Das verheerende Sumatra-Beben am 26.12.2004 aus
seismologischer Sicht)

Ring-laser gyroscopes were developed primarily to observe variations in Earth’s
absolute rotation rate. But they turened out to be sufficiently accurate to
record seismic rotations, too.
The measurement principle of a ring-laser is sketched in figure 1.3. The in-
strument is mounted horizontally and rigidly attached to the ground. Two
counter-rotating single-mode laser beams interfere to generate a beating in
case the system rotates with respect to the surface normal.
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The Sagnac beat frequency δf is directly proportional to the rotation rate
Ω around the surface normal n of the ring laser system, expressed by the
Sagnac equation

δf =
4A

λP
n ·Ω (1.7)

where P is the perimeter of the instrument, A the area and λ the laser
wavelength.

Figure 1.3: Ring-laser concept (taken from Schreiber, U., Ring Laser Prin-
ciples and Design Considerations )

Simpler low-cost ring-laser instruments with equivalent sensitivity have been
developed in order to capture signals not only from teleseismic but also from
local events.
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Chapter 2

Wave equation and ray theory

Anisotropy plays an important role in realistic Earth models. Nevertheless
from now on we restrict ourselves to isotropic models. This simplification
does not affect the results of this work. As this is a completely new approach
in seismic tomography the focus is still on the establishment of a consistent
theory as well as on a physical interpretation of its results. For this purpose
simple models are the most practical ones. Therefore in this chapter the
elastic wave equation will be adapted to an isotropic Earth model. Then
the wave equation is solved by the ray method, because the ray method is
an efficient tool that makes it possible to run various fast but meaningful
computational experiments.

2.1 The isotropic elastic wave equation

In the absence of external forces the general elastic wave equation is

ρ∂2
t ui − ∂jcijkl∂kul = 0.

From the symmetry of the stress and strain tensors and a thermodynamic
argument it follows that the maximum number of independent elements of
the elasticity tensor cijkl is 21. In an isotropic body this reduces further to

cijkl = λδijδkl + µδikδjl + µδilδjk. (2.1)

The material parameters λ and µ are in general functions of position.
According to the wave equation we get

∂jcijkl∂kul = ∂i(λ∂kuk) + ∂j(µ∂iuj + µ∂jui).
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We assume that spatial variations of the material parameters are much
smaller than variations of the strain eij (≡ 1

2
(∂iuj + ∂jui)). Hence

∂jcijkl∂kul = λ∂i∂kuk + µ∂j∂iuj + µ∂j∂jui = (λ+ 2µ)∇∇ · u− µ∇×∇× u,

where we used the identity ∇2u = ∇∇ · u −∇×∇× u.
This yields the isotropic elastic wave equation for smoothly varying material
parameters λ and µ

ρ∂2
t u− (λ+ 2µ)∇∇ · u + µ∇×∇× u = 0. (2.2)

This equation can be further simplified using the following theorem:

Theorem 2.1.1 (Helmholtz Theorem).
Let u : R

3 −→ R
3, x 7−→ u(x) be a differentiable vector field with lim

|x|→∞
u(x) =

0. Then there exists a unique decomposition of u by a scalar field ϕ and a
vector field φ with ∇ · φ = 0:

u = −∇ϕ + ∇× φ.

ϕ and φ can be written as

ϕ(x) =
1

4π

∫ ∫ ∫

R3

∇ · u(y)

|x− y|
dV (y)

φ(x) =
1

4π

∫ ∫ ∫

R3

∇× u(y)

|x− y|
dV (y)

So the displacement field u can be written as the sum of a curl-free scalar
field ϕ and a divergence-free vector field φ. Now apply the ∇× operator
respectively the ∇· operator to u for separating the displacement field into
a divergence-free respectively a curl-free part.
Under the assumption that variation of density ρ is also small we get:

divergence− free : ∂2
tφ− β2∇2φ = 0 (2.3)

curl − free : ∂2
t ϕ− α2∇2ϕ = 0 (2.4)

with wave velocities: β =

√

µ

ρ
and α =

√

λ+ 2µ

ρ
.
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Obviously is α > β. That is why in seismology the body wave with no
rotation is called primary wave (P-wave) and the body wave with no change
in volume is called secondary wave (S-wave or shear wave).
The object of this work is to find a way how to include rotational ground
motion measurements in seismic tomography. So further investigation con-
cernes only S-waves. From now on with u we denote the displacement field
generated only by S-waves. And we modify the vector differential operator
L defined on the components of u to:

L(u) ≡ ρ∂2
t u − µ∇2u. (2.5)
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2.2 Ray theory

The topic of this section is the solution of the elastic wave equation based on
high-frequency asymptotic ray theory. The derivation of the equations is kept
in a compact form and can be found in detail in Červený, V. (2001). The ray
method yields only an approximation of the actual wave field, because travel
times and amplitudes are calculated only along certain ray paths. Ray prop-
erties (reflections, refractions, etc.) are based on analogy with geometrical
optics. Figure 2.1 shows rays reflected from two selected interfaces, recorded
at receivers distributed evenly along a line profile.

Figure 2.1: Rays of two reflected waves generated by one shot point; taken
from Johanna Brokešová, Asymptotic Ray Method in Seismology - A Tuto-
rial, 2006

In this model some parameter variations are rather abrupt (green marks),
leading to so called shadow zones without rays and caustic points, where in-
finitely many rays simultaneously converge at one single point. In both cases
application of ray theory becomes problematic. To avoid this situations the
model has to be smooth by means of small parameter variations with respect
to the wavelength.
In this work we do not have to care about caustics and shadow zones, be-

22



cause we calculate sensitivities only in homogeneous models or models with
1-D velocity gradient.

In ray theory the solution of the elastic wave equation at point x and time t
is assumed in the form of an asymptotic ray series expansion:

u(x, t) =
∞

∑

k=0

Uk(x)Fk(t− τ(x)). (2.6)

The Uk’s are the vectorial amplitudes, τ is the so-called eikonal, which can
be interpreted as travel time, and F (t′) is an analytic signal, i.e. a complex-
valued function whose real and imaginary parts form a Hilbert pair

F (t′) = f(t′) + iH[f(t′)] (2.7)

For example the exponential function exp(it′) = cos(t′) + isin(t′) with
H[cos(t′)] = sin(t′) is an analytic signal.
In the frequency-domain, the ray series corresponding to (2.6) has the form

u(x, ω) = 2h(ω)f(ω)exp[−iω(τ(x))]
∞

∑

k=0

Uk(x)(−iω)−k (2.8)

with the Fourier transform f(ω) = F [f(t)] and the Heaviside function h(ω).
The frequency-domain series is assumed to be an asymptotic power series for
high ω. Typically the error decreases with growing ω for any fixed number
of terms in the series. On the other hand, when ω is fixed, the error may
grow for N greater than a certain value. Thus we are concerned with what
happens as ω tends to ∞ rather than what happens as the number k of terms
grows.
In practice it is common to consider only the leading term in the series. In
the following we restrict ourselves only to the zero-order ray solution

u(x, t) = U(x)F (t− τ(x)) (2.9)

with ray amplitude U and travel time τ . Surfaces τ(x) = const. represent
wavefronts. An important quantity is the gradient of τ , called the slowness
vector p. It is a vector perpendicular to the wavefront and given by

pi(x) =
∂τ(x)

∂xi
=
nτi (x)

c(x)
(2.10)

where nτ is the unit vector perpendicular to the wavefront and c the phase
velocity.
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Specifying in 2.9 for example F (t) = exp(−iωt), for some fixed frequency, we
obtain the so-called time-harmonic solution

u(x, t, ω) = U(x)exp[−iω · (t− τ(x))] (2.11)

In order to determine the functions U(x) and τ(x), we require the solution
to fit asymptotically the corresponding equation of motion. Substituting the
zero-order ray solution (2.9) into the isotropic S-wave equation (2.5) without
body forces and collecting the terms with the same time derivative of F yields

−F̈Ni(U,∇τ) + ḞMi(U,∇τ) − FLi(U) = 0 (2.12)

and in the frequency-domain

−(iω)2Ni(U,∇τ) + (iω)1Mi(U,∇τ) − (iω)0Li(U) = 0 (2.13)

in both cases with

Ni(U,∇τ) = µUi∂jτ∂jτ − ρUi

Mi(U,∇τ) = µ[2∂jUi∂jτ + Ui∂j∂jτ ]

Li(U) = µ∂j∂jUi

Equations (2.12) and (2.13) represent now the equation of motion. Because
of different orders of derivatives of F the solution has to satisfy the condi-
tions N = 0, M = 0 and L = 0. In general it is not possible to satisfy all of
the conditions, since they represent nine equations while there are only four
parameters (three components of U and τ). However, in high-frequency ap-
proximation only the first two conditions are used to determinate the eikonal
and the ray amplitude. This is directly justified by equation (2.13) where the
terms with ω2 and ω1 dominate over the one with ω0 for high frequencies.
The condition N = 0 yields the so-called eikonal equation. Besides τ it
constrains also the direction (polarisation) of U. The magnitude of U is
determined from the transport equation, given by M = 0.
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The eikonal equation

If we define a matrix Γ by Γik := µ
ρ
δikplpl we can write

Ni(U,∇τ) = µUipjpj − ρUi = (Γji − δji)Ui = 0 (2.14)

Regarding (2.14) as an eigenvalue problem of the matrix Γ leads to the useful
eikonal equation

|p|2 =
1

β2
(2.15)

To solve the eikonal equation we use the method of characteristic curves. In
the concept of characteristics the static Hamilton-Jacobi equation

H(xi, p̃i) = 0 , p̃i = ∂iψ (2.16)

plays an important role. ψ is the function to be determined, so in our case ψ
is τ because pi = ∂iτ . In the formalism p̃′is and x′is are treated as independent
variables. The equation (2.16) is solved by the use of characteristic curves,
which satisfy the so-called canonical equations

dxi
du

=
∂H

∂p̃i
,

dp̃i
du

= −
∂H

∂xi
,

dτ

du
= p̃k

∂H

∂p̃k
, i = 1, 2, 3 (2.17)

with a flow parameter u, i.e. xi = xi(u) and pi = pi(u), along the curve. If
we choose

H(xi, pi) =
1

η
[(pkpk)

η
2 − β−η] , η ∈ Z\ {0} (2.18)

the eikonal equation is satisfied along the characteristic curve of H . In this
way the eikonal equation (non-linear partial differential equation) is replaced
by a system of seven ordinary differential equations (2.17). The characteristic
curve (6-dimensional) is obtained from the first six coupled equations of the
system (2.17). The projection of this 6D curve into the 3D space, i.e. the
geometrical trajectory of the characteristic curve, is called the seismic ray. So
the first six equations of the system (2.17), we call them ray tracing system,
provide ray paths, travel times and slowness vectors.
If we insert (2.18) into the canonical equations (2.17), we obtain the ray
tracing sytem

dxi
du

= β2−ηpi ,
dpi
du

=
1

η

∂

∂xi

1

βη
(2.19)
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and
dτ

du
= (pkpk)

η
2 =

1

βη
(2.20)

The parameter η ∈ Z controls the physical meaning of the flow parameter u.
For seismological applications reasonable η′s are for example

• η = 0

In this case (2.18) is not defined and must be replaced by the limit for
η → 0. Using the l’Hospital rule we obtain for H in the limit

H(xi, pi) =
1

2
ln(pkpk) + ln(β) =

1

2
ln(β2pkpk) (2.21)

Then it follows directly from dτ
du

= pk
∂H
∂pk

that u is equal to the travel
time τ . And the ray tracing system has the form

dxi
dτ

= β2pi ,
dpi
dτ

= −
1

β

∂

∂xi
β (2.22)

• η = 1

Here u has the meaning of the arclength s along the ray and we have
the equations

dxi
ds

= βpi ,
dpi
ds

= −
1

β2

∂

∂xi
β ,

dτ

ds
=

1

β
. (2.23)

Note that to calculate rays and travel times in isotropic medium, it is suffi-
cient to know the distribution of the velocity β.
The calculation of sensitivity kernels in chapter 4 is restricted to homoge-
neous models and models with 1-D velocity gradient in x3-direction. In both
cases we set as initial slowness condition p20 = 0, so that rays are situated in
the x1−x3 plane. The ray calculation is described completely by the four ray
tracing equations for x1, x3 and p1, p3 with corresponding initial conditions
x10, x30, p10, p30.
In the homogeneous case calculation of travel times is easy because rays are
straight lines with constant slowness vector p0. The wavefronts are spheres.

In a 1-D model with linearly increasing velocity in the x3-direction, i.e.
β(x3) = β0 + bx3, it can be shown that rays are segments of circles. The
ray path is given by

[x1 − x10 −
p30β0

bp
]2 + [x3 − x30 +

β0

b
]2 =

1

p2b2
(2.24)

26



which is the equation of a circle with the center at [x10 + (pb)−1p30β0; x30 −
β0(b

−1)] and radius (pb)−1. Here x10 and x30 are the coordinates of the initial
point , it is β0 = β(x30), p30 = ( 1

β2
0−p

2 )
1/2 and p1 = p10 = const. along a

certain ray. The wavefronts are again spheres expressed by

[x1−x10]
2+[x3−x30+

β0

b
(1−cosh(b(τ−τ0)))]

2 =
β02

b2
sinh2(b(τ−τ0)). (2.25)

From the equation for the wavefronts we can derive the travel time τ(S,R)
from any point S to any other point R in the model with constant gradient
of velocity b. Denote by βS the velocity at S, by βR the velocity at R, and
by r the distance between S and R. Then

τ(S,R) =
1

b
arsinh[

br

(βRβS)1/2
(1 +

b2r2

4βSβR
)1/2] (2.26)

Now we can calculate ray paths and travel times. The magnitude of ampli-
tudes is derived by the transport equation as follows.
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The transport equation

The transport equation is given by the condition Mi(U,∇τ) = µ[2∂jUi∂jτ +
Ui∂j∂jτ ] = 0. Hence

2(∇U) · (∇τ) + U (∇2τ) = 0 (2.27)

As we are only interested in the magnitude A of amplitudes it is sufficient to
consider

2(∇A) · (∇τ) + A (∇2τ) = 0. (2.28)

We solve the transport equation in the context of ray tubes. A ray tube is a
familiy of rays with ray parameters pI being in the interval (p1,p1 + dp1)×
(p2,p2 + dp2). A part of such a tube, bounded by two wavefronts at times
t0 and t is shown in figure 2.2

Figure 2.2: Section of a ray tube (taken from Červený, V. (2001)

Integration of the transport equation over the volume of an infinitesimally
fine ray tube together with the Gauss theorem yields the continuation formula

A2
0dq0
β0

=
A2

1dq1
β1

= const. (2.29)

This means for example that the magnitude of the amplitude increases for a
focusing ray.
Again it is not difficult to derive properties for the homogeneous case, where
β0 = β1, hence A2

0dq0 = A2
1dq1.
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Applying the theorem on intersecting lines

Figure 2.3: With the theorem on intersecting lines it can be shown in an
elementary way that in homogeneous media along a certain ray the magnitude
of the amplitude is proportional to 1

r
.

yields

A1 =

√

dq0
dq1

A0 =
|dx0|

|dx1|
A0 =

1

r
A0. (2.30)

So along a certain ray the magnitude of the amplitude is proportional to 1
r
.

In practical applications we will transfer this property to the 1-D velocity
gradient model. Deviation of the exact solution is supposed to be negligible
compared e.g. to the accuracy of approximating the wavefield by the zero-
order ray solution.

At the end of chapter 2 we are able to solve the isotropic wave equation by
determing travel times and amplitudes using ray theory. In the next chapter
we introduce the mathematical background for the computation of the exact
first derivative of a physical observable. This is the adjoint method, which
will be a fundamental tool for the calculation of sensitivity kernels.
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Chapter 3

The adjoint method

Our issue is to reconstruct the Earth’s structure combining rotational and
translational ground motion measurements associated with S-waves. The
elastic wave equation for S-waves ρ∂2

t u − ρβ2∇2u = f shows that material

properties are reflected by the S-wave velocity β =

√

µ

ρ
. So detection of lo-

cal variations of β in our Earth model is the key for doing structural inversion.

The following simple example confirms that the ratio of the displacement
velocity amplitude |u̇| and the rotation amplitude |∇ × u| is an attractive
quantity for inversion with rotations:

Example: Plane S-wave
In a homogeneous isotropic medium a plane S-wave is represented via:

u = Acos(kx − wt) =





0
A2cos(k1x1 − wt)

0



 (3.1)

with propagation in x1-direction, polarisation in x2-direction and phase ve-
locity β = ω

|k|
.

Hence

|u̇| = ωA2sin(k1x1 − wt)

|∇ × u| = k1A2sin(k1x1 − wt)

and
|u̇|

|∇ × u|
=
ω

k1
=

2π
T
2π
λ

= β (3.2)
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The plane wave in the example exists only in homogeneous unbounded media.
As measurements are normally done at the surface of the Earth and realistic
models are not homogeneous we cannot correlate |u̇|/|∇ × u| directly with
the pointwise S-wave speed β. But in general the ratio of the amplitudes of
displacement velocity and rotation always keeps the unit of a velocity. This
fact and the simple example from above justify the assumption that the ratio
under consideration is affected by the S-wave velocity structure in a wider
vicinity of the measurement point xr and thus contains some information
about the S-wave velocity structure. But how much is it affected and in
which regions exactly? To answer this question we proceed as follows:

Let u(p;x, t) be a displacement field recorded over time t at the location
x = xr depending on some model parameters p = (ρ, µ, ...). We define
the apparent shear wave speed βa by the ratio of the rms amplitudes of the
velocity and the rotation displacement field:

βa(p;xr, t) :=
1

2

‖u̇(p;xr, t)‖2

‖ω(p;xr, t)‖2
(3.3)

with ‖ω(p;xr, t)‖2 := ‖1
2
∇× u(p;xr, t)‖2 and ‖(·)‖2 :=

√

∫

R
(·)2dt.

To simplify the notation we introduce the symbols:

Av(x
r) := ‖u̇(p;xr, t)‖2 =

√

∫

R

u̇(p;xr, t)2dt (3.4)

Aω(x
r) := ‖ω(p;xr, t)‖2 =

√

∫

R

(

1

2
∇× u(p;xr, t)

)2

dt (3.5)

and

βa(x
r) =

1

2

Av(x
r)

Aω(xr)
. (3.6)

Now we want to know something about the influence of the S-wave velocity
structure on the measurement of the apparent shear wave speed βa. From a
mathematical point of view it is obvious to calculate the first derivative of βa
with respect to the model parameter β. The definition 3.6 directly yields the
sensitivity kernel, δββa, for the apparent shear wave speed, βa, with respect
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to the S-wave speed, β. In symbols this is

1

βa
δββa =

1

Av
δβAv −

1

Aω
δβAω. (3.7)

The sensitivity densities δβAv and δβAω can be calculated by applying a
mathematical method called the adjoint method. The rest of chapter 2 is
dedicated to explain what the adjoint method is. This concept can also be
found in Fichtner et al. (2006).
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3.1 Operator derivatives

The adjoint method permits the computation of the exact first derivative of
a physical observable (e.g. displacement field) with respect to its parameters
(e.g. S-wave speed). The method is based on a general notation for deriva-
tives of an arbitrary operator that shall be introduced in this section.

Definition 3.1.1 (Linear operator).
An operator T mapping the normed space X to the normed space Y is called
linear if it satisfies

i) T (x+ y) = T (x) + T (y)

ii) T (αx) = αT (x)

for all x,y ∈ X and α ∈ R. The set of all linear operators mapping X to Y
is denoted by [X → Y ].

Definition 3.1.2 (First derivative).
Let P be an operator mapping the open set ΩX ⊂ X of the Banach space
X to the subset ΩY ⊂ Y of the Banach space Y. Moreover, assume that for
an element x0 ∈ ΩX there is a linear operator U ∈ [X → Y ] such that the
relation

lim
ε→0

1

ε
[P (x0 + εx) − P (x0)] = U(x)

holds for all x ∈ X. If it exists, the operator U is called the first derivative
of P in x0 ∈ ΩX and we write

U =: DP (x0), U(x) = DP (x0)(x).

The derivative defined above is also called weak derivative or Gâteaux deriva-
tive. If not explicitly stated otherwise, X and Y will, in what follows, de-
note two Banach spaces and P will be an operator mapping an open subset
ΩX ⊂ X to a subset ΩY ⊂ Y .

Definition 3.1.3 (Differentiability, Fréchet derivative).
Let K be the subset of X with ‖x‖ = 1. If

lim
ε→0

1

ε
[P (x0 + εx) − P (x0)] = U(x) = DP (x0)(x)

exists uniformly with respect to x ∈ K, then P is said to be differentiable in
x0 and DP (x0) is called the Fréchet derivative of P in x0.
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Theorem 3.1.1.

An operator P : X → Y is differentiable in x0 if and only if the following
properties are true:

i) ∃ U ∈ [X → Y ]

ii) ∀ ε > 0 ∃ δ > 0 ,so that ‖∆x‖ < δ, ∆x ∈ X implies
‖P (x0 + ∆x) − P (x0) − U(∆x)‖ ≤ ε‖∆x‖.

For linear operators it is straightforward to show that differentiability in
x0 ∈ ΩX implies continuity in x0 ∈ ΩX . If P ∈ [X → Y ], then the derivative
of P is just given by

DP (x0)(x) = P (x).

This means that the derivative is constant for all x0 ∈ ΩX and depends only
on the direction of differentiation.

Theorem 3.1.2 (Linearity).
Let P1, P2 : (ΩX ⊂ X) → (ΩY ⊂ Y ) and α1, α2 ∈ R. Moreover, let P be
defined by P := α1P1 + α2P2. If the derivatives DP1(x0) and DP2(x0) with
x0 ∈ ΩX exist, then the derivative DP (x0) exists also and is given by

DP (x0) = α1DP1(x0) + α2DP2(x0).

If P1 and P2 are differentiable in x0, then P is also differentiable in x0.

Theorem 3.1.3 (Chain rule).
Let P : (ΩX ⊂ X) → (ΩY ⊂ Y ) and Q : (ΩY ⊂ Y ) → Z, with ΩY an
open subset of Y and Z a Banach space. The operator Q is assumed to be
differentiable in P (x0) ∈ Y with x0 ∈ ΩX , and the derivative of P in x0 is
assumed to exist. Then the derivative of the operator R := QP : (ΩX ⊂
X) → Z in x0 exists and is given by:

DR(x0) = DQ(P (x0))DP (x0).

Theorem 3.1.4 (Mean value theorem).
Let x, x0 ∈ ΩX and (1− t)x0 + tx =: x0 + t∆x ∈ ΩX for t ∈ [0, 1]. Moreover,
assume that P is differentiable along the line connecting x and x0. Then,

‖P (x) − P (x0)‖ ≤ sup
φ∈(0,1)

‖DP (x0 + φ∆x)‖‖∆x‖.
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Definition 3.1.4 (Bilinear operator).
Let X and Y be two Banach spaces and let 〈·, ·〉 : X2 → Y be an operator
assigning to each pair of elements x, x′ ∈ X an element y ∈ Y , i,e.,

〈x, x′〉 = y ∈ Y.

The binary operator 〈·, ·〉 is said to be bilinear if the relations

〈αx1 + βx2, x
′
1〉 = α 〈x1, x

′
1〉 + β 〈x2, x

′
1〉 , (3.8)

〈x1, αx
′
1 + βx′2〉 = α 〈x1, x

′
1〉 + β 〈x1, x

′
2〉 (3.9)

are satisfied for all x1, x2, x
′
1, x

′
2 ∈ X and for all α, β ∈ R. Moreover, the

bilinear operator 〈·, ·〉 is termed bounded if there exists M > 0 such that

‖ 〈x, x′〉 ‖ ≤M‖x‖‖x′‖

for all x, x′ ∈ X. We shall denote the space of all bounded bilinear operators
mapping from X2 to Y by [X2 → Y ].

An operator P may act on several elements from different spaces at a
time, making it necessary to introduce partial derivatives.

Definition 3.1.5 (Partial derivatives).
Let Ω1 be an open subset of the Banach space X1 and Ω2 be an open subset
of the Banach space X2. Moreover, let P : X1 × X2 → Y be an operator
mapping X1 ×X2 to the Banach space Y. A linear operator U1 ∈ [X1 → Y ]
for which the relation

lim
ε→0

1

ε
[P (x1 + εx′1, x

′
2) − P (x1, x2)] = U1(x

′
1)

holds for all x′1 ∈ X1, is called the first partial derivative of P with respect
to x1. Similarly, a linear operator U2 ∈ [X2 → Y ] is called the first partial
derivative of P with respect to x2 if

lim
ε→0

1

ε
[P (x1, x2 + εx′2) − P (x1, x2)] = U2(x

′
2)

holds for all x′2 ∈ X2. If the respective partial derivatives exist, we shall write

δx1P (x1, x2) = U1, δx2P (x1, x2) = U2.

Concerning mixed double partial derivatives it is possible to change the order
of differentiation under certain conditions:
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Theorem 3.1.5 (Change of the order of partial differentiation).
Let Ω1 be an open subset of the Banach space X1 and Ω2 be an open subset
of the Banach space X2. Moreover, let P : X1 × X2 → Y be an oper-
ator mapping X1 × X2 to the Banach space Y. If P is continuous and if
δx1P, δx2P, δx1δx2P, δx2δx1P exist and are continuous, then

δx1δx2P (x1, x2)(x
′
2)(x

′
1) = δx2δx1P (x1, x2)(x

′
1)(x

′
2).

This is a generalisation of Schwarz’s theorem from real calculus.

Theorem 3.1.6.

Let Q : (ΩX ⊂ X) → (ΩY ⊂ Y ) and P : (ΩX ⊂ X) × (ΩY ⊂ Y ) → Z, with
ΩX and ΩY open subsets and X, Y, Z Banach spaces. Moreover, let Q be
differentiable in x0 ∈ ΩX and P be partially differentiable with respect to Q
in Q(x0) and with respect to x in x0. If the derivatives DQ, δQP and δxP
are continuous in x0 and (Q(x0), x0), respectively, then

DP (Q(x0), x0)(x) = δQP (Q(x0), x0)DQ(x0)(x) + δxP (Q(x0), x0)(x).

Based on this mathematical framework we can now explain the adjoint
method for the general case where u ∈ U is a vector function depending
on a spatial variable x ∈ G ⊂ R

3, a time variable t ∈ T = [t0, t1] and some
parameters p ∈ P ,

u = u(p(x);x, t).

U and P are adequately chosen function spaces. For an arbitrary operator
L, a source term f(x, t), and u ∈ Ũ ⊂ U we write again:

L(u,p;x, t) = f(x, t)

Assuming that both L and u are differentiable with respect to p and q ∈ P
we have

DpL(u(p),p)(q) = δuL(u(p),p)(Dpu(p)(q)) + δpL(u(p),p)(q) = Dpf = 0

Now consider the bilinear forms

〈·, ·〉U : (U × U) → R

〈·, ·〉P : (P × P ) → R
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We are interested in finding a test function ψ such that there exist two linear
operators

δuL
∗(u,p) ∈ [U → U ]

δpL
∗(u,p) ∈ [U → P ]

satisfying the relations

〈ψ, δuL(u,p)(v)〉U = 〈v, δuL
∗(u,p)(ψ)〉U

〈ψ, δpL(u,p)(q)〉U = 〈q, δpL
∗(u,p)(ψ)〉P

with v := Dpu(p)(q).

In general, these two operators do not exist unless ψ is subjected to some
conditions which may be summarised by the requirement that ψ be the
element of some space Ũ∗ ⊂ U . Finding Ũ∗ is part of the problem.
The constructions

〈., δuL(u,p)(.)〉U ∈ [U × U → R]

〈., δpL(u,p)(.)〉U ∈ [U × P → R]

are bilinear functionals and

〈., δuL
∗(u,p)(.)〉U ∈ [U × U → R]

〈., δpL
∗(u,p)(.)〉P ∈ [P × U → R]

are their respective transposed operators. In the case that the bilinear form
is a scalar product, the transpose is called an adjoint operator.

How these considerations contribute to find expressions for δβAv and δβAω
will be shown in the next section.
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3.2 Objective functions

The process of extracting information from the displacement field u is rep-
resented through an objective function C(u,p), with model parameters p =
(ρ, λ, µ, β, ...). Evidently, we are interested in the objective functions

i) C(u,p) = βa(u(p))

ii) C(u,p) = ‖u̇(p)‖2

iii) C(u,p) = ‖ω(p)‖2.

We assume that C(u,p) is expressible in the form of a time integral C(u,p) =
∫

f(u,p)dt, with an adequately chosen function f. Then C can be expressed
as

C(u,p) = 〈1, f(u,p)〉
R

where 〈·, ·〉
R
∈ [R × R → R] is a bilinear form in terms of definition 3.1.4.

We apply the chain rule

Dpf(u(p),p)(q) = δuf(u(p),p)(Dpu(p)(q)) + δpf(u(p),p)(q) (3.10)

and combined with the bilinearity of 〈·, ·〉
R

the total derivative of an objective
function C(u,p) with respect to the model parameters p in some direction q

is given by:

DpC(u,p)(q) = 〈1, δuf(u,p)(v)〉
R

+ 〈1, δpf(u,p)(q)〉
R
, (3.11)

with v := Dpu(p)(q).

Again, we try to find two linear operators

δuf
∗(u,p) ∈ [R → U ]

δpf
∗(u,p) ∈ [R → P ]

such that

〈1, δuf(u,p)(v)〉
R

= 〈v, δuf
∗(u,p)〉U

〈1, δpf(u,p)(q)〉
R

= 〈q, δpf
∗(u,p)〉P
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Given that all the transposed operators exist, the total derivative of C with
respect to the parameters p can be written as

DpC(u,p)(q) = 〈v, δuf
∗(u,p)〉U + 〈q, δpf

∗(u,p)〉P
+ 〈v, δuL

∗(u,p)(ψ)〉U + 〈q, δpL
∗(u,p)(ψ)〉P

= 〈v, δuf
∗(u,p) + δuL

∗(u,p)(ψ)〉U
+ 〈q, δpf

∗(u,p) + δpL
∗(u,p)(ψ)〉P . (3.12)

The presence of v = Dpu in equation (3.12) is problematic. Numerical
approximation methods for Dpu fail in large model spaces. To eliminate
Dpu from the expression for DpC it is sufficient to require

δuL
∗(u,p)(ψ) = −δuf

∗(u,p), ψ ∈ Ũ∗. (3.13)

Equation (3.13) is known as the transposed problem of

L(u,p;x, t) = f(x, t)

In the case that the bilinear forms 〈., .〉 are scalar products, the transposed
problem may also be called the adjoint problem. Finally, if the transposed
problem can be solved, the total derivative of C with respect to the parame-
ters p can be written as

DpC(u,p)(q) = 〈(q), δpf
∗(u,p) + δpL

∗(u,p)(ψ)〉P (3.14)

Thus, we can easily calculate the gradient of C with respect to the parame-
ters p by computing only once the transposed (adjoint) field ψ.

Remark: Depending on the operator L, it may not be possible to find the
transposed operators and the test function ψ. So the transposed problem
may not have a solution, and if the solution exists, it may not be unique.
Fortunately, we can find and uniquely solve the adjoint problems for all lin-
ear wave propagation phenomena, i.e., for all types of linear wave equation
operators L complemented by adequate subsidiary conditions.
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3.3 Bilinear operators

The adjoint method simplifies if the considered operator L is bilinear, i.e., if
it satisfies the relation

L(αu + βv, γp + δq;x, t) = αγL(u,p;x, t) + αδL(u,q;x, t)

+ βγL(v,p;x, t) + βδL(v,q;x, t) (3.15)

for all u,v ∈ U , for all p,q ∈ P and for all α, β, γ, δ ∈ R. Due to the
bilinearity, the derivative of L(u(p),p) with respect to the parameters p is
given by

DpL(u(p),p)(q) = δuL(u(p),p)Dpu(p)(q) + δpL(u(p),p)(q)

= L(v(q),p) + L(u(p),q) (3.16)

with v(p) := Dpu(p)(q). Let ψ ∈ U be an arbitrary function. Assume that,
given a specific bilinear form 〈·, ·〉, it is possible to find operators Lu and Lp

such that the relations

〈ψ,L(u(p)〉U = 〈u,Lu(ψ,p)〉U + Λu(ψ,u,p),

〈ψ,L(u(p)〉P = 〈p,Lp(u,ψ)〉P + Λp(ψ,u,p) (3.17)

hold. The terms symbolised by Λu and Λp result from manipulations neces-
sary to transform the bilinear forms. For all ψ satisfying

Λu(ψ,u,p) = Λp(ψ,u,p) = 0 (3.18)

the operators Λu and Λp are transposed operators of L with respect to u and
p. With the assumed bilinearity, we can now write

〈ψ, δuL(u,p(v))〉U + 〈ψ, δpL(u,p(q))〉U
= 〈ψ,L(v,p)〉U + 〈ψ,L(u,q)〉U
= 〈v,Lu(ψ,p)〉U + 〈q,Lp(u,ψ)〉P + Λu(ψ,v,p) = Λp(ψ,u,q).(3.19)

If ψ can now be specified such that

Λu(ψ,v,p) = Λp(ψ,u,q) = 0 (3.20)

holds, we find
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〈ψ,Lu(v,p)〉U + 〈ψ,Lp(u,q)〉U = 〈v,Lu(ψ,p)〉U + 〈q,Lp(u,ψ)〉P (3.21)

Consequently, the transposed problem reduces to

Lu(ψ,p) = −δuf
∗(u,p), ψ ∈ Ũ∗ (3.22)

and the corresponding derivative of the objective function with respect to
the parameters is

DpC(u,p)(q) = 〈q, δpf
∗(u,p) + Lp(u,ψ)〉P (3.23)
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3.4 Application to the isotropic elastic wave

equation

It is straightforward to verify that the scalar wave equation operator

L(u) ≡ ρ∂2
t u− µ∇2u

is bilinear, i.e., independently linear in u and p = (ρ, µ). Moreover, in this
specific case, we find for the adjoint operator together with the adjoint wave
field the identity

Lu(ψ,p) = ρ∂2
tψ(x, t) − µ∇2ψ(x, t) = L(ψ,p) (3.24)

Therefore, the scalar wave equation is self-adjoint. Note that the adoint
equation is independent of the field u in the case of a bilinear operator.
Now consider the scalar product

〈u,v〉U :=

∫

R

∫

G⊂R3

u(x, t) · v(x, t) dt dG (3.25)

defined for any two elements u and v of U . As L is self-adjoint it follows
that

DpC(u,p)(q) = 〈(q), δpL
u(u,p)(ψ)〉P

= 〈(ψ), δpL
u(u,p)(q)〉U

= 〈(ψ), δpL(u,p)(q)〉U

=

∫

R

∫

G⊂R3

ψ · δpL(u,p) dt dG (3.26)

So the volumetric density of the functional derivative of C with respect to
the model parameters p is

δpC =

∫

R

ψ · ∂pL(u,p)dt. (3.27)

In the literature δpC is called Fréchet kernel. We apply Fréchet kernels to the
investigation of the sensitivity of the apparent shear wave speed with respect
to the true shear wave speed. In this context the terms Fréchet kernel and
sensitivity kernel shall be used equivalently.
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Chapter 4

Ray method based computation

of sensitivity kernels

Chapter 3 ended with a general expression for the Fréchet kernel δpC, the
volumetric density of the functional derivative of C with respect to the model
parameters p

δpC =

∫

R

ψ · ∂pL(u,p)dt.

The variable ψ denotes the adjoint field which is the solution of the ad-
joint problem. The partial derivative of the wave operator with respect to p

is symbolised by ∂pL.

The adjoint field ψ is defined through the adjoint wave equation

L(ψ,p) = ρ∂2
tψ(x, t) − µ∇2ψ(x, t) = −∂u f(t) δ(x − xr) (4.1)

and its subsidiary conditions.

In this chapter we apply the adjoint method in terms of equation (3.27) to
sensitivity kernels for apparent S-wave speed measurements, 1

βa
δββa. Com-

bined with the ray method we develop an algorithm for the numerical com-
putation of sensitivity kernels.

Let us first recall equation (3.7) from chapter 3

1

βa
δββa =

1

Av
δβAv −

1

Aω
δβAω
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with

Av(x
r) := ‖u̇(p;xr, t)‖2 =

√

∫

R

u̇(p;xr, t)2dt

Aω(x
r) := ‖ω(p;xr, t)‖2 =

√

∫

R

(

1

2
∇× u(p;xr, t)

)2

dt

Now consider βa, Av and Aω as objective functions, expressible in the form
of a time integral C(u) =

∫

f(u)dt. Using equation (3.27) together with
equation (3.7) we can write

1

βa
δββa =

∫

R

ψv · ∂βL(u,p)dt−

∫

R

ψω · ∂βL(u,p)dt

=

∫

R

(ψv −ψω) · ∂βL(u,p)dt (4.2)

where ψv and ψω are the adjoint fields for Av and Aω. By definition, the
adjoint fields include the scaling factors 1/Av and 1/Aω. Later we will see
that the difference ψv−ψω of the adjoint fields is the key element of equation
(4.2).
General expressions for the adjoint fields Av and Aω with respect to any pos-
sible parameter p can be derived as follows:
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4.1 The adjoint field for velocity amplitude

measurements

The considerations of this section and section 4.2 are mainly in accordance
with Fichtner and Igel (2008): The relative functional derivative of Av with
respect to the model parameters p , denoted by 1

Av
DpAv, is

1

Av
DpAv =

1

Av
2

∫

R

u̇i Dpu̇i dt. (4.3)

In terms of sensitivity densities we may write

1

Av
DpAv =

∫

G⊂R3

1

Av
δpAv dG =

1

Av
2

∫

R

u̇i Dpu̇i dt =

∫

G⊂R3

1

Av
2

∫

R

u̇i δpu̇i dtdG

The symbols G and dG denote the computational domain and the corre-
sponding volume element.

Obviously we need an expression for δpu̇i at the receiver point xr. Let C(u)
be equal to the i component of the displacement field, ui(x

r, τ), that is when
f(u) = δ(t− τ)ei ·u(xr, τ). Then the right-hand side of the adjoint equation
(4.1) becomes −ei δ(t−τ) δ(x−xr), implying that the corresponding adjoint
field u∗ is the adjoint Green’s function with source location xr and source
time τ , that is u∗(x, t) = g∗

i (x
r, t;x, t′). This results in

δpui(x
r, τ) =

∫

R

g∗
i (x

r, τ ;x, t) · ∂pL[u(x, t)]dt (4.4)

With equation(4.4) the sensitivity density 1
Av
δpAv is

1

Av
δpAv =

1

Av
2

∫

R

u̇i(x
r, t′)

(∫

R

∂t g∗
i (x

r, t;x, t′) · ∂pL[u(x, t′)]dt′
)

dt

=
1

Av
2

∫

R2

∂t u̇i(x
r, t′) g∗

i (x
r, t;x, t′) · ∂pL[u(x, t′)]dt′dt

In accordance with the general equation for sensitivity kernels (3.27) we
define the adjoint field ψv to be
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ψv(x, t′) :=
1

Av
2

∫

R

∂t u̇i(x
r, t′) g∗

i (x
r, t;x, t′)dt (4.5)

And we can write the sensitivity density 1
Av
δpAv in compact notation

1

Av
δpAv =

∫

R

ψv(x, t′) ∂pL[u(x, t′)]dt′ (4.6)

Note that the adjoint field ψv can equally be obtained as the solution of
the adjoint equation L∗(ψv,p) = fv with the adjoint source fv

fv(x, t′) =
1

Av
2 ∂

2
t ui(x

r, t′)δ(x − xr). (4.7)
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4.2 The adjoint field for rotation amplitude

measurements

Expressions for the adjoint field for rotation amplitude measurements can
be derived in analogy to the procedure for velocity amplitude measurements.
The relative functional derivative of Aω with respect to the model parameters
p , denoted by 1

Aω
DpAω, is

1

Aω
DpAω =

1

Aω
2

∫

R

ωi Dpωi dt. (4.8)

Applying again equation (4.4) leads to

δpωi(x
r, t) =

1

2
ǫijk

∂

∂xrj
δpuk(x

r, t) =
1

2
ǫijk

∫

R

∂

∂xrj
g∗
k(x

r, t;x, t′) · ∂pL[u(x, t′)]dt′.

Hence

1

Aω
δpAω =

1

2Aω
2 ǫijk

∫

R2

ωi(x
r, t)

∂

∂xrj
g∗
k(x

r, t;x, t′) · ∂pL[u(x, t′)]dt′dt. (4.9)

Defining the adjoint field ψω as:

ψω(x, t′) :=
1

2A2
ω

∫

R

ωi(x
r, t′)

∂

∂xrj
g∗
k(x

r, t;x, t′)dt. (4.10)

And we get the sensitivity density 1
Aω
δpAω

1

Aω
δpAω =

∫

R

ψω(x, t′) ∂pL[u(x, t′)]dt′ (4.11)

Again the adjoint field ψω can be obtained as the solution of the adjoint
equation L∗(ψω,p) = fω with the adjoint source fω

fωk (x, t′) =
1

2A2
ω

ǫijk ωi(x
r, t′)

∂

∂xrj
δ(x − xr). (4.12)
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In view of the next section we add that fω can be written in terms of a
moment density m

fω = ∇ ·m (4.13)

with

mkj =
1

2A2
ω

ǫijk ωi(x
r, t′)δ(x − xr). (4.14)
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4.3 Sensitivity kernels

In the last two sections we found expressions for the adjoint fields ψv and
ψω. For the computation of the sensitivity kernel of the apparent shear wave
speed, 1

βa
δββa =

∫

R
(ψv −ψω) · ∂pL(u,p)dt, we now look at ∂pL(u,p). It is

L(u) ≡ ρ∂2
t u− µ∇2u = ρ∂2

t u − ρβ2∇2u = f . (4.15)

We are interested in sensitivity densities far away from the source, i.e. f = 0.
So ∇2u = 1

β2∂
2
t u and δβL(u) = −2ρβ∇2u give

δβL(u) = −2
ρ

β
∂2
t u. (4.16)

The expression for the sensitivity kernel is now

1

βa
δββa = −2

ρ

β

∫

R

(ψv −ψω) · ∂2
t u dt. (4.17)

It is basically possible to use exact calculations of the displacement u. The
numerical methods are well-known but lead to extremely time-consuming
algorithms. Our objective is to implement a completely new approach for
structural inversions. To interprete the outcome of our numerical experi-
ments several parameter studies will be necessary. So we need easy manage-
able and fast running algorithms. For this reason we simplify the forward
problem of solving the wave equation by means of a high-frequency approx-
imation of the wave field, i.e. we use ray theory. This simplification will
just provide a better insight into the nature of our problem and should not
produce misleading outputs.
According to chapter 2 we describe the displacement field u(x, t) by an am-
plitude function U(x) and a time function T (t− τ)

u(x, t) = U(x) · T (t− τ). (4.18)

From now on indices ·S, ·ψv and ·ψω mark components of the forward S,
the adjoint velocity and the adjoint rotation wave field, respectively. As the
adjoint wave fields have the same time function we write:

uS(x, t) = US(x) · TS(t− τS) (4.19)

uψv(x, t) = Uψv(x) · Tψ(t− τψ) (4.20)

uψω(x, t) = Uψω(x) · Tψ(t− τψ) (4.21)
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Looking at equation (4.7) and with ray theory the source term of the adjoint
velocity wave field is

fψv(x, t) =
1

Av
2US(x

r)T̈S(t− τψ) (4.22)

Suggesting that we define

Tψ(t− τψ) := T̈S(t− τψ) (4.23)

Now we are able to rewrite the sensitivity density of the apparent S-wave
velocity with ray method

1

βa
δββa = −2

ρ

β

(

Uψv(x) − Uψω(x)

)

US(x)

∫

R

T̈S(t− τS(x))T̈S(t− τψ(x)) dt.

(4.24)

At this point it should be underlined that equation (4.24) is a central state-
ment of the diploma thesis, beeing part of nearly all algorithms that were
implemented.

Before we care about the amplitudes in equation (4.24) we choose an ad-
equate time function. As an elementary but realistic time signal we take a
Gauss function.

T (t− τ) := e−(t−τ)2σ−2

(4.25)

In later applications the question will arise what signal frequencies we should
use. The parameter σ in equation (4.25) is linked to frequency. A Fourier
transform between time- and frequency-domain shows that the smaller we
select σ the wider is the frequency band contained in the signal (see figure
4.1). It follows from Fourier transform that the frequency band is given by
the interval [0; 1

σ
]. As an example for σ = 0.5 the maximal frequency con-

tained in the signal would be 2Hz.

Remark: In general there is no maximal frequency in the Gauss signal as
its values tend to infinity. In practice we use the σ-dependend width of a
Gauss function to define the frequency band of a Gauss signal.
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Figure 4.1: Gauss signal in the time-domain (left column) and frequency-
domain (right column) with decreasing σ from top to bottom;

Unidirectional point source:

Finally we need to calculate the amplitudes of the forward S, the adjoint ve-
locity and the adjoint rotation wave fields. This implies that one has to find
a solution of the general equation for elastic displacement, L(u) = f. First we
have to concretise the body force f. The fundamental case for seismological
applications is when f is excited by a point source X0(t) pointing in one sin-
gle direction. Detailed derivation of the solution in homogeneous, isotropic,
unbounded medium can be found in standard literature for seismology ,i.g.
Aki/Richards (2002), and is omitted here. We just give the result for a point
source X0(t) in the xj−direction and elastodynamic Green’s function Gij (see
chapter 1)

ui(x, t) = X0 ∗Gij =
1

4πρ
(3γiγj − δij)

1

R3

∫ R
α

R
β

τX0(t− τ)dτ

+
1

4πρα2
γiγj

1

R
X0(t−

R

α
)

−
1

4πρβ2
(γiγj − δij)

1

R
X0(t−

R

β
) (4.26)

with density ρ, P wave velocity α, S wave velocity β, source-receiver distance
R and direction cosines γi = δiR =

xri−x
s
i

R
.
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Note that the magnitude of the terms of equation (4.26) depends signifi-
cantly on the source-receiver distance R. The first term behaves like R−2 for
sources in which X0 is nonzero for times that are short compared to R

β
− R

α
,

whereas the second and the third term behave like R−1. So the second and
the third term become dominant over the first as R → ∞, but R−2 domi-
nates R−1 as R → 0. The terms including 1

R
X0(t −

R
α
) and 1

R
X0(t−

R
β
) are

therefore called far-field terms and the term including 1
R3

∫

τX0(t − τ)dτ is
called near-field term.
We want to use far-field S-wave data sets for seismic tomography, so we ne-
glect the first and the second term in equation (4.26), leading to the far-field
S-wave displacement

ui(x, t) =
1

4πρβ2
(δij − γiγj)

1

R
X0(t−

R

β
). (4.27)

Comparison with equation (4.18) yields for the amplitudes of the displace-
ment field

(US)j(x) =
1

4πρβ2
(δij − γiγj)Fi

1

RS
. (4.28)

where F = (F1, F2, F3) is the intensity of the point source and RS the distance
from the source to the grid point x. Later applications deal with relative sen-
sitivities. For that reason we can assume without restriction that |F| = 1.

For an appropriate choice of F in the outstanding experiments we test ampli-
tudes for three fundamental cases. In the following figures red color simbolises
positive amplitudes, blue negative and white zero.

i) unidirectional point source in x1 direction (i.e.F = (1,0,0)): vertical
slices of the amplitude components U1, U2, U3(from the left to the
right);

x

z

x

z

x

z
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ii) unidirectional point source in x2 direction (i.e.F = (0,1,0)): vertical
slices of the amplitude components U1, U2, U3(from the left to the
right);

x

z

x

z

x

z

iii) unidirectional point source in x3 direction (i.e.F = (0,0,1)): vertical
slices of the amplitude components U1, U2, U3(from the left to the
right);

x

z

x

z

x

z

Inversion scenarios in this work are constricted to the x1x3-plane. So the
choice of F = (0, 1, 0) does not make sense because there are only non-zero
contributions in the U2-direction of the amplitude. For F = (0, 0, 1) there
is no signal for receivers placed straight above the source. To avoid that
problem we should remain with F = (1, 0, 0).

It is quite common in computational seismology to simulate the S-wave source
by a point source pointing in one direction. To calculate the adjoint ampli-
tudes it should be outlined that the adjoint wave field does nothing else than
sending back the S-wave energy that reaches the receiver. Hence the inten-
sity of the adjoint sources is given by the amplitudes of the S-wave field at
the receiver, Fψ = (U1(x

r), U2(x
r), U3(x

r)).

Passing from the displacement field to the velocity of the displacement field
does not affect the wave field source. For describing the adjoint velocity field
we can use the same source type as for the S-wave field. So for the amplitudes
of the adjoint velocity field we have

(Uψv)j(x) =
1

4Av
2πρβ2

(δij − (γψ)i(γψ)j)(Fψ)i
1

Rψ
(4.29)
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with the distance Rψ from the receiver to the grid point x . For the adjoint
rotation field we have to extend our source theory from unidirectional point
sources to so-called double-couple point sources.

Double-couple point source:

Experience in seismological research over decades has shown that seismic mo-
tions due to earthquakes, explosions etc. are well-described by double-couple
point sources. To comprise all possible types a point source has to be charac-
terised by nine different vector couples. They are shown in the picture below.

Figure 4.2: Vector couples for a point source description

Vector couples are incorporated into displacement fields via the seismic mo-
ment tensor, M. If we use the elastodynamic Green’s function Gin(x, t; ξ, τ)
with an unidirectional unit impulse δinδ(x−ξ)δ(t−τ) applied at x = ξ, t = τ
and in the n-direction (see chapter 1) then it is a central statement of seis-
mological source theory that we can write

ui(x, t) = Mnq ∗
∂Gin

∂ξq
. (4.30)

The symbol ∗ is the convolution symbol.
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Again refering to Aki/Richards (2002) the double-couple solution in an infi-
nite homogeneous medium is given by

ui(x, t) = Mnq ∗
∂Gin

∂ξq

=
1

4πρ
(15γiγnγq − 3γiδnq − 3γnδiq − 3γqδin)

1

R4

∫ R
α

R
β

τMnq(t− τ)dτ

+
1

4πρα2
(6γiγnγq − γiδnq − γnδiq − γqδip)

1

R2
Mnq(t−

R

α
)

−
1

4πρβ2
(6γiγnγq − γiδnq − γnδiq − γqδip)

1

R2
Mnq(t−

R

β
)

+
1

4πρα3
γiγnγq

1

R
Ṁnq(t−

R

α
)

−
1

4πρβ3
(γiγn − δin)γq

1

R
Ṁnq(t−

R

β
). (4.31)

Note that Ṁnq is equal to the moment density mnq mentioned at the end of
the last section. Separating far field and near field terms analogous to the
unidirectional point source S-wave associated far field displacement can be
expressed by

ui(x, t) =
1

4πρβ3
(δin − γiγn)γq

1

R
mnq(t−

R

β
). (4.32)

The last step in calculating amplitudes and travel times for the S-wave and
the adjoint wave fields is a modification of the moment density m.
First of all we have to think about ω, which was defined by

ω(x, t) :=
1

2
∇× u(x, t).

In terms of ray theory and the assumption that spatial variations of am-
plitudes are small this reads
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1

2
∇× u(x, t) =

1

2
ǫijk

∂

∂xj
uk(x, t) =

1

2
ǫijk

∂

∂xj
(Uk(x)T (t− τ(x)))

≈
1

2
Uk(x)ǫijk

∂

∂xj
T (t− τ(x))

= −
1

2
Uk(x)ǫijk(

∂

∂xj
τ(x))Ṫ (t− τ(x))

= −
1

2
(ǫijkpjUk(x))Ṫ (t− τ(x)) = −

1

2
(p(x) × u̇(x, t)).

(4.33)

In accordance with chapter 2 we expressed ∂
∂xj
τ(x) by the slowness vector

pj(x) in equation (4.33).

Using the identity ǫijkǫimn = δjmδkn − δjnδkm and with equation (4.33) we
can write for the moment density

mkj =
1

2A2
ω

ǫijk ωiδ(x − xr)

= −
1

4A2
ω

ǫijkǫimn pmu̇nδ(x − xr)

= −
1

4A2
ω

(δjmδkn − δjnδkm)pmu̇nδ(x − xr)

= −
1

4A2
ω

(pju̇k − pku̇j)δ(x − xr). (4.34)

Inserting recent results in equation(4.32) leads to the amplitudes of the ad-
joint rotation field

(Uψω)j(x) =
1

16Aω
2πρβ3

((γψ)j(γψ)k − δjk)(γψ)l(pl(Fψ)k − pk(Fψ)l)
1

Rψ
.
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In the following example we put a unidirectional point source (F = (1, 0, 0))
of an S-wave field directly under a receiver of the S-wave field, respectively
a source of the adjoint velocity and rotation fields. The figures show:

- S-wave amplitude components (US)1, (US)2, (US)3 from the left to the
right (vertical slices)

x

z

x

z

x

z

- adjoint velocity amplitude components (Uψv)1, (Uψv)2, (Uψv)3 from the
left to the right (vertical slices)

x

z

x

z

x

z

- adjoint velocity amplitude components (Uψω)1, (Uψω)2, (Uψω)3 from the
left to the right (vertical slices)

x

z

x

z

x

z

Again red color simbolises positive amplitudes, blue negative and white zero.
The discrepancy between the radiation patterns of the adjoint fields will be
crucial for the sensitivity kernel of the apparent shear wave speed.

We dedicate the next page to a summary of the most important results
obtained so far:
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Summary of results

To calculate the sensitivity of the apparent S-wave speed we found the equa-
tion

1

βa
δββa = −2

ρ

β

(

Uψv(x) − Uψω(x)

)

US(x)

∫

R

T̈S(t− τS(x))T̈S(t− τψ(x)) dt.

The following expressions are contributed to the individual components of
the equation above:

The time function is

TS(t− τS(x)) = e−(t−τS )2σ−2

TS(t− τψ(x)) = e−(t−τψ)2σ−2

with traveltimes τS and τψ.

Amplitudes for the S-wave and the adjoint velocity and rotation wave fields
are given by

(US)j(x) =
1

4πρβ2
(δij − γiγj)Fi

1

RS

(Uψv)j(x) =
1

4Av
2πρβ2

(δij − (γψ)i(γψ)j)(Fψ)i
1

Rψ

(Uψω)j(x) =
1

16Aω
2πρβ3

((γψ)j(γψ)k − δjk)(γψ)l(pl(Fψ)k − pk(Fψ)l)
1

Rψ

with

- slowness vector pi(x
r) = ∂iτS(x

r) = 1
β

xri−x
s
i

RS

- direction cosines γi = δiRS =
xri−x

s
i

RS
and (γψ)i = δiRψ =

xri−x
s
i

Rψ

- Fψ = (U1(x
r), U2(x

r), U3(x
r))
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The expressions of page 60 enable us now to calculate the first derivative of
the apparent S-wave speed βa with respect to the true S-wave speed β, i.e.
the sensitivity kernel 1

βa
δββa.

In brevious radiation pattern examples the model size was not relevant. But
sensitivity kernels will form the basis for later tomography models. So it is
about time to specify a certain model space for imaging sensitivity kernels.
As the method is intended for local Earth structure inversions we choose a
relatively small model extension by defining a model block with 100 kilo-
meters in each edge length. All mappings of sensitivity kernels are either
vertical or horizontal slices through the model block.

Figure 4.3: model block, red: horizontal slice; blue: vertical slice

The following examples show some basic properties of sensitivity kernels and
demonstrate in what way they depend on relevant model parameters.
Models are homogeneous with S-wave velocity β = 5km/s and density
ρ = 3000kg/m3. A more realistic model with a 1-D velocity gradient will be
treated in a later section.
The first example will give an answer to the question in which region βa is
sensitive to β. In the second example we see that sensitivity kernels depend
significantly on the parameter σ, which is related to the bandwidth of the
recorded signal.
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Example 1:

The model parameters are defined as: β = 5km/s, ρ = 3000kg/m3, σ =
0.5 (i.e. the frequency band is 0 − 2Hz), F = (1, 0, 0), source S =
(20, 50, 20), receiver R = (80, 50, 80).
In principle the formula for the sensitivity kernel is governed by a time in-
tegral and the difference between the adjoint fields. These components are
shown in the figures below, that are vertical slices through the source/receiver-
plane.
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Figure 4.4: Time integral; vertical slice: 100 × 100km

The time integral gives the kernel its characteristic shape.
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Figure 4.5: Velocity (left) and rotation kernel (right); vertical slices: 100 ×
100km

Both, velocity as rotation kernels have a dominant first Fresnel zone (deep
blue). Moreover, the difference between the velocity kernel and the rotation
kernel is only near the receiver significant. The consequence is that the
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sensitivity kernel 1
βa
δββa vanishes as we approach the source, i.e. βa is rather

independent of the structure in the source region, which illustrates the next
figure
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Figure 4.6: βa kernel; vertical slice: 100 × 100km

Note that the first Fresnel zone is missing in the βa kernel. The kernel is char-
acterised by higher-order Fresnel zones producing stronger oscillating values
compared to the velocity and the rotation kernels.
The effect of decreasing sensitivity with increasing depth can be reproduced
as well by imaging horizontal slices through the model.
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Figure 4.7: Horizontal slices(100 × 100km) through a βa kernel; depth from
the left to the right increasing; left: slice through the receiver plane; middle:
10km below the receiver plane; right: 20km below the receiver plane

63



Example 2:

The model parameters are defined as in example 1, except σ. From the left
to the right the figures show βa kernels for σ1 = 0.25, σ2 = 0.5 and σ3 = 1.0.
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Figure 4.8: βa kernels for different frequency bandwidths, left: [0-4]Hz, mid-
dle: [0-2]Hz, right: [0-1]Hz; vertical slices: 100 × 100km;

Remember: The smaller σ the broader is the frequency band, i.e. the
shape of the sensitivity kernel gets slimmer the more (higher) frequencies
are contained in the seismic signal. Note also that for kernels with a small
frequency band the sensitivity is located to a significant part behind the re-
ceiver, whereas kernels with a broad frequency band (with higher frequencies)
practically do not extend behind the receiver.

Example 3:

The model parameters are defined as in example 1, except F . We select F
to be F = (1, 0, 0) in the first figure and F = (100, 0, 0) in the second figure.
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Obviously both figures are identical due to the fact that we defined relative
sensitivity kernels, that are independent to source intensities.
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At this point we should briefly summarise the main characteristics of sensi-
tivity kernels for the apparent shear wave speed, βa.

- βa kernels depend on the spatial direction of the seismic signal but not
on its intensity.

- A broad first Fresnel zone is missing what causes strongly oscillating
kernel values.

- The sensitivity is located near the receiver and decreases rapidly the
closer we get to the source.

- Sensitivity kernels can be regarded as functions of frequency. Smaller
frequency bandwidths produce broader βa kernels and significant sensi-
tivity behind the receiver. For broader frequency bandwidths the effect
is revers.

Until now we placed our examples in a homogeneous isotropic unbounded
medium. But in practice receiver stations are at the surface of the Earth -
for the present we disregard the expensive opportunity of drilling boreholes.
So we have to think about what happens if we calculate sensitivity kernels
in a half space with the receiver on the free surface of our model. This will
be done in the next section.
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4.4 Free surface

Consider a scenario with a receiver directly on the free surface of the model.
The questions we have to answer is what happens to the incoming S-wave
when it reaches the receiver and how does this influence the βa kernel.

First of all we regard the wavefronts of the incoming S-wave as plane waves.
This assumption is true if the receiver is sufficiently far away from the source.
With sufficiently far we refer to the number of wavelengths between the re-
ceiver and the source. Thus, even if our model is small, it is possible to use
plane wave theory for high frequencies.

Further from basic seismology we know that a S-wave crossing an interface
generates a reflected S-wave (SS), a reflected P-wave (SP) and two surface
waves (Love- and Rayleigh-waves), as seen below.

Figure 4.9: Reflection of a S-wave at a free surface(grey); red: reflected S-

wave, blue: reflected P-wave, green: Surface waves; it is sin(j)
α

= sin(i)
β

Taking Love- and Rayleigh-waves into account for the computation of sensi-
tivity kernels is quite complicated. Surface waves would dominate the am-
plitudes of the displacement field into a depth which is more or less equal to
one wavelength of the incident S-wave. Using high frequencies will keep this
zone small. Thus we decided to ignore surface waves in our calculation of
sensitivity kernels. In view of numerical efficiency we accept that βa kernels
are not exact very close to the surface.
Besides surface waves another problem is raised by the reflected S- and P-
wave. To estimate the area in which the reflected S-wave interacts with the
adjoint fields consider the following sketch.
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The horizontal black line symbolises the free surface. The receiver of the
S-wave, respectively the source of the adjoint wave fields is marked by a red
triangle. Incoming S-wavefronts are grey, reflected S-wavefronts are blue.
Emitted adjoint wavefronts are drawn in orange colour. Wavefronts repre-
sent the displacement field at constant times. In the figure each wavefront is
signed by a number that defines a single constant time. Obviously the S-wave
field and the adjoint wave field interact only into a depth smaller than the
wavelength λ. As P-waves are faster than S-waves this holds even more for
P-waves.
Moreover we omitted near-field terms in the brevious section. Hence it seems
to be reasonable to calculate sensitivites without surface waves and reflec-
tions even if receivers are located at a free surface. The consequence is that
senitivity kernels are not exact at depths smaller than one wavelength but as
just shown this simplification does not affect the sensitivity kernel at depths
larger than the wavelength. The conclusion that higher frequencies are more
appropriate is nothing new in our considerations. Applying ray theory even
restricted us to high frequencies. Figure 4.8 also proposes high frequencies
as otherwise sensitivities extend significantly behind the receiver what is not
desirable.
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Chapter 4 shall be completed by the computation of a sensitivity kernel for
the apparent S-wave speed in a more realistic model with 1-D velocity gra-
dient.

4.5 1-D velocity model

Admittedly one could argue that calculating sensitivity kernels only for a ho-
mogeneous medium may be too simplistic to form the basis for tomographic
Earth models.
Nevertheless in this section we demonstrate that βa kernels in more complex
models do not differ much from kernels computed for homogeneous media.
Thus developing algorithms based on complex models will not change the
basic outcome but only increase numerical costs drastically.

A frequently used model in seismological applications is the 1-D velocity
gradient model, where the velocity is assumed to increase linearly with depth
in the form

β(x3) = β0 + bx3. (4.35)

As a first step in constructing a meaningful example we enlarge our model-
cube to a length of 600km and a height of 300km. Using the former model
(100km × 100km) would not produce any visible difference to the homoge-
neous case, provided that the velocity gradient stays realistic. Now we put
the source at S(20, 150, 50) and the receiver at R(580, 150, 280). We define
the velocity gradient b so that the velocity βS at the source is 7.5km/s and
5.2km/s at the receiver (1-D velocity model). We calculate the velocity, the
rotation and the βa kernel for the 1-D velocity model and for the homoge-
neous model. A comparison of the kernels is shown in the following figure.
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Figure 4.10: Top to bottom: velocity, rotation and βa kernel for the 1-D
model (left column) and the homogeneous case (right column); vertical slices:
600 × 300km (row 1 - 3) and 100 × 100km (zoom-in, row 4)

The effect of rapidly decreasing sensitivity of the βa kernel towards the source
stays the same in the 1-D model and zooming into the figures demonstrates
the similarity of the βa kernel in the 1-D model to the βa kernel in the ho-
mogeneous model (figure 4.10: bottom row). Nevertheless, differences can
be observed in the angle of incident of the incoming wave field at the re-
ceiver but in inversion applications these effects are managed by variations
in source-receiver positions.

The conclusion of this example is that later outputs of inversion algorithms
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will not depend much on the complexity of the model in which sensitivity
kernels are calculated. We assume that other parameters, like source-receiver
positions, number of sources and receivers, choice of frequency bandwidth,
etc. are of greater importance for successful inversions. To explore how these
parameters affect inversion models with senstitivty kernels for the apparent
S-wave speed is the purpose of the next chapter.
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Chapter 5

Inversion

There exist many different concepts for the solution of an inverse problem. In
practice the process of solving the inverse problem is often equated with the
minimisation of the difference between observed and synthetic data. Trying
this approach we use an iterative optimisation scheme that is based on the
previously computed βa kernels to solve elementary synthetic inverse prob-
lems.

5.1 The non-linear inverse problem

In this chapter the inverse problem is seen as an iterative minimisation of a
non-linear misfit function E(βa,i). We choose the quadratic function

E(βa,i) =
1

2

n
∑

i=1

(
1

β
(0)
a,i

(β
(0)
a,i − βa,i))

2 (5.1)

where β
(0)
a,i denotes the observations, i.e. measurements of the apparent shear

wave speed at each receiver station, and βa,i denotes the corresponding syn-
thetic values. Index values i symbolise for example different source positions,
receiver stations or frequencies.
Now we calculate the gradient, i.e. in our case the first partial derivative of
E(βa,i) with respect to the shear wave speed β. Leading to

∂βE(βa,i) =
n

∑

i=1

∆βa,i

β
(0)
a,i

1

β
(0)
a,i

∂ββa,i

≈

n
∑

i=1

∆βa,i

β
(0)
a,i

1

βa,i
∂ββa,i (5.2)
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with ∆βa,i = β
(0)
a,i − βa,i. Note that this equation incorporates the sensitivity

kernels 1
βa,i

∂ββa,i.

In order to invert now for an original model β(0) we have to define a starting
model β0. In chapter 4 we stated that a homogeneous model with constant
shear wave speed should be appropriate as starting model. The starting
model is then updated in arbitrary iteration steps through

βk+1 = βk + s · ∂βE , k = 0, 1, 2, ... (5.3)

The assumption is that after sufficient iterations the updated model repre-
sents a satisfying approximation of the original model. The multiplier s has
to be determinded by minimising the misfit function (5.1).

Before we try to invert some synthetic models it might be helpful to perform
a systematic investigation of synthetic apparent shear wave speed measure-
ments.
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5.2 A study of synthetic apparent shear wave

speed data

For ∆βa,i = β
(0)
a,i − βa,i with apparent shear wave speed measurements in a

synthetic model (β
(0)
a,i ) and a homogeneous model (βa,i) we regard 1

β
(0)
a

∆βa as

the relative apparent shear wave speed measurement at some receiver station
i. We are interested in synthetic apparent shear wave speed data affected by
S-wave speed perturbations in the original model. The standard solution to
produce the synthetic data consists in using scattering theory. Equally we
can calculate the relative apparent shear wave speed via the relation

1

β
(0)
a

∆βa
.
=

∫

∆β(x)
1

β
(0)
a

∂ββa(x) d3x

≈

∫

∆β(x)
1

βa
∂ββa(x) d3x (5.4)

where ∆β is the difference of the S-wave speed in the original and the homo-
geneous model.
The following examples show again vertical slices through a model block
(100 × 100km) with one unidirectional point source in x−direction, located
at S(50, 50, 20). On the surface of the vertical slice we place receiver stations
Ri(i, 50, 100), i = 0, ...100. Into the model block we put a point perturba-
tion ζ(ζ1, 50, ζ3), extended by a Gauss function to avoid unrealistic sharp
edges. The sketch below shows the scenario for a positive perturbation at
ζ(50, 50, 80), with an extension of 6km. At the perturbation the S-wave
speed increases from 5km/s to a maximum of 6.5km/s.
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Figure 5.1: red: perturbation of the S-wave speed; black asterisk: unidirec-
tional point source in x−direction; black triangles: receiver positions
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The investigation focuses on what happens with the apparent shear wave
speed measurements for different perturbation positions and for variations of
frequencies in the seismic signal. Some measurements are compared to the
βa kernel at the receiver located directly above the perturbation position.

Example 1(Testing different perturbation depths)
The situation in the first example is like in the upper model, except that the
perturbation depth varies between 60 and 90km. The frequency band of the
seismic signal is constant from 0 − 2Hz.
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Figure 5.2: Apparent shear wave speed data for perturbations at
ζ(50, 50, 90)[red], ζ(50, 50, 80)[blue], ζ(50, 50, 70)[green], ζ(50, 50, 60)[black]
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Figure 5.3: left: βa kernel for a source at S(50, 50, 20) and a receiver at
R(50, 50, 100); right: horizontal slices through the kernel;

In figure 5.2 different colours represent different perturbation depths. Ex-
pectedly the signal gets weaker for increasing perturbation depths. More
remarkable is the symmetry in the data reflecting the Fresnel zones of the βa
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kernel in figure 5.3 and the local minimum above the perturbation (ζ1 = 50),
corresponding to the kernel’s singularity at the receiver position.

Example 2 deals with variations in the size of the perturbation.

Example 2(Testing different perturbation sizes)
The model set-up is equal to the first example except for the size of the
perturbation. In figure 5.4 the perturbation is smaller (2 × 2km), in figure
5.5 it is enlarged to 12 × 12km.
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Figure 5.4: Apparent shear wave speed data for a smaller perturbation: local
minimum at the perturbation amplifies
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Figure 5.5: Apparent shear wave speed data for a larger perturbation: local
minimum at the perturbation vanishes

This example shows that the size of the perturbation affects the local mini-
mum above the perturbation. Taking into account how we calculate the data
(see equation (5.4)) it is clear why the singularity of the kernel dominates
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the data curve for smaller perturbations whereas larger perturbations cancel
out the singularity - there is no local minimum at the perturbation anymore.

Another question is what happens for lateral variations of the perturbation
position. Therefor example 3 was constructed.

Example 3(Testing lateral perturbation shifts)
In figure 5.6 the perturbation (2 × 2km) is shifted to the left and in figure
5.8 to the right. Other parameters match with previous examples.
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Figure 5.6: Apparent shear wave speed data for a perturbation at ζ(30, 50, 90):
red, ζ(30, 50, 80): blue, ζ(30, 50, 70): green, ζ(30, 50, 60): black
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Figure 5.7: left: βa kernel for a source at S(50, 50, 20) and a receiver at
R(30, 50, 100); right: horizontal slices through the kernel;

Again the data reflects the Fresnel zones of the βa kernel. But now due to an
inclined angle of incident the curve is asymmetric. Note that the local mini-
mum of each data curve (corresponding to the kernel’s singularity) moves to
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the left for increasing perturbation depths.

Because of the general symmetry of the problem analogous effects can be
observed for the perturbation shifted to the right:
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Figure 5.8: Apparent shear wave speed data for a perturbation at ζ(30, 50, 90):
red, ζ(30, 50, 80): blue, ζ(30, 50, 70): green, ζ(30, 50, 60): black
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Figure 5.9: left: βa kernel for a source at S(50, 50, 20) and a receiver at
R(70, 50, 100); right: horizontal slices through the kernel;

Concerning the perturbation parameters we can further test variations of the
intensity of the perturbation.
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Example 4(Testing different perturbation intensities and source frequencies)
The parameter set-up is the same as in example 1 for the perturbation at
ζ(50, 50, 90) but with variations of the perturbation intensity (left figure:
maximal increase of the S-wave speed to 6.5km/s[red], 5.5km/s[blue] and
7.5km/s[green]) and with variations of the source frequency (right figure:
frequencies from 0 − 2Hz[red], 0 − 1Hz[blue] and 0 − 3Hz[green]).
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Figure 5.10: left: apparent shear wave speed data for different perturbation in-
tensities: increase of the S-wave speed up to 6.5km/s(red), 5.5km/s(blue) and
7.5km/s(green); right: apparent shear wave speed data for different source
frequencies: 0 − 2Hz(red), 0 − 1Hz(blue) and 0 − 3Hz(green)

Expectedly stronger perturbations produce only larger measurement values,
proportional to the intensity changes (left figure). A similar effect can be
demonstrated by changing the frequency band of the seismic signal. Broader
frequency bands lead in analogy to sensitivity kernels to stronger and faster
oscillating data curves (right figure).

Altogether examples 1-4 proof what we already expected by intuition con-
firming that the theory outlined so far should be consistent.

Example 5 and 6 differ from the previous ones in the way that we complicate
the nature of the perturbations.
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Example 5

Here we enlarge step by step the lateral extension of the perturbation. We
start with a perturbation of 10×10km and end up at 60×10km. The maximal
increase of the S-wave speed is in each case from 5km/s to 6.5km/s.
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Figure 5.11: S-wave speed perturbation models, left: 10 × 10km, right: 60 ×
10km
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Figure 5.12: Apparent shear wave speed data for lateral expanding pertur-
bations, left: 10 × 10km(red), 20 × 10km(blue), 30 × 10km(green); right:
40 × 10km(red), 50 × 10km(blue), 60 × 10km(green);

Remarkable is the phenomenon that large positive perturbations produce
negative measurement data. Note the skip from positive to negative values
as we pass from 20× 10km to 30× 10km perturbation size. Apart from this
astonishing behaviour especially the data curves of the right figure capture
clearly the lateral extension of the perturbation.
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Example 6

The study is completed by a chess board pattern model. We put three
positive and three negative point perturbations in the model and simu-
late three measurement series for small(5 × 5km), middle(10 × 10km) and
large(15 × 15km) point perturbations.
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Figure 5.13: S-wave speed perturbation models, left: 5×5km, right: 15×15km
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Figure 5.14: Apparent shear wave speed data for 5 × 5km(blue), 10 ×
10km(red) and 15 × 15km(green) point perturbations

The intention of the example is to show that for more complex perturbation
models a direct interpretation of data curves is extremely difficult. In this
example we can only state that larger perturbations lead to smoother data
curves.

In what follows we try to invert a synthetic model, which is of more demon-
strative character than a realistic scenario.
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5.3 An inversion experiment

This work ends with an inversion experiment where we apply the developed
theory to a simple but insightful perturbation model. The original model (see
figure 5.15) we want to invert contains a positive perturbation of the S-wave
speed. The perturbation is a point perturbation extended by a Gauss func-
tion to a volume of approximately 10 × 10km centered around ζ(50, 50, 90)
and a maximal increase of the S-wave speed from 5km/s to 6.5km/s. In a
first trial we use only one source at S(50, 50, 20) radiating a seismic signal in
the frequency band of 0 − 2Hz, oriented in x−direction
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Figure 5.15: Perturbation model with a positive point perturbation at
ζ(50, 50, 90) and a maximal increase of the S-wave speed to 6.5km/s. The
seismic source, S(50, 50, 20), is marked by a black asterisk

Before we actually start with the inversion we have to care about the sin-
gularity of sensitivity kernels at the receiver. Due to comparatively large
values of 1

βa
δββa in the receiver region it is problematic to use the kernels

directly for inversions. In practice sensitivity kernels are often adapted by
a so called pre-conditioner. In our case we multiply the kernels by a factor
p = 1− exp(−((z2 + x2) · f 2)), where f is the highest frequency contained in
the seismic signal. This leads to a slightly modified kernel (see figure 5.16)
without extreme values.

Remark: Because of lim
f→∞

p = 1 the manipulation is less significant the

broader the frequency band is.
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Figure 5.16: left: βa kernel without pre-conditioner; right: βa kernel multi-
plied by a pre-conditioner

To demonstrate the utility of a pre-conditioner we just calculate the gradient
for the first model update in our inversion example.
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Figure 5.17: left: gradient for the first model-update without pre-conditioner;
right: gradient for the first model-update with pre-conditioner

In the left figure kernels were used directly. Obviously the extreme kernel
values near the surface produce misleading contributions to the model up-
dates. This undesired effect is canceled out in the right figure where kernels
were adapted by a pre-conditioner.

Following the inversion theory introduced at the beginning of this chapter
we get the first model update by adding a special multiple of the gradient
to the homogeneous starting model, so that the misfit between real appar-
ent shear wave speed measurements (original model) and synthetic apparent
shear wave speed measurements (model update) is minimised. Figure 5.18
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(left) shows apparent shear wave speed data of 101 receiver stations for the
original model (black) and the first model update (red) together with the
inversion model after the first update (right).
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Figure 5.18: left: apparent shear wave speed data for the original model
(black) and for the first model update (red); right: inversion model after
the first update

The inversion result can be improved by iterated model updates. After ten
iterations real and synthetic data match quite well and the inversion model
highlights clearly the shape of the perturbation although the amplitudes are
too small.
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Figure 5.19: left: apparent shear wave speed data for the original model
(black) and for the tenth model update (red); right: inversion model after
ten updates, the perturpation is clearly visible

By iterating up to twenty model updates the result improves again slightly.
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Figure 5.20: left: apparent shear wave speed data for the original model
(black) and for the twentieth model update (red); right: inversion model after
twenty updates, the result improves again slightly

Considering the misfit development for the iteration steps in figure 5.21 ex-
plains why there is no further improvement to expect after twenty iterations.
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Figure 5.21: Misfit for twenty iteration steps: There is no significant im-
provement to expect after twenty iterations.

Although the result of the previous example is quite respectable, we are inter-
ested in what happens if we change certain parameters in the inversion trial.
Taking into account that sensitivity kernels can be regarded as functions of
frequency we should at first try different frequency bandwidths.

In the following two examples we repeat the inversion trial from above but
now with frequency bandwidths from 0 − 1Hz and 0 − 3Hz.
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Inversion example for frequencies between 0 and 1Hz

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

x[km]

∆ 
β a

x[km]

z[
km

]

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

3.5

4

4.5

5

5.5

6

6.5

0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

x[km]

∆ 
β a

x[km]

z[
km

]

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

3.5

4

4.5

5

5.5

6

6.5

Figure 5.22: left: apparent shear wave speed data for the original (black)
and the updated (red) model [top: first update, bottom: tenth update]; right:
inversion model [top: first update, bottom: tenth update]
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Figure 5.23: Misfit for ten iteration steps: The iteration is close to its reach-
able optimum after ten steps

The misfit-graph (figure 5.23) shows that the inversion process is close to its
reachable optimum after ten iteration steps. The discrepancy between real
(black) and synthetic (red) data is acceptable after ten iterations (figure 5.22,
bottom-left). Nevertheless the tenth update of the inversion model (figure
5.22, bottom-right) does not really reproduce the original model. Hence in
accordance with former postulations we should avoid lower frequencies.
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Inversion example for frequencies between 0 and 3Hz
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Figure 5.24: left: apparent shear wave speed data for the original (black)
and the updated (red) model [top: first update, bottom: tenth update]; right:
inversion model [top: first update, bottom: tenth update]
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Figure 5.25: Misfit for ten iteration steps: The iteration is close to its reach-
able optimum after ten steps

For a broader frequency band up to 3Hz the inversion result (figure 5.24,
bottom-right) is quite similar to the first trial with a maximal frequency
of 2Hz. But looking at the apparent shear wave speed data (figure 5.24,
bottom-left) especially lateral receiver measurements do not fit very well
with the synthetic data. This may be a reason for the obviously too slim
reproduction of the perturbation in the inversion model.
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Summarising the different frequency trials it seems that for this special ex-
ample a frequency band from 0 − 2Hz is quite optimal. For that reason we
expand this experiment with one source to an experiment with three sources,
what usually improves results of seismic inversions.

Inversion example for frequencies between 0 and 2Hz using three

sources

The experimental setup stays the same except that we add two sources at
S1(30, 50, 20) and S3(70, 50, 20).
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Figure 5.26: left: The perturbation model is the same as at the begin-
ning of this section, but now three sources, S1(30, 50, 20), S2(50, 50, 20),
S3(70, 50, 20), are used for the inversion; right: gradient for the first model
update

Using three sources we have to handle three different data curves. In the
following only the diagrams for the left source, S1(30, 50, 20), and the middle
souce, S2(50, 50, 20), are shown. As this is a symmetric problem the diagram
for the right source, S3(70, 50, 20), is analogous to the left one.
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Figure 5.27: One iteration; top-left: apparent shear wave speed data for
S1(30, 50, 20); top-right: apparent shear wave speed data for S2(50, 50, 20);
bottom: inversion model
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Figure 5.28: Five iterations; top-left: apparent shear wave speed data for
S1(30, 50, 20); top-right: apparent shear wave speed data for S2(50, 50, 20);
bottom: inversion model
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Figure 5.29: Ten iterations; top-left: apparent shear wave speed data for
S1(30, 50, 20); top-right: apparent shear wave speed data for S2(50, 50, 20);
bottom-left: inversion model; bottom-right: misfit for ten iteration steps: The
iteration is close to its reachable optimum after ten steps

The inversion result after ten iterations is an improvement to the experiment
with only one source. Especially lateral errors decrease. Moreover, with
three sources the quality of the reproduction of the original model is already
after five iterations remarkable. This suggests that including more sources
reduces the non-uniqueness of the inversion problem.
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Chapter 6

Conclusions and Outlook

The objective of this work is to contribute to the development of a new
method of seismic tomography that combines standard translational and
new rotational ground motion measurements - motivated by the recent high-
quality and consistent observations of rotational ground motions using ring-
laser technology.

The theory is based on the definition of an apparent shear wave speed, βa,
which is the ratio of the rms displacement velocity and the rms displacement
rotation. Combining the adjoint method and ray theory for the computation
of sensitivity kernels of βa it is shown that the sensitivity of βa with respect to
β is confined to a volume sorrounding the receiver. Inversion results in chap-
ter 5 indicate that joint measurements of rotational and translational ground
motion may indeed be used to obtain images of the subsurface structure near
the receiver. The principal advantages of the technique are the independence
from deep Earth structure, source magnitude and source timing.

Nevertheless, the quality of the inversion, i.e. the geometry and amplitude
of the reconstructed perturbation, is highly sensible to the parametrisation
of the inversion model - especially to the choice of frequency. This is nothing
new in seismology and moreover not astonishing as sensitivity kernels can be
regarded as functions of frequency.

Although βa kernels are a combination of velocity and rotation kernels they
have quite different properties. The most important ones are the vanishing
sensitivity in the source region and suppressed contributions in the first-order
Fresnel zone but enhanced contributions in higher-order Fresnel zones. The
second attribute leads to strongly oscillating values of βa kernels suggest-
ing that βa-measurements are sensitive to small-scale structures. This may
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explain why it is not possible with our current algorithm to invert for per-
turbations with lateral extension but only for a single point perturbation.
Inversion experiments for more complex models, like the chess board pattern
model, failed, too.

So the consistency of the developed theory could be demonstrated in an
elementary example but before an application of the method to real data
becomes realistic further investigations are necessary in order to make inver-
sions of more complex synthetic models successful.

This investigation should concentrate on following issues:

- In our purpose of adapting pure theory for practical application we
had to accept several approximative solutions. Concerning this matter
we should primarily mention the ray method. The description of a
seismic wave field only along certain ray paths can be problematic (see
chapter 2) but in our case the ray method is applied in a homogeneous
and a 1-D velocity gradient model. In these extremely smooth models
the ray method should not produce any misleading results. Moreover,
calculating sensitivity kernels with the ray method is a central issue
of the presented work because it leads to fast and flexible algorithms
that facilitate extensive parameter studies. Altogether the ray method
should be appropriate for further investigations.

- Another discussible issue concerns the starting model that we used for
inversions. In principle one should try to keep already the starting
model for seismic inversions as realistic as possible. We used a ho-
mogeneous starting model that has nothing to do with reality. But
the similarity of βa kernels in a homogeneous medium to βa kernels in
more complex media, due to their concentration to the receiver region,
should justify this approach.

- An essential problem is that βa kernels cannot be used directly for
inversions. On the one hand the singularity of the kernel at the receiver
suggests highest sensitivity to the structure at that point, so that it
seems paradox to exclude exactly this data from inversion. On the
other hand the values in that region absolutely dominate the βa kernel
so that inversion trials without pre-conditioner normally fail.
The choice of a pre-conditioner is quite arbitrary and until now we
tested only one possible pre-conditioner. Especially in the context of
perturbations with lateral extension the inversion should be successful
with an appropriate pre-conditioner.
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- Besides many options for a suitable pre-conditioner there exist many
different concepts of how to solve an inverse problem, too. Especially
when the problem is highly non-linear it may be useful to solve the
inversion problem applying stochastic methods. For example Monte
Carlo methods are an alternative to the minimisation of the misfit
function E by means of gradient methods.

- Finally it would be interesting to investigate what happens if we use
surface waves instead of S-waves for the inversion.

Altogether I propose to realise a series of additional synthetic experiments
primarily concerned with the design of efficient pre-conditioners, the choice of
optimal frequency bands and the construction of well-placed source/receiver
scenarios. After that the challenge is an application of this new method
especially to engineering and exploration problems.
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Selbständigkeitserklärung
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