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Deterministic earthquake scenario simulations are playing an increasingly 

important role in seismic hazard and risk estimation. The numerical calculation 

of the complete 3D wavefield in the observed frequency band for a seismically 

active basin remains a computationally expensive task. Our aim is to provide a 

tool with which we can calculate a large number of different finite-source 

scenarios for a particular fault or fault system. In order to avoid having to 

calculate an individual scenario for each kinematic source description we 

propose the concept of "numerical Green’s functions" (NGF): a large seismic 

fault is divided into sub-faults of appropriate size for which synthetic Green’s 

functions at the surface of the seismically active area are calculated and stored. 

Consequently, ground motions from arbitrary kinematic sources can be 

simulated for the whole fault or parts of it by superposition.  

To demonstrate the functionalities of the method a strike-slip NGF data base was 

calculated for a simplified, vertical model of the Newport-Inglewood (NI) fault in 

the Los Angeles (LA) Basin. As a first example we use the data base to estimate 

uncertainties of surface ground motion (e.g., peak ground velocity (PGV)) due to 

hypocentre location for a given final slip distribution. The results show a 
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complex behavior, with dependence of absolute PGV and its variation on 

asperity location, directionality and local structure. Hypocentral depth may affect 

PGV in a positive or negative way depending on the distance from the fault and 

the location with respect to basin structure. 

 

1. Introduction 

The calculation of the complete wave-field for potential large earthquakes in a 

given seismically active region of known structure will play a central role in reliably 

estimating shaking hazard (e.g., Olsen and Archuleta, 1996; Olsen, 2000, Ewald et al., 

2006). Such calculations will complement hazard estimation based on probabilistic 

estimates of seismicity (e.g., Gerstenberger et al., 2005) and/or stochastic means to 

calculate ground motion scenarios based on highly simplified physical models (e.g., 

Beresnev et al., 1998; Boore, 2003). Earthquake-induced ground motions strongly 

depend on: (1) the velocity structure and (2) the finite-fault slip histories. The local and 

regional velocity structure can be estimated and continuously improved using 

tomographic tools and/or direct measurements (e.g., borehole information). However, 

the uncertainty concerning rupture processes remains and it is unquestionable that 

hazard relevant ground motion characteristics for earthquakes of a given size will 

strongly depend on some rupture properties such as stress drop, source mechanisms, 

rupture velocity, slip speed, etc.  

This poses a formidable problem when faced with the task of estimating ground 

motion due to one or more “characteristic earthquakes” of a specific seismically active 

region. In addition to the uncertainties caused by the shallow velocity structure at 

frequencies relevant to structures, one would have to calculate many different slip 

scenarios for one presumed earthquake in order to account for rupture related 

variations. In order to quantify these variations we propose to generate data bases with 
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Green’s functions calculated for discrete models of faults or fault systems for areas with 

sufficiently well known 3D velocity structure and fault location. The surface ground 

motions for each sub-fault excitation are stored which allow arbitrary finite fault 

scenarios to be synthesized at very little computational costs compared to a normal 

complete 3D calculation, once the database is available. The opportunity to investigate 

ground motion variations as a function of many different rupture related parameters for 

a specific area comes at the price of a sufficiently large number of initial 3D  

simulations for the pre-designed discretized fault and is economical if the number of 

synthesizations exceeds the number of NGF calculations.    

 In this paper we introduce the concept of the NGF method, discuss the accuracy 

of the method as a function of sub-fault size and other earthquake related parameters, 

and present a first application to a model of the Newport-Inglewood fault in the Los 

Angeles Basin, namely how the ground motion varies with the hypocentre location 

while static displacement is unchanged. The method for calculating quasi-dynamic 

rupture process published in Guatteri et al. (2005) is adopted to generate slip history 

based on randomly pre-created finite slip distributions. This initial study merely aims at 

discussing the functionalities of this approach with restrictions in terms of lowest model 

velocities and achievable frequencies and is not “economical” in the sense described 

above.  

Graves and Wald (2001) also calculated a database of Reciprocal Green’s 

Functions by putting the source (double couple point source) at a station and recording 

the response at the whole 3D grids. Those responses can, reciprocally, be used as 

Green’s Functions to resolve the trade-offs between the source complexity and the 3D 

elastic media’s path effect when doing the finite fault source inversion. Their work 

focuses on a few stations on the surface where observations about an earthquake are 
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available, while the fault discretization can reach the same scale of the grid-length 

adopted by the numerical method.  

2. Numerical Green’s Functions: Theory and Verification 

In the following we introduce the basic concept of the NGF approach and verify it 

against known (i.e., high-resolution) finite fault solutions. A targeted fault plane is 

divided into uniform, rectangular sub-faults and for each of these sub-faults the 

corresponding Green’s function is calculated using a double-couple source mechanism 

(here we restrict ourselves to pure strike-slip excitation). Even though in a strict 

mathematical sense the term Green’s function is not correct we use it in connection 

with our source time function (a Delta function in moment rate) and to illustrate the 

close connection to the concept of empirical Green’s functions (e.g., Joyner and Boore, 

1986; Hutchings and Wu, 1990; Bour and Cara, 1997; Kohrs-Sansorny et al., 2005).  

The calculations can be carried out using any numerical solution to the 3D wave 

propagation problem. Here we employ a high-order staggered-grid finite-difference 

approach (e.g., Igel et al., 1995; Gottschämmer and Olsen, 2001) with efficient 

absorbing boundaries based on the concept of perfectly matched layers (e.g., Collino 

and Tsogka, 2001; Marcinkovich and Olsen, 2003). 

Theory and verification 

What affects seismic motion can be subdivided into two aspects: the subsurface 

structure and the seismic source including the focal mechanisms and the slip 

histories. For one small seismic source i  (small enough to be considered as a point 

source within a certain frequency range), the j-th component of the ground velocity  

at the location x  and time t, can be expressed as: 

jv
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where  indicates time convolution. The term  gives the j-th component of 

ground velocity recorded at location x  at time t  and excited by a unit source (in our 

case a strike slip). 

∗ ),( tgij x

)( iis τ  is the source slip rate with fault-area . iA iτ  is time relative to 

the origin time of the i-th sub-fault, iμ  is the shear modulus. The resulting scalar 

seismic moment, , is calculated as iM 0 ∫ ⋅⋅⋅μ iiiii dAs ττ )(  which is used to scale the 

)( iis τ  to the correct amplitude. 

When an earthquake occurs, each part of its fault plane is excited after a time 

delay  representing the rupture front arrival time. If all the N NGFs of the fault plane 

are available, we can employ the following basic equation to sum all the NGFs 

convolved with the corresponding source functions to calculate the ground velocity for 

the finite source rupture (which is similar to the numerical solution of the 

representation theorem given in Bour and Cara, 1997):  
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where  is the j-th component of ground velocity at time t for a receiver located at 

position x . The linear summation is carried out over all N sub-faults occupied by the 

target earthquake fault plane. All the sub-fault slip rate functions are scaled correctly to 

sum up to the total moment  of the finite-source earthquake, , 

where  is the final slip of the i-th sub-fault, i.e., the integration of 

),( tv j x
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=
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time. Hutchings (1991, 1994) theoretically obtained the same equation from the 

representation theorem presented by Aki and Richards (2002). 
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Verification - homogeneous model 

Considering that the goal of the NGF method is to be able to synthesize - within 

some limits (e.g., reliable frequency range) - complete ground motions from arbitrary 

finite source scenarios on a discretized fault, and that the generation of an NGF data 

base is computationally expensive, one should attempt to find a minimum number of 

sub-faults necessary to determine the ground motion with sufficient accuracy. The 

optimal (largest) size of such sub-faults is expected to depend on (1) earthquake fault 

dimension, (2) the desired frequency band for the synthesized ground motions (i.e., the 

shortest wavelengths to be described in the 3D velocity model), (3) the properties of 

the ruptures themselves (magnitude, rupture speed, slip velocity, rise time etc.) and (4) 

the angle of the receiver relative to the rupture propagation (directivity). This 

dependency was thoroughly investigated for a homogeneous medium (with parameters 

shown in table 1). At first, seismic motions from a set of double-couple point sources at 

different depths, 1 km from each other are calculated and stored (Fig. 1 solid circles). 

The seismograms recorded at the surface can be used as Green’s functions. With 

appropriate horizontal space shifting, Green’s functions corresponding to a planar 

vertical fault (Fig. 1, hollow circles) can be acquired and finally synthesized  to calculate 

the ground motions for a large earthquake (with appropriate kinematic rupture 

processes are pre-chosen). The parameters for those kinematic rupture processes are 

defined in the following way. The fault dimensions of an Mw 7 earthquake and an Mw 6 

earthquake are first chosen as 40×20 km and 13×9 km, respectively, and posed such 

that the strike direction is parallel to the x-axis of the study area.  The top of the fault 

plane is set to be 1 km from the free surface (Fig. 1) and the hypocentre is fixed at the 

point with smallest x value and depth (Fig. 1, big asterisk). The rupture propagates 

circularly from the hypocentre to the other parts of fault plane with a constant velocity. 

The scalar moment M0 is related to the moment magnitude Mw as 

 (Kanamori, 1977).  The final average slip D is calculated as 05.165.1log 0 += wMM
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D=M0/(μ A) and a uniform static slip distribution is used. The slip-rate function for each 

sub-fault in the time domain is assumed to be a ramp function whose rise time is 

calculated as the ratio between the local static slip and the presumed constant slip 

velocity (Table 1).  

The solution with sub-fault size of 0.5×0.5 km is first calculated and used as the 

“continuous” solution (Hutchings and Wu, 1990). The misfit energy (ME) between the 

seismograms from the differently discretized solutions (Fig. 2a, top left corner, two 

seismograms from different solutions are shown as an example), like sub-faults with 

side-length of 2.0 km, 3.0 km and 4.0 km, respectively, and the “continuous” solution is 

used to directly measure the accuracies corresponding to the discretized solutions: 
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where  is the “continuous“ solution’s velocity and )( tivc Δ )( tivd Δ  is the discretized 

solution’s velocity at time , respectively.  tiΔ

First, in Fig. 2a, the ME distribution on the surface between the solution of 4.0 

km and the “continuous” solution is shown to exhibit the directivity effect on the 

accuracy for an Mw 7 earthquake. In the triangle area right behind the rupture 

propagation, the ME values are largest with maximum values of 12% right on the line 

opposite to the rupture direction. Secondly, three Mw 6 earthquakes with different sub-

fault sizes are simulated. The resulting seismic motions are low-pass filtered 

(Gaussian) with different cut-off periods to investigate the cut-off frequency effect on 

the accuracy. The resulting largest ME values (of the whole study area) are shown in 

Fig. 2b as a function of the cut-off period. When the seismograms are filtered with cut-

off period of 4.0 s, the maximum ME values of the study area, for all three differently 
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discretized solutions, respectively, are smaller than those filtered with cut-off period of 

3.0 s. Thirdly, nine Mw 6 earthquakes (three different rupture velocities times three 

different sub-fault sizes) are calculated and the resulting largest ME values of the study 

area are shown in Fig. 2c as function of rupture velocity, from which we concluded that 

the accuracy increases with the rupture velocity. Finally, with the other mentioned three 

parameters kept constant, the magnitude (fault dimension) increase will lead to lower 

ME of the discretized solution as can be seen in Fig. 2d. 

3. Study area and NGF data base 

We apply the NGF method to the Newport Inglewood (NI) fault system located in 

the Los Angeles basin (Fig. 3). An area of 110×100×30 km, in the two horizontal and 

vertical directions, is selected as study area, and rotated in order to have one 

horizontal grid axis parallel to the NI fault. The velocity model is based on the elastic 

part of the SCEC 3D velocity model for the Los Angeles (LA) basin (Version 3, Kohler 

et al., 2003). The depth of a shear wave velocity isosurface, 2.0 km/s, is shown in Fig. 

4. The NI fault is chosen for several reasons: it hosted the M6.4 Long Beach 

earthquake in 1933 (Hauksson and Gross, 1991), causing serious damage; it is still 

considered the most probable source for a damaging earthquake to the LA area; the 

near-vertical plane can be approximated by a vertical plane to first order in the 

numerical calculation and the predominant right-lateral slip can be approximated with a 

pure strike-slip mechanism (Grant and Shearer, 2004). The main goal of the current 

study is to demonstrate the NGF concept and its functionalities. To reduce the 

computational effort and the size of the data base we truncate the seismic velocities at 

1.4 km/s.   

The accuracy of the synthesized ground motions as a function of sub-fault size 

is investigated for an Mw 7 earthquake with the computational setup and source 
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parameters given in Table 2 (what should be pointed out is that the grid distance is 

decreased to 0.3 km to fulfill the requirement by the finite difference method). The fault 

length L and width W are chosen to be 36 km and 18 km, respectively, with the aim 

that the final fault geometry will be 120×60 (in grid points), which can be divided into 

sub-faults with size of 3×3, 4×4, 5×5 and 6×6 (in grid points). An Mw 7 finite fault 

earthquake scenario (quasi-dynamic rupture process calculated with the method of 

Guatteri et al., 2005, 2D Gaussian auto-correlation function with an isotropic 

correlation-length of 5 km is adopted, and the final slip distribution is shown in Fig. 3, 

top right corner) is simulated with three different equilateral sub-faults of side-length 0.3 

km (treated as the “continuous” solution, corresponding to the finest grid distance), 1.5 

km, and 1.8 km. The ground motions for the latter two sub-fault sizes are compared to 

those for the “continuous“ solution.  

As an indicator of the accuracy we compare the peak ground velocity (PGV) 

over the whole study area covering frequencies up to 0.5 Hz. This choice is somewhat 

arbitrary and other wave-field characteristics could be used (e.g., shaking duration, or a 

misfit criterion w.r.t. the “continuous” solution). Our specific goal here is to demonstrate 

that hazard-relevant variations due to finite-source scenarios can be efficiently carried 

out using the NGF methodology.  

PGV difference (x-component) between one discretized solution (sub-fault size 

of 1.8 km) and the “continuous” solution is shown in Fig. 5a (note the sign of the PGV 

difference). The largest difference is -0.056 m/s (note the minus) in the position of the 

largest PGV (1.1 m/s). The ratio between the largest PGV difference and the 

corresponding “continuous” velocity amplitude is 5.09%. The waveforms from different 

solutions are almost identical in the profile shown in Fig. 5c with lowest peak correlation 

coefficient value of 0.991. This can also be seen from the waveform comparison (Fig. 

5b) for one single station where the biggest PGV difference is observed (point P1, Fig. 
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5a). The maximum amplitude difference between the solution for 1.5 km sub-fault side-

length and the “continuous” one is 0.035 m/s while that for the solution for 1.8 km is 

0.056 m/s. Thus we conclude that solution for 1.5 km sub-fault side-length is accurate 

enough and can be applied to the generation of the NGF data base. The conclusion 

about the trend of the accuracy as a function of cut-off frequency (as shown for the 

homogeneous case) still holds in the 3D heterogeneous case. These results justify the 

choice of the final parameter setup used to calculate a complete set of NGFs for M7 

earthquakes on the NI fault estimated to cover an area of 69×20 km2 (Jennings, 1994). 

As we primarily focus on differential effects we calculate 13 (along depth) x 40 (along 

strike) sub-fault NGFs (side length 1.5km) for a grid spacing of 300 m and 

seismograms up to 0.5 Hz.  The complete NGF data base for the 140×166 equally 

spaced surface grid at 600 m distance, for 6 motion components (three translations 

and three rotations), for all sub-faults at a sampling rate of 100 Hz (decided by the 

temporal step of FD method), requires approximately 1.5 TByte storage space.  

4. Source-related inter-event variations of 3D ground motions: 

effect of hypocentre location 

The NGF data base thus calculated allows us - within the limits of the method 

(e.g., reliable frequency range) - to synthesize ground motions from arbitrary strike-slip 

histories on the NI fault for the complete study area.  A question of considerable 

practical relevance to estimates of seismic hazard is how variations of the hypocentre 

location for a given final slip distribution influence the shaking for a characteristic 

earthquake of a given magnitude. Amongst many other possibilities, this is the question 

we will focus on in this sample study: we assume the existence of a characteristic M7 

earthquake on the entire NI fault and synthesize ground motions for a 4x6 regular grid 

of hypocentre locations in the seismogenic zone (5 - 15 km depth) as indicated in Fig. 3 
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(inlet). The final slip distribution is generated randomly with a given isotropic correlation 

length (5 km) based on 2D Gaussian auto-correlation space function (equation 1, 

Guatteri et al., 2005). The slip histories are calculated quasi-dynamically following 

Guatteri et al. (2005) accounting for the accelerating tendency of the crack front due to 

dynamic loading and the high stress-drop promotion of fast rupture propagation. The 

shear-modulus on the fault is kept constant and corresponds to a shear velocity of 3.2 

km/s.  

In Fig. 6, snapshots of the y-component velocity on the surface are shown. 

Source and basin related effects on ground motion are distinct in this figure. Most 

energy is recorded at the area left to the fault plane due to the unilateral rupture 

propagation from right to left. Wave propagation is slowed down by the basin with low 

velocity in the area A1 and A2. In the area B where the deepest parts of the study area 

is, trapped energy and reverberation is observed at time 43 s and also basin 

amplification on the wave fronts are apparent which can also be seen, more clearly, in 

one velocity profile shown in Fig. 5c.  

Two examples of the resulting PGVs in the LA basin are shown in Fig. 7a, 7b for 

the hypocentre locations H1 (5km depth, located at SE fault edge) and H2 (15 km 

depth, located towards the centre) as indicated in Fig. 3 (inlet). The shallow hypocentre 

with unilateral rupture propagation (H1, Fig. 7a) leads to a directivity-dominated 

distribution of PGVs towards the NW end of the fault, while the PGVs of the bilaterally 

propagating rupture from the deeper hypocentre (H2, Fig. 7b) show a clear distance 

dependence from the fault with dominant PGVs in the NW part. This is due to the main 

slip occurring in the northern part of the fault (see Fig. 3, inlet). However, it is important 

to note that the deeper hypocentre illuminates the entire basin leading to considerable 

more basin-wide shaking compared to the shallower hypocentre.   
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The parameter study in the hypocentre space allows us to extract the PGVs of all 

24 simulations (Fig. 7c) containing the dominant features of the previously shown two 

examples with basin wide shaking, fault-distance dependent ground motion, and peak 

motions above the fault area with the largest slip (asperity). The variations of the 

hypocentre-dependent ground motions can be expressed by relating the variance of 

the PGV to the mean PGV at each point of the surface grid (Fig. 7d). The resulting 

distribution illustrates the regions in which most variations of ground motions are to be 

expected from the hypocentre location. These variations are surprisingly symmetric 

around the fault edges with some amplification from the basin edges particularly on the 

SE end.  It is interesting to note that - except at the fault edges - the variations are 

considerably larger inside the basin but at some distance from the fault.  

We complete this study by investigating the relationship between PGV and 

source depth for all simulated scenarios and two receivers indicated in Fig. 8 (R1, 40 

km from the fault, inside the basin; R2, above the centre of the fault). Considering the 

energy geometry spreading or attenuating, more effects due to 3D structure are 

expected for ground motions recorded at R1 (far from the fault) and more effects due to 

source process are expected for R2 (close to the fault). Horizontal velocity 

seismograms (fault-parallel component) are shown for receivers R1, R2 and four 

different hypocentral depths (same epicentre) as indicated in Fig. 3 (inlet, white 

rectangle).  The PGVs (and variance) for all 24 simulations at receivers R1, R2 are 

displayed as a function of source depth in Fig. 8c, 8d, respectively. For the distant 

receiver (R1, Fig. 8c) the mean PGV increases slightly with source depth, while the 

variance is much larger for deeper events, indicating a stronger path-dependence for 

wave fields arriving from deep sources than from shallow sources. The opposite 

behaviour is observed for receiver R2 close to the fault (Fig. 8d). The mean PGV and 

its variance decrease with source depth indicating that the upward propagating rupture 

and the associated directivity effect dominates the PGV in this region. 
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5. Conclusions      

 We introduced the concept of numerical Green’s functions (NGF) that can be 

applied to discretized faults or fault systems in 3D media allowing the calculation of 

earthquake scenarios from arbitrary slip histories. NGF data bases allow a systematic 

study of source related uncertainties/variations of seismic hazard relevant wave field 

properties (peak ground motions, static displacements and rotations, shaking duration, 

etc.) varying slip distributions (e.g., asperity locations), slip and rupture velocities, 

hypocentre locations, etc. Particularly interesting is the possibility to apply high-

resolution slip histories from dynamic rupture simulations and investigate their 

relevance to shaking hazard.  

Our simple example on the influence of hypocentre location on the resulting 

ground motions indicates complex behaviour with dependence of absolute PGV and its 

variation on asperity location, directionality and local structure. In addition, hypocentral 

depth may affect PGV in a positive or negative way, depending on the distance from 

the fault, and location with respect to basin structure. 

This study was subject to severe limitations. Amongst others, (1) the fault is 

approximated by a vertical plane and strike-slip source mechanism. (2) The lowest 

shear-velocity (1.4 km/s) is too high to be useful for realistic hazard estimates and the 

highest frequencies are only relevant for very tall buildings. (3) We limited ourselves to 

investigate only one M7 earthquake happening on the same fault with the same final 

slip distribution. Yet, the main purpose of this study is to illustrate the potential 

functionalities of an NGF data base and the possibilities to systematically investigate 

source related uncertainties in 3D areas with high seismic hazard. Source related 

uncertainty in 3D media is an issue that has so far not been addressed properly, partly 

due to limitations of computational resources. It is important to note that such NGF data 

bases only make sense if the crustal structure is sufficiently well known and that the 
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NGFs would need to be recalculated with every model update (it might be possible to 

devise approximate updates of the NGFs). Nevertheless, we suggest that this 

methodology may be useful also on a larger scale particularly for mega-faults in 

subduction zones with tsunami-generating potential.  
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 Table 1: Verification setup for the homogeneous case 

 
Spatial discretization (m) 1000 
Temporal discretization (s) 0.0822 
S-wave velocity (km/s) 3.9 
Simulation time (s) 50 
Study area (km) 150×130x60 
PML Nodes  10 
Constant slip rate (m/s) 1 

 

Table 2: Verification setup for the heterogeneous model in the Los Angeles basin 

 
Spatial discretization (km) 0.300 
Temporal discretization (s) 0.01811 
Lowest S-wave velocity (km/s) 1.400 
Simulation time (s) 65 
Number of cells 550×500x150
PML Nodes  10 
Fault area (km2) 18x36 
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Figure 1: Schematic set-up for the homogeneous case. The thick black line is the free 

surface. Black solid circles are the hypocentres of a set of double-couple point sources 

and the big asterisk marks the fixed hypocentre location (left top corner) for an 

earthquake whose fault plane is represented by the thin dashed rectangular (which is  

uniformly discretized and represented with cycles, solid and open). 
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Figure 2: Accuracy of seismogram synthesis as a function of sub-fault size, frequency 

range, rupture velocity and magnitude. a. Misfit energy (ME) (%) (see equation (3) ) at 

each surface grid between sub-fault size 4×4 km and “continuous” solution (0.5×0.5 

km). In the inlet two velocity seismograms are shown. Thick dashed line (40 km in 

length) marks the Mw 7 fault trace on the surface in which that of Mw 6 (13 km in 

length) starts from the left tip. White asterisk marks the epicentres with the assumption 

of unilateral rupture propagation.  b. ME as a function of cut-off period (Gaussian low-

pass filtering). c. ME as a function of rupture velocity. d. ME as a function of 

magnitude. x-component of velocity is used in this figure for the reason that it is the 

least accurate.  
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Figure 3: Los Angeles area with modelled region (green rectangle) and the idealized 

Newport-Inglewood fault (NI, red line). Inlet: Final horizontal slip distribution of an M7 

earthquake on the vertical NI fault plane and hypocentre grid (red asterisks, for 

investigation of hypocentral effect on ground motion). H1 and H2 show the two 

example hypocentre locations for more detailed exhibition of hypocentral effect on 

ground motion. 
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Figure 4: Depth of shear wave velocity isosurface at value of 2.0 km/s (grey scale). 

The thick black line marks the fault trace of the M7 earthquake. 
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Figure 5:  Optimal sub-fault size determination for an M7 earthquake in LA basin. a. 

PGV difference distribution between the discretized solution of 1.8 km and the 

“continuous” solution where dashed thick white line marks the fault trace and the big 

asterisk, the epicentre. The biggest PGV difference is observed at station P1. b. 

Velocity seismograms of differently discretized solutions, i.e. 0.3 km, 1.5 km and 1.8 

km, respectively, for station P1 in a.  c. Velocity profile, EE’ (a), of differently discretized 

solutions. The grey area at the bottom shows the isosurface depth of shear wave 

velocity at value of 2 km/s. 
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Figure 6: Velocity snapshots of y-component at different times (according to 

hypocentre H1, Fig. 3, inlet). Black thin lines show the contours of isosurface of shear 

wave velocity at value 2 km/s. Thick black line shows the fault trace on which red 

asterisk marks the epicentre. Note the change of the color scale. Areas A1, A2 and B 

are depicted out to illustrate the structure effect on wave propagation.
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Figure 7: a. Peak ground velocity (PGV, modulus of horizontal components) for 

hypocentre H1. b. Same for H2. The epicentres are indicated as red asterisks. The 

straight white line indicates the fault trace. Thin white lines are contours of the seismic 

velocity model. c. Maximum of PGVs for the combination of all 24 simulations. d. The 

ratio between the standard deviation and the mean PGV value (combination of all 24 

simulations, too) in percent. R1 and R2 are the two example positions chosen to show 

more detailed results. 
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Figure 8: a+b: Velocity seismograms (fault-parallel component) for the M7 earthquake 

with same epicentre but varying source depth (see Fig. 3, inlet, white rectangle) at 

receivers indicated in Fig. 7c. a. R1, approx. 40 km off fault. b. R2, close to the fault 

trace. c+d: PGV as well as mean and variance for all simulations. c. R1; d. R2. Mean 

and variance are offset for illustrative reasons.  

 25


	1. Introduction
	2. Numerical Green’s Functions: Theory and Verification
	Theory and verification
	Verification - homogeneous model


	3. Study area and NGF data base
	4. Source-related inter-event variations of 3D ground motions: effect of hypocentre location
	5. Conclusions     

