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Abstract

We derive and analyze sensitivity densities for two quantities derived from rotational

ground motion measurements: the rms amplitude Aω of the rotation seismogram ω =

1
2
∇ × u, and the apparent shear wave speed βa = 1

2
Av/Aω, where Av denotes the rms

amplitude of the velocity seismogram. In the case of a plane S wave in a homogeneous

and isotropic medium, βa coincides with the true shear wave speed β. Based on analytical

and numerical examples we demonstrate that the βa kernels attain large absolute values

only in the vicinity of the receiver but not in the vicinity of the source. This effect

is pronounced in the case of both body S waves and surfaces waves (Love+Rayleigh).

Moreover, the βa kernels are dominated by the higher Fresnel zones while reaching only

small absolute values in the first Fresnel zone. This implies (1) that measurements

of βa are to first order independent of the Earth structure near the source, (2) that

such measurements may be used for one-station local shear wave speed tomography,

and (3) that comparatively low-frequency signals can be used in order to invert for

small-scale structures. The sensitivity densities corresponding to the rotation amplitude

measurement Aω resemble those for the velocity amplitude measurements Av. It is

therefore the combination of Aω with Av - and not one of them alone - that is likely to

provide additional constraints on the Earth’s structure near the receiver.
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1 Introduction

In the course of the last decade direct measurements of seismically induced rotational ground

motion have become feasible and reliable (e.g. Nigbor, 1994; Pancha et al., 2000; Igel et al.,

2005, 2007). Theoretical seismologist (e.g., Aki and Richards, 2002) have argued for decades

that in addition to the classical recording of translational motions, rotations should also

be measured, since only then a complete description of the motion of a measurement point

is possible. Moreover, the mechanical characteristics of inertial seismometers necessitate

knowledge of rotational ground motions. Seismometers are particularly sensitive to rotations

about horizontal axes, i.e. to tilt. This is one of the reasons why it is difficult to integrate

acceleration or velocity recordings (e.g., Trifunac and Todorovska, 2001; Grazier 2005; Pillet

and Virieux, 2007).

The analyses of broadband rotational and translational ground motions by Igel et al. (2005,

2007) have indicated that even single station observations allow us to access information about

the subsurface velocity structure, for example through the derivation of phase-velocities either

in the time- or frequency domain (Suryanto, 2006). This raises the question whether such joint

observations can be used to further constrain the Earth’s structure. The primary goals of this

paper therefore are 1) to propose suitable measurements that can be derived from rotational

and translational observations, and 2) to illustrate their sensitivity to Earth’s structure using

the adjoint method.

Our focus will be on two quantities derived from the rotation seismogram ω = 1
2∇ × u,

where u denotes the recorded displacement field: 1) the rotation amplitude |ω| and 2) the

ratio |u̇|/|ω|. The latter is a particularly attractive quantity in the context of structural

inversion. Its unit is that of a velocity, suggesting that it yields very direct information

about the Earth’s wave speed structure. In fact, if we let u(xr, t) denote a displacement field

recorded in a homogeneous and isotropic medium over time t at the location x = xr, then

the assumption that u(x, t) is a plane shear wave directly yields

|u̇(xr)|
|ω(xr)|

= 2β = 2
√
µ

ρ
. (1)

In realistic Earth models, 1
2 |u̇(xr, t)|/|ω(xr, t)| is more appropriately referred to as apparent

shear wave speed. It generally depends on the types of waves considered and on their fre-

quency content, suggesting that different parts of the Earth can be sampled and that such
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measurements may be used to infer information about the Earth’s structure.

The following sections are concerned with the derivation and analysis of sensitivity densities

for rotation amplitudes and apparent shear wave speed measurements - the emphasis being

on the latter. Such sensitivity densities are an essential ingredient of linearized inversions and

inversions based on gradient methods. Moreover, they provide general information on the

possible origins of discrepancies between observed data and synthetics.

Prior to the actual derivation of sensitivity densities we will introduce slightly modified defi-

nitions of the rotation amplitude and the apparent shear wave speed. They are intended to

better reflect the actual measurement process. The subsequent theoretical developments will

result in simple recipes for the computation of sensitivity densities. This recipe will then be

applied to several special cases including S waves in a homogeneous medium, S waves in a

radially symmetric Earth model and surface waves recorded at regional distances.

Throughout this paper the sensitivity densities refer to the S wave velocity β. Classical ar-

rival time tomographies (e.g. Aki et al., 1977 and many followers) usually favour the S wave

slowness β−1 as parameter because its perturbations need not be linearized. In our case,

however, the necessity to linearize perturbations of β does not arise as we will demonstrate

later.

It should be noted that a relation similar to the one in equation (1) can be found by divid-

ing acceleration amplitudes and rotation rate amplitudes. This may be more convenient in

practice because rotation rates are the output of current rotation sensors based on optical

principles (e.g., Nigbor, 1994; Takeo, 1998; Schreiber et al., 2006). However, as we shall see

later, acceleration measurements would lead to expressions for sensitivities involving fourth-

order time derivatives of the seismic displacement field, which are numerically undesirable

quantities.

2 Theory

2.1 Definition and interpretation of the apparent shear wave speed

So far, we loosely referred to the quantity 1
2 |u̇(xr, t)|/|ω(xr, t)| as the apparent shear wave

speed because it has the unit of a velocity and coincides with the shear wave speed in the

case of a homogeneous, unbounded and isotropic medium. In practice however, neither the
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pure determination of |ω| nor of the ratio 1
2 |u̇(xr, t)|/|ω(xr, t)| are particularly useful. Both

filtering and averaging are often necessary operations that suppress the influence of noise

and lead to more stable measurements. Moreover, one may wish to window the seismograms

and isolate certain seismic phases or parts of a surface wave train, for example. In order to

accommodate such processing steps in the formal measurement, we define the apparent shear

wave speed in terms of the rms amplitudes of the filtered and windowed velocity and rotation

signals:

βa(xr) :=
1
2
Av(xr)
Aω(xr)

, (2)

where Av and Aω are defined as

Av :=

√∫
R
[F ∗ (Wv)]2 dt , Aω :=

√∫
R
[F ∗ (Wω)]2 dt . (3)

The symbols F and W denote a convolution filter and a time window, respectively. Analo-

gously, we shall from here on consider Aω instead of |ω|, noting that they are identical in the

case that W = F = 1.

One should strictly separate two aspects of βa: 1) the interpretation of its numerical value and

2) its use as an observable for structural inverse problems. Interpreting βa in terms of a true

shear wave speed is possible only when plane shear waves such as pure S or Love waves are

considered. Then βa may yield direct information about the subsurface structure. Whether

the analysed part of the seismogram is indeed a pure shear wave or not is less important in

the context of structural inverse problems. The apparent shear wave speed is an observable,

regardless of its intuitive interpretation. Special care must be taken when ω = 0 because the

apparent shear wave speed βa is then not defined. One could in principle solve this problem

by using β−1
a instead, at least when v 6= 0. Still, sensitivity kernels of βa would not exist

because Aω is not differentiable at the point ω = 0. In practice, ω may never truly vanish

due to the presence of seismic noise. However, the values of βa are not meaningful anyway

when the rotation amplitude drops below the noise level.

Throughout most of this paper we will restrict our attention to cases where pure shear mo-

tions are observed. An exception is section 3.3 where we analyze sensitivity densities for βa

measurements from surface waves composed of both Love and Rayleigh waves.
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2.2 Sensitivity densities in the context of the adjoint method

Our procedure for determining sensitivity kernels for βa measurements is based on the adjoint

method (e.g. Lions, 1968; Chavent et al., 1975) because it leads to elegant expressions in an

uncomplicated way and because its numerical implementation is straightforward. Alterna-

tively, the sensitivity kernels could be derived using the Born approximation. In order to

establish a consistent notation, but also in the interest of completeness, we shall re-derive or

at least state some well-known results concerning the adjoint method in the context of elastic

wave propagation. They may for example be found in one or the other form in Tarantola

(1988), Tromp et al. (2005) or Fichtner et al. (2006).

We assume that u(x, t) is an elastic displacement field which is related to a set of model

parameters p(x) and an external force density f(x, t) via L(u,p) = f , where L represents the

wave equation operator. More explicitly one may write

L(u,p) = ρ(x) ∂2
t u(x, t)−∇ ·

∫ t

−∞
C(x, t− τ) : ∇u(x, τ) dτ = f(x, t) . (4)

The symbol : denotes the double scalar product, i.e., (C : ∇u)ij = Cijkl∂kul. The model

parameters p comprise the mass density ρ and the rate of relaxation tensor C. We repre-

sent the process of measuring the wave field u or extracting information from it through an

objective function E(u), which we assume to be expressable in the form of a time integral

E(u) =
∫
ε(u) dt, with an adequately chosen function ε. Given u as a function of time at

the receiver position x = xr, E(u) may for example return cross-correlation time shifts (e.g.

Luo & Schuster, 1991) or rms amplitudes (Dahlen & Baig, 2002) of seismic phases. The

objective of the adjoint method is to provide an expression for the Fréchet kernel δpE, i.e.,

the volumetric density of the functional derivative of E with respect to the model parameters

p. In its most general form, this expression is

δpE =
∫

R
u† · ∂pL(u,p) dt , (5)

where ∂pL denotes the partial derivative of the operator L with respect to the model param-

eters. The adjoint field u† is defined through the adjoint wave equation

L†(u†,p) = ρ(x) ∂2
t u

†(x, t)−∇ ·
∫ ∞

−∞
C(x, τ − t) : ∇u†(x, τ) = −∂uf(t) δ(x− xr) (6)
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and its subsidiary conditions. Note that (6) is still of the wave equation type. The external

force density is proportional to the derivative of ε with respect to the observed wave field u,

and it acts at the receiver location xr. In the case of an isotropic and non-dissipative medium

described in terms of the mass density ρ and the Lamé parameters µ and λ, the three Fréchet

kernels are

δρE = −
∫

R
∂tu† · ∂tu dt , (7a)

δµE =
∫

R
[(∇u†) : (∇u) + (∇u†) : (∇u)T ] dt , (7b)

δλE =
∫
R

(∇ · u†)(∇ · u) dt . (7c)

Expressions for Fréchet kernels with respect to the S wave speed β or the P wave speed

α can then be derived from equations 7. A special case of outstanding importance arises

when E(u) is equal to the i component of the displacement field, ui(xr, τ), that is when

ε(u) = δ(t − τ)ei · u(xr, t). The right-hand side of the adjoint equation 6 then becomes

−ei δ(t− τ)δ(x−xr), implying that the corresponding adjoint field u† is the negative adjoint

Green’s function with source location xr and source time τ , that is u†(x, t) = −g†i (x
r, τ ;x, t).

Therefore we have

δp ui(xr, τ) = −
∫

R
g†i (x

r, τ ;x, t) · ∂pL[u(x, t)] dt . (8)

We now proceed with our actual problem which is the derivation of Fréchet kernels for ap-

parent S wave speed measurements. The definition 2 directly yields

1
βa

δββa = δβ lnβa =
1
Av

δβAv −
1
Aω

δβAω = δβ lnAv − δβ lnAω . (9)

Letting βa, Av and Aω play the roles of objective functions, we can rewrite equation 9 using

the adjoint method terminology:

δβ lnβa =
∫

R
ψv · ∂βL(u,p) dt−

∫
R
ψω · ∂βL(u,p) dt =:

∫
R
ψβa · ∂βL(u,p) dt , (10)

where ψv and ψω are the adjoint fields for Av and Aω, respectively. For convenience, we

incorporated the scaling factors A−1
v and A−1

ω into the definitions of the adjoint fields. The

key element of equation 10 is the difference of the adjoint fields ψβa := ψv − ψω. We will
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demonstrate in a later section that this difference - and therefore the sensitivity kernel δβ lnβa

- is large in the vicinity of the receiver but small in the source region.

Before, however, we will derive general expressions for the adjoint fields ψv and ψω. The

analysis will be kept general in the sense that we will not consider derivatives with respect to

one particular parameter but with respect to any possible parameter. The numerical examples

will then focus on sensitivity densities with respect to the shear wave speed β.

2.3 The adjoint field for velocity amplitude measurements

The relative functional derivative of Av with respect to the model parameters p, denoted by

A−1
v DpAv, is

1
Av

DpAv =
1
A2

v

∫
R
[F ∗ (Wv)] · [F ∗ (W Dp v)] dt =

1
A2

v

∫
R
(Fu̇i)Dpu̇i dt . (11)

For notational brevity we defined the composite filter F in equation (11) as

(Fu̇i)(xr, t) := W (t)
∫ ∞

−∞

[∫ ∞

−∞
F (τ2 − τ1)W (τ1)u̇i(xr, τ1) dτ1

]
F (τ2 − t) dτ2 . (12)

The term in square brackets is the convolution filter F (t) applied to the windowed velocity

seismogram (Wu̇i)(t). In the frequency domain, the action of F (t) corresponds to a mul-

tiplication with F̂ (ω) = |F̂ (ω)|eiφ. This operation is then followed by a convolution with

F (−t), that is by a multiplication with |F̂ (ω)|e−iφ in the frequency domain. Hence, the dou-

ble integral acts as a zero phase filter on Wu̇i. This ensures that the second application of

the window W - in front of the double integral in 12 - indeed affects the signal of interest.

Equation 11 can be re-written in terms of sensitivity densities:

1
Av

DpAv =
∫

G⊂R3
p′

1
Av

δpAv dG =
1
A2

v

∫
R
(Fu̇i)Dpu̇i dt =

∫
G⊂R3

p′
1
A2

v

∫
R
(Fu̇i) δpu̇i dt dG ,

(13)

where p′ is the differentiation direction. The symbols G and dG denote the computational

domain and the corresponding volume element, respectively. Using the expression for δpui

(equation 8) we now deduce that the sensitivity density A−1
v δpAv = δp lnAv can be written
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as

δp lnAv =− 1
A2

v

∫
R2

(Fu̇i)(xr, t) ∂tg
†
i (x

r, t;x, t′) · ∂pL[u(x, t′)] dt′dt

=
1
A2

v

∫
R2
∂t(Fu̇i)(xr, t)g†i (x

r, t;x, t′) · ∂pL[u(x, t′)] dt′dt . (14)

Then defining the adjoint field ψv to be

ψv(x, t′) :=
1
A2

v

∫
R
∂t(Fu̇i)(xr, t)g†i (x

r, t;x, t′) dt (15)

gives the desired canonical form

δp lnAv =
∫

R
ψv(x, t′) · ∂pL[u(x, t′)] dt′ . (16)

Equation (15) implies that ψv can equally be obtained as the solution of the adjoint equation

L†(ψv,p) = fv where the adjoint source fv is given by

fv(x, t′) =
1
A2

v

∂t(Fu̇i)(xr, t′) δ(x− xr) . (17)

2.4 The adjoint field for rotation amplitude measurements

We now repeat the steps that led to the expression of the adjoint source for velocity amplitude

measurements, ψv, in order to obtain the corresponding expression for rotation amplitude

measurements: Differentiating the windowed and filtered rms amplitude of the rotational

ground motion

Aω =

√∫
R
[F ∗ (Wω)]2 dt (18)

with respect to the model parameters p yields

1
Aω

DpAω =
1
A2

ω

∫
R
[F ∗ (Wω)] · [F ∗ (W Dpω)] dt =

1
A2

ω

∫
R
(Fωi)Dpωi dt . (19)

Since ω and u are related through ωi(xr, t) = 1
2εijk

∂
∂xr

j
uk(xr, t), we have

δpωi(xr, t) =
1
2
εijk

∂

∂xr
j

δpuk(xr, t) = −1
2
εijk

∫
R

∂

∂xr
j

g†k(xr, t;x, t′) · ∂pL[u(x, t′)] dt′ . (20)
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We then substitute 20 into the expression for A−1
ω δpAω = δp lnAω which follows from equation

(19) and find

δp lnAω = − 1
2A2

ω

εijk

∫
R

∫
R
(Fωi)(xr, t)

∂

∂xr
j

g†k(xr, t;x, t′) · ∂pL[u(x, t′)] dt′ dt . (21)

The canonical form

δp lnAω =
∫

R
ψω(x, t′) · ∂pL[u(x, t′)] dt′ (22)

can then be obtained by defining the adjoint field ψω as follows:

ψω(x, t′) := − 1
2A2

ω

εijk

∫
R
(Fωi)(xr, t)

∂

∂xr
j

g†k(xr, t;x, t′) dt . (23)

It is again possible to compute the adjoint field ψω by solving an adjoint equation of the form

L†(ψω,p) = fω. From equation 23 we deduce that the components fω
k of the adjoint source

fω are

fω
k (x, t′) =

1
2A2

ω

εijk (Fωi)(xr, t′)
∂

∂xj
δ(x− xr) . (24)

It is interesting to note that fω can be written in terms of a moment density m, that is in

the form fω = −∇ ·m. The components mkj of the moment density are

mkj = − 1
2A2

ω

εijk (Fωi)(xr, t′) δ(x− xr) . (25)

Unlike realistic moment densities, corresponding for example to slip on a fault plane, m

is anti-symmetric. This highlights the fact that the adjoint field is a purely mathematical

construction which is potentially unphysical. It follows from the anti-symmetry of m that the

adjoint source fω does not radiate far-field P waves. Therefore, the interaction of the forward

field u and the adjoint field ψω (see equation 22) is primarily limited to the interaction of S

waves and the near-field terms.

3 Case studies

3.1 Homogeneous, unbounded and isotropic medium

If one wishes to derive some general properties of the βa kernels then there are only two

options: One may simplify the forward problem using for example ray theory while keeping
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the Earth model realistic (e.g., Yomogida, 1992; Dahlen & Baig, 2002), or one may simplify

the Earth model while using exact solutions of the wave equation. Here we shall adopt a vari-

ant of the latter approach by considering a homogeneous, unbounded and isotropic medium.

While this is unrealistic, it still allows us to deduce some fundamental characteristics of the

βa kernels that will reappear in more complicated cases that we will treat numerically.

We assume that the incident wave is an S wave. The adjoint S wave then contributes signif-

icantly more to the derivatives of Av and Aω than the adjoint P wave, therefore justifying

the neglect of the latter. Near-field terms of the adjoint wave field are also neglected. The

n-component of the S wave contribution of the adjoint Green’s function g†i (x
r, t;x, t′) is

(g†i )n(xr, t;x, t′) =
δin − γr

i γ
r
n

4πρβ2|x− xr|
δ(t′ − t+ |x− xr|/β) , (26)

with γr
i := (xi − xr

i )/|x−xr|. Substituting equation 26 into equation 15 yields an expression

for the adjoint wavefield ψv:

ψv
n(x, t′) =

δin − γr
i (x)γr

n(x)
4πρβ2A2

v|x− xr|
∂t′(Fu̇i)(xr, t′ + |x− xr|/β) . (27)

The corresponding expression for ψω
n is

ψω
n (x, t′) =

εijnγ
r
j

8πρβ3A2
ω|x− xr|

∂t′(Fωi)(xr, t′ + |x− xr|/β) , (28)

where we used ∂
∂xj

|x − xr| = γr
j and εijkγ

r
j γ

r
k = 0. Under the assumption that the receiver

at x = xr is far away from the source at x = 0, we obtain the following expression for ωi:

ωi(xr, t′ + |x− xr|/β) = −1
2
εipq

γp(xr)
β

u̇q(xr, t′ + |x− xr|/β) , (29)

where γp(x) := xp/|x| is the direction cosine measured from the source located at the coor-

dinate origin. Combining equations 28 and 29 yields

ψω
n (x, t′) = −

εijnεipqγ
r
j (x)γp(xr)

16πρβ4A2
ω|x− xr|

∂t′(Fu̇q)(xr, t′ + |x− xr|/β)

=
γr

i (x)γn(xr)− γr
j (x)γj(xr) δni

4πρβ2A2
ω|x− xr|

∂t′(Fu̇i)(xr, t′ + |x− xr|/β) . (30)

10



The adjoint field ψβa is equal to the difference ψv −ψω:

ψβa
n (x, t′) =

δin − γr
i (x)γr

n(x)− γr
i (x)γn(xr) + γr

j (x)γj(xr)δni

4πρβ2A2
v|x− xr|

∂t′(Fu̇i)(xr, t′ + |x− xr|/β) .

(31)

The radiation pattern contribution to the amplitude of the adjoint field ψβa can be estimated

using some basic geometrical relations that are illustrated in figure 1:

|ψβa
n | ∝ |δin[1 + γr

j (x)γj(xr)]üi − [γr
i (x)γr

n(x) + γr
i (x)γn(xr)]üi]|

≤ |1− cos θ||ü|+ | sin θ||γr
n(x) + γn(xr)||ü|

= |1− cos θ||ü|+
√

2| sin θ|
√

1− cos θ|ü| ..=
3
2
θ2|ü| . (32)

Figure 1: Source-receiver geometry. The source is located at the origin 0 and the receiver is at xr. The
point where the kernel is computed is denoted by x.

The symbol ..= denotes ’correct to second order in θ’. According to relation 32 the adjoint

field does not radiate towards the source. Moreover, in the vicinity of the source, that is for

small |x|, we find θ ≤ |x|/|x− xr| and therefore

|ψβa(x, t′)| ≤ 3|x|2|ü|
8πρβ2A2

v|x− xr|2
. (33)

Relation 33 implies that the adjoint field tends to zero as we approach the source. The conver-

gence is quadratic in |x|. Since |u| itself is proportional to 1/|x| it follows from equation 5 that

the sensitivity kernel δp lnβa is proportional to |x|, where p denotes any model parameter,

possibly β. In symbols:

δp lnβa ∝ |x| → lim
|x|→0

δp lnβa = 0 . (34)

The sensitivity kernel δp lnβa vanishes as we approach the source. An consequence of equation

34 is that the apparent shear wave speed βa is only weakly affected by Earth structure near
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the source. Sensitivity densities of βa with respect to any model parameter, e.g. β, Q

or the (anisotropic) elastic tensor components cijkl, exhibit this behavior, at least in this

simple medium. This is a clear contrast to sensitivity kernels of other quantities such as

cross-correlation time shifts (Marquering et al., 1999, Dahlen et al., 2000), rms amplitudes

(Dahlen et al., 2002) or rotation amplitudes. The mathematical reason for this behaviour

of the apparent shear wave speed kernels is that the kernels δp lnAv and δp lnAω become

increasingly similar as the distance from the source decreases. Note that this statement

strictly holds only when all components of ω are taken into account. Some of the components

may be naturally zero, for example when Love waves in a stratified medium are analyzed.

Disregarding, however, non-zero components of ω will generally lead to sensitivity kernels

that do have significant contributions further away from the receiver.

In addition to assuming a homogeneous, isotropic and unbounded medium, we also neglected

near-field effects which would have led to excessively complicated formulae. Moreover, we

did not include the adjoint P wave. All possible effects will automatically be included in the

numerical examples to which the next two sections are dedicated.

3.2 S waves from a deep earthquake recorded at regional distances

As we pass from an oversimplified to a more realistic Earth model, analytic solutions become

unavailable. In what follows, the solutions of the wave equation will therefore be computed

numerically using a spectral element method.

The kernel gallery that we shall compile in the course of the next sections is intended to serve

multiple purposes. Firstly, it aims at providing some physical intuition which is the true

foundation of any application of the sensitivity kernels - to inverse problems, for example.

Secondly, we shall confirm some of the results that we found for the case of the homogeneous,

isotropic and unbounded medium.
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Figure 2: Slices through the rotation amplitude kernels δβ ln Aω and the apparent shear wave speed kernels
δβ ln βa in the one-dimensional Earth model AK135 (Kennett et al., 1995). The source is located at the depth
of 300 km (blue star) and the direct S wave is recorded at an epicentral distance of 650 km (red triangle).
The cutoff period of the signal is 10 s. a) Horizontal slices at the surface through the rotation amplitude
kernel δβ ln Aω (top) and the apparent shear wave speed kernel δβ ln Aω (below). Both kernels attain their
largest values directly at the receiver position. b) As a) but at the depth of 100 km. c) Vertical slices through
δβ ln Aω (top) and δβ ln βa (below). The absolute values of the βa kernel decrease away from the receiver,
so that βa measurements are most sensitive to the Earth structure near the receiver and less sensitive to
structures at greater distances - at least correct to first order.

In our first numerical example we consider S waves originating from a 300 km deep source

that are recorded at an epicentral distance of 650 km. The source time function is a low-pass

filtered Heaviside function with a cutoff period of 10 s. As Earth model we use the upper 500

km of AK135 (Kennett et al., 1995). Slices through the rotation amplitude kernels δβ lnAω

and the apparent shear wave speed kernels δβ lnβa are shown in figure 2. Both sensitivity

kernels attain comparatively large absolute values in the immediate vicinity of the receiver

(figure 2a). While their shapes - though not their actual values - are similar at the surface,

they become increasingly dissimilar with increasing distance from the receiver (figure 2b).

The vertical slices in figure 2c give the best general impression of the kernel characteristics.

They confirm that the apparent shear speed sensitivity is small - in fact, as good as negligible

- in the vicinity of the source. Large absolute values of the βa kernel at the immediate source

location are most likely due to numerical errors (see Faccioli et al, 1997 and the Discussion

section) and the influence of the adjoint near-field which may reach the source.
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The velocity amplitude kernels δβ lnAv are not displayed because they resemble the rotation

amplitude kernels to an extent that makes them hard to distinguish visually. This implies

that velocity amplitude and rotation amplitude measurements yield essentially the same in-

formation about the Earth’s structure. It would therefore be uneconomic to use only Aω in

inverse problems. It is the combination of Aω and Av that potentially provides additional

constraints in the vicinity of the receiver.

The width of all sensitivity kernels depends strongly on the frequency content of the ana-

lyzed waves. In general, lower frequency signals generate broader kernels while the kernels

corresponding to higher frequency signals are slimmer. This effect is clearly visible in figure 3

where the cutoff period is chosen to be 20 s instead of 10 s as in figure 2. The broadening with

respect to the higher frequency kernels is most significant near the surface and then becomes

less pronounced with increasing depth where the absolute values of the βa kernels decrease

anyway.

Figure 3: Slices through the apparent shear wave speed kernel δβ ln βa for a cutoff period 20 s. Left:
Horizontal slice at the surface. The geometry of the kernel is similar to the 10 s version in figure 2 a) but has
a significantly wider lateral extension. Centre: Horizontal slice at the depth of 100 km. The geometry of the
kernel differs from the one of the 10 s kernel. Right: Vertical slice parallel to the source-receiver line. The
kernel is concentrated near the receiver, whereas its absolute values decrease with increasing distance from
the receiver.

3.3 Surface waves from a shallow source

The geometric setup of our next example is similar to the previous one, the only exception

being that the source is now located at the depth of 10 km. Therefore, the synthetic seismo-

grams are dominated by large-amplitude surface waves (figure 4). We set the moment tensor

components to Mxy = Mxz = 1 · 1019 Nm and Mxx = Myy = Mzz = Myz = 0. Consequently,

both Love and Rayleigh waves are recorded along the x-axis (see figure 2 for the geometry

of the model). In realistic applications this will almost always be the case, firstly because of

lateral heterogeneities and secondly because of source localisation and orientation errors.

This has immediate consequences on the interpretability of the ratio βa = 1
2 Av/Aω: If we

analyzed only a single-mode Love wave, then βa would equal the phase velocity corresponding
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to that particular Love wave mode. However, this statement does not hold when Rayleigh

waves are involved as well. Already in the classical single-layer model, βa becomes a com-

plicated function that is generally different from β. We omit the analytic formula for βa in

the single-layer model, also because it is of little practical relevance. Instead, we compute βa

for the complete surface wave train and with sliding windows for a station at an epicentral

distance of ∆ = 1500 km in our numerical model:

The left column of figure 4 shows dispersed Love waves (y-component) arriving around 350

s, followed by the Rayleigh waves on the x- and z-components. The corresponding rotational

motion recordings are plotted in the middle column. There is no rotational motion in x-

direction due to our particular choice of the source orientation. We now determine apparent

shear wave speeds in two different ways: First, we compute βa for the complete surface wave

train between 350 s and 550 s. The result, βa = 2830 km/s, is represented by the bold lines

in the right column of figure 4. Secondly, we compute apparent shear waves speeds for the

seismograms windowed by sliding tapers that are 10 s, 25 s and 50 s wide. (Examples with

real data can be found in Igel et al., 2005, 2007). The resulting apparent shear wave speeds

β
(10)
a , β(25)

a and β
(50)
a correspond to the thin lines in the right column of figure 4. From

350 s to 400 s the seismograms are dominated by the Love waves. Consequently, the time

dependent β(10)
a , β

(25)
a and β

(50)
a attain values that are close to the phase velocity of a 20 s

Love wave propagating along continental paths, i.e. ≈ 4 km/s. Between 450 s and 500 s the

Rayleigh wave becomes dominant and one might intuitively expect that the time-dependent

apparent shear wave speeds should increase because Rayleigh waves do not only depend on

β but also on the much larger P wave speed α. This, however, is not the case. Instead,

β
(10)
a , β

(25)
a and β

(50)
a collectively drop below the mean value of 2830 km/s, mainly because

ωy attains comparatively large values after 450 s.

One possible explanation for this observation is the dispersion of the surface wave train.

Due to the dispersion the sliding windows always sample a certain frequency band [ω0 −

∆ω, ω0 + ∆ω]. Making the plane wave approximation together with the assumption that the

z-component of the displacement for ω ∈ [ω0 −∆ω, ω0 + ∆ω] can be represented as

uz(x, t) =
∫ ω0+∆ω

ω0−∆ω

cos(ωt− k(ω)x) dω , (35)
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gives the well-known result (e.g., Lay & Wallace, 1995)

uz(x, t) = ∆ω sinc[∆ω(t− k′0x)/2] cos(ω0t− k0x) . (36)

This equation is valid when the linear term of the Taylor expansion k(ω) = k(ω0)+k′(ω0)(ω−

ω0) + ... = k0 + k′0(ω − ω0) + ... is dominant. The y-component of the rotational motion, ωy,

is proportional to ∂xuz, for which we find

∂xuz(x, t) = −1
2
∆ω2k′0 sinc′[∆ω(t−k′0x)] cos(ω0t−k0x)+∆ωk0 sinc[∆ω(t−k′0x)] sin(ω0t−k0x) .

(37)

The first summand in equation 37 is proportional to k′0 = cg(ω0)−1, where cg denotes the

group velocity. This summand is mostly small because of ∆ω2, but it can nevertheless have

a contribution when cg is comparable to c0∆ω/ω0, i.e., when

cg(ω0) ≈ c(ω0)
∆ω
ω0

. (38)

This can be the case under the following circumstances: 1) The band width ∆ω is comparable

to the centre frequency ω0 and/or 2) the group velocity is small. In our particular example

both factors play a role because the high amplitudes of ωy appear in the latest arrivals (small

cg) for which the frequency is relatively high.

Figure 4: Left: Surface wave displacements at ∆ = 1500 km. Centre: Rotational motion at ∆ = 1500 km.
Right: Time-dependent ratio 1

2
|v(xr, t)|/|ω(xr, t)| computed with sliding windows that are 10 s, 25 s and

50 s wide. The bold vertical line indicates the value of βa for the complete surface wave train.

Despite the fact that βa, for the entire wave train or for sliding windows, is not always

directly interpretable as S wave speed, it is a physically valid measurement. In general,
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this measurement, i.e. the particular value that it yields, depends on the Earth’s structure.

Therefore we can compute the corresponding sensitivity kernels. Some of the results are

displayed in figure 5.

Part a) of figure 5 shows horizontal slices through the rotation amplitude kernel δβ lnAω

and through the corresponding apparent shear velocity kernel δβ lnβa for the station at an

epicentral distance of Delta = 1500 km. While δβ lnAω fills the space between source and

receiver, the apparent S velocity kernel is restricted to the immediate vicinity of the receiver.

This result is similar to the one obtained for body S waves, and it corroborates the hypothesis

that this phenomenon is independent of the type of seismic waves that one uses for the

analysis.

Note that the epicentral distance of 1500 km is much larger than the one chosen for the body

S waves in section 3.2 (650 km). In fact, reducing the epicentral distance in the surface wave

case to 650 km leads to substantial contributions to the βa kernel between source and receiver,

as can be seen in figure 5b. A rigourous and quantitative analysis of this observation is beyond

the scope of this paper. Nevertheless, it can be explained qualitatively: The behaviour of the

kernel δβ lnβa depends on the characteristics of the adjoint wave field ψβa = ψv − ψω and

therefore on the differences between ψv and ψω. In the case of body waves, the difference

ψv −ψω decays as 1/r away from the receiver. However, when surface waves are considered,

the geometric spreading of the adjoint field away from the receiver is proportional to 1/
√
r.

Therefore, differences between ψv and ψω are carried much further into the source region.

As figure 5 indicates, this effect can be compensated by increasing the epicentral distance.
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Figure 5: a) Horizontal slices at 10 km depth through the rotation amplitude kernel δβ ln Aω (top) and the
corresponding apparent shear speed kernel δβ ln βa (below). The epicentral distance is ∆ = 1500 km. b) The
same as a) but for a shorter epicentral distance of ∆ = 650 km.

The characteristics of δβ lnβa at greater depth are illustrated in figure 6 which shows vertical

slices through the source-receiver line. The images have different colour scales in order to

emphasise the relative amplitudes of the kernel in different regions. Contributions along the

source-receiver path are almost entirely absent. The sensitivity of βa to the S wave speed β

is restricted to the immediate vicinity of the receiver and to depths of less than 50 km.

Figure 6: Vertical slices through δβ ln βa along the source-receiver line. The image is plotted with different
colour scales in order to emphasise the different amplitudes of the kernel in the source and receiver regions.
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4 Outlook - Possible setups of inverse problems using βa

measurements

The ultimate purpose of the βa and Aω kernels is to facilitate the solution of structural inverse

problems in which the apparent shear wave speed or the rotation amplitude serve as observ-

ables. While the analysis and the solution of such an inverse problem are beyond the scope

of this paper, we still want to outline three of its possible formulations in order to highlight

how the sensitivity kernels may be used in practice. Our focus will be on apparent shear

speed measurements. The corresponding expressions for rotation amplitude measurements

are easily obtained by replacing βa by Aω.

Formulation 1 - Linearized inverse problem: It is in principle possible to use observa-

tions of βa in the context of a linearized inverse problem which is conceptually similar to the

one encountered in classical ray tomography (e.g. Aki et al., 1977). The components di of the

n-dimensional data vector d are defined as the relative differences between the observations

β
(0)
a,i and their corresponding synthetic values βa,i, that is

di := (βa,i − β
(0)
a,i )/βa,i , i = 1, ..., n . (39)

Different index values i may for example denote various events, seismic phases, stations,

dominant frequencies or combinations of them. Under the assumption that βa,i is linearisable

around the parameter p - not necessarily the S wave speed β - we may write

di = (βa,i − β
(0)
a,i )/βa,i = [βa,i(p)− βa,i(p(0))]/βa,i(p) = [βa,i(p)− βa,i(p+ δp)]/βa,i(p)

.= −
∫

G

(δp lnβa,i) δp dG , (40)

where p(0) denotes the ’true’ parameter, and G the spatial domain where the wave field and

the kernel δp lnβa,i are defined. Even though p is usually an infinite-dimensional function,

such as a shear wave speed or density distribution, it needs to be expressed in terms of a

finite-dimensional basis in order to make the problem computationally tractable. By letting

hk(x), k = 1, ...,m denote the basis elements, we can express p(x) and δp(x) as

p(x) =
m∑

j=1

pjhj(x) , δp(x) =
m∑

j=1

δpjhj(x) . (41)
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Equation 40 then transforms to

di =
m∑

j=1

δpj

[
−

∫
G

(δp lnβa,i)hj dG

]
, (42)

or in matrix notation

d = A δp , Aij := −
∫

G

(δp lnβa,i)hj dG . (43)

This linear tomographic system, or a regularised version of it, may then be solved using

standard iterative techniques. (See for example Nolet, 1993 for an overview.)

Formulation 2 - Non-linear inverse problem and gradient methods: In the case

that βa,i is not sufficiently well linearisable, it is preferable to view the inverse problem as an

iterative minimisation of a non-linear misfit function E(βa,i). One may, for example, choose

the quadratic function

E(βa,i) =
1
2

n∑
i=1

(βa,i − β
(0)
a,i )

2 . (44)

The gradient of E with respect to the model parameters pj - required by the method of

steepest descent and its variants - is then given by

dE

dpj
=

n∑
i=1

(βa,i − β
(0)
a,i )

dβa,i

dpj
, (45)

where the gradient of βa,i is expressable through the kernel δpβa,i:

dβa,i

dpj
=

∫
G

hj δpβa,i dG = −βa,iAij (no summation over i) . (46)

Formulation 3 - Non-linear inverse problem and Monte Carlo minimisation: Monte

Carlo methods offer an alternative to the minimisation of the misfit E by means of gradient

methods, especially when the problem is highly non-linear. Since Monte Carlo methods

generally do not require information on the gradient of E the sensitivity kernels are not used

directly. They may, however, be of indirect use because they potentially provide information

on where random perturbations of a test model are most effective. In that sense, gradient

information may be used for the benefit of a more economic random model generation.
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5 Discussion

As we have seen in the analytical and numerical examples, sensitivity densities for apparent

shear speed measurements become negligibly small in regions that are far from the receiver.

This suggests that βa may be used for the estimation of local Earth structure. In addition to

being comparatively small near the source, δβ lnβa generally possesses another characteristic

feature, namely that contributions in the higher Fresnel zones are enhanced at the expense of

suppressed contributions in the first Fresnel zones. (We employ the term Fresnel zone in the

interest of greater clarity even though the considered signals are usually quasi-period and not

strictly periodic.) There are several implications arising from this phenomenon: 1) Higher

Fresnel zones are generally thinner than the first Fresnel zone. It follows that for a given

dominant frequency ν, βa measurements yield more information on small-scale structures

than measurements of the rms amplitudes Av and Aω or measurements of cross-correlation

time shifts (e.g. Dahlen et al., 2000). In the inverse problem context this means that one may

- and probably must - generally work with comparatively low frequencies when βa measure-

ments are used as data. Otherwise, the βa measurement will be sensitive to very small scale

structure that one may not be able to resolve. 2) The shape of δβ lnβa is rather susceptible to

wave form changes. This is not the case for kernels that attain large values in the first Fresnel

zone - rotation and velocity amplitude kernels are two examples. Consequently, small changes

in the Earth model will lead to changes in the βa kernels that are larger than in the Av or

Aω kernels. Carefully incorporating already known 3D Earth structure into the computation

of the synthetic seismograms is therefore essential when βa measurements are to be used for

structural inversions. 3) As mentioned in section 4, sensitivity densities are often not used

directly. Instead, they are multiplied by a basis function hj and integrated over the compu-

tational domain (see equation 46). This procedure is meaningful only when the scale of the

principal features of the sensitivity densities is comparable to the characteristic length scale

of the basis function. Hence, if we wish to exploit the comparatively large values of δβ lnβa

in the receiver region then the characteristic length scale of hj should be small. On the other

hand, when we use rotation or amplitude measurements only, then the characteristic length

scale of hj can be much larger because the dominant feature of the corresponding kernels is

the broad first Fresnel zone. 4) Usually, the gradient of an objective functional with respect

to the model parameters (again see equation 46) is multiplied by a covariance matrix - either

to yield the direction of steepest ascent or to deliberately smooth the final model. Just as the
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characteristic length scale of hj the correlation length of the covariance matrix should also be

chosen to be smaller for βa measurements than for measurements of Av or Aω, for example.

The choice of the basis functions hj is of outstanding importance, especially in the framework

of linearised inversion (see section 4). In conventional ray-based traveltime tomography, the

basis functions must be chosen such that the matrix A in equation 43 is non-singular or at

least as well-conditioned as possible. The intuitive interpretation of this requirement is that

there be a generally good azimuthal ray coverage in the region of interest. Whether suitable

basis functions exist in the case of apparent shear speed measurement, and whether a similar

intuitive interpretation exists, still needs further investigations.

In contrast to the βa kernels, sensitivity densities for rotation amplitude measurements gener-

ally reach large absolute values everywhere around the geometric ray path. Their large-scale

structure very much resembles the one of sensitivity densities for velocity amplitude mea-

surements. It is therefore likely that measurements of Aω alone yield essentially the same

information on Earth structure as measurements of Av alone - at least in the context of lin-

earised or gradient method based inversion. It is the combined measurement of Aω and Av,

i.e., the measurement of βa, that can potentially make a difference.

The natural complement of the apparent S wave speed βa is the analogously defined apparent

P wave speed αa. Indeed, when u(x, t) is a plane P wave in a homogeneous, isotropic and

unbounded medium then |u̇|/|s| = |u̇|/|∇·u| = α, where α is the P wave speed. It is therefore

meaningful to define

αa := AvA
−1
s , A2

s :=
∫ ∞

−∞
[F ∗ (Ws)]2 dt , (47)

in an arbitrary medium. The analysis of the corresponding sensitivity densities δα lnαa is

beyond the scope of this paper. Still, we remark that the adjoint source for the kernel δp lnAs

is

fs(x, t) =
1
A2

s

(Fs)(xr, t) ei
∂

∂xi
δ(x− xr) , (48)

meaning that it is dipolar - as is the adjoint source for δp lnAω. We may therefore at least

hypothesise that δα lnαa may also vanish near the source.

Finally, we wish to address the feasibility of a structural inversion using βa from a purely com-

putational point of view. While such an inversion is clearly more expensive than a traveltime

tomography based on the ray method, its computational costs are still moderate - at least
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compared to full wave form inversion (e.g. Gauthier et al., 1986) or wave equation traveltime

inversion (e.g. Luo & Schuster, 1991; Tromp et al., 2005). There are three reasons for this: 1)

As already discussed, βa is sensitive to small-scale structures even when low frequencies are

used. Hence, one can choose a broader numerical grid for the computation of the synthetic

seismograms. 2) The kernels δβ lnβa are small far from the source. It is therefore unneces-

sary to propagate the adjoint wave field all the way back to the source. 3) It is, for the same

reason, possible to reduce the computational costs by using a combined-method approach.

The forward wave field can be propagated in a 1D model with an inexpensive method until

it comes close to the receiver. From there on a purely numerical method is used that can

handle 3D media.

6 Conclusions

This study was motivated by the recent high-quality and consistent observations of rotational

ground motions using ring laser technology. The joint processing of rotational and trans-

lational motions indicated that information on the subsurface velocity structure might be

recoverable even with observations at a single measurement point. This is in contrast to the

common requirement in seismology to have access to information from distributed stations

(arrays, networks) in order to derive wave field characteristics such as phase velocities, and

phase delays relating to subsurface structure.

Our theoretical analysis based upon the adjoint methodology reveals some interesting proper-

ties that might one day enable a new type of seismic tomography: 1) sensitivities of rotational

motions alone have very similar shapes as well-known sensitivities of measurements derived

from translations (e.g, travel times, amplitudes); 2) the sensitivity of the newly introduced

measurement "apparent shear wave speed" is essentially based on the difference of sensitiv-

ities due to translations and rotations and is highly localized below the receiver position;

3) Because of the specific form of the sensitivity kernels structures well below the analyzed

wavelengths might be recoverable; 4) The concentration of sensitivity close to the receiver

might allow the use of efficient hybrid modelling schemes in tomographic inversion schemes.

Our results indicate that additional observations of rotational ground motions are indeed

beneficial and may allow estimation of the structure below the receiver on lengths scales that

partly depend on the analyzed frequencies. While in principle rotational ground motions

can be estimated from appropriately sized arrays and such arrays would offer similar (and
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additional) information content, it is important to note that array-derived rotations are very

sensitive to 1) noise in the data, 2) variations in coupling properties within the array, 3) non-

planarity of wavefronts, and 4) local structural heterogeneities. In addition, the array size

makes the accuracy of the results frequency dependent, and in particular one would derive

rotations with sensors that are contaminated by rotations.

Further studies are necessary to understand the relevance of these concepts in different situ-

ations (e.g., local, regional, global scale, or reservoir conditions) and to develop tomographic

inversion schemes based on joint measurements of rotations and translations.
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