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SUMMARY 
 
We extended a high-order finite-difference scheme for the elastic SH wave equation in 

axi-symmetric media for use on parallel computers with distributed memory architecture. 

Moreover we derive an analytical description of the implemented ring source and 

compare it quantitatively with a double couple source. The restriction to axi-symmetry 

and the use of high performance computers and PC networks allows computation of 

synthetic seismograms at dominant periods down to 2.5 seconds for global mantle 

models. We give a description of our algorithm (SHaxi) and its verification against an 

analytical solution. As an application, we compute synthetic seismograms for global 

mantle models with additional stochastic perturbations applied to the background S-wave 

velocity model. We investigate the influence of the perturbations on the SH wave field 

for a suite of models with varying perturbation amplitudes, correlation length scales, and 

spectral characteristics. The inclusion of stochastic perturbations in the models broadens 

the pulse width of teleseismic body wave arrivals and delays their peak arrival times. 

Coda wave energy is also generated which is observed as additional energy after 

prominent body wave arrivals. The SHaxi method has proven to be a valuable method for 
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computing global synthetic seismograms at high frequencies and for studying the seismic 

waveform effects from models where rotational symmetry may be assumed. 

1 INTRODUCTION 
 

Despite the ongoing increase of computational performance, full 3D global 

seismic waveform modeling is still a challenge and far from being a routine tool for 

understanding the Earth’s interior. Yet, for teleseismic distances, most of the seismic 

energy travels in the great circle plane between source and receiver and can be modeled 

assuming invariance in the out of plane direction. This motivates algorithms which take 

advantage of this invariance with a much higher performance compared to full 3D 

methods. A straight forward realization is to ignore the out of plane direction and 

compute the wave field along the two remaining dimensions. For example, Furumura et 

al. (1998) developed a pseudospectral scheme in cylindrical coordinates and invariance in 

the direction parallel to the axis of the cylinder for modeling P-SV wave propagation 

down to depths of 5000 km. This geometry corresponds to a physical 3D model with the 

seismic properties invariant along the direction not explicitly modelled. As a 

consequence, the seismic source is a line source having a substantially different 

geometrical spreading compared to more realistic point sources. 

A different approach which circumvents the line source problem is the axi-

symmetric approach. Here the third dimension is omitted as well, but the corresponding 

physical 3D model is achieved by virtually rotating the 2D domain around a symmetry 

axis. Seismic sources are placed at or nearby the symmetry axis and act as point sources 

maintaining the correct geometrical spreading. Since such a scheme can be seen as a 

mixture between a 2D method (in terms of storage needed for seismic model and wave 
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field) and a 3D method (since point sources with correct 3D spreading are modeled) such 

methods are often referred as 2.5D methods.  

A variety of axi-symmetric approaches have been used in the last decades (e.g. 

Alterman in the sixties pls. find reference in I+W95 paper. Igel & Weber (1995) 

computed axi-symmetric wave propagation for SH-waves in spherical coordinates with a 

FD technique. Furumura and Takenaka (1996) applied a pseudospectral appraoch to 

regional applications for distances up to 50 km (wan t that Cartesian?). A FD technique 

was developed and applied to studying long period SS-precursors by Chaljub & Tarantola 

(1997). Igel & Gudmundsson (1997) also used a FD method to study frequency 

dependent effects of S and SS waves. Igel & Weber (1996) developed a FD approach for 

P-SV wave propagation. Thomas et al. (2000) developed a multi-domain FD method for 

acoustic wave propagation and applied the technique to studying precursors to the core 

phase PKPdf. Recently, Toyokuni et al (2005) developed a scheme based on the 

algorithm of Igel & Weber (1996) with extension to non-symmetric models for modeling 

a sphere consisting of two connected axi-symmetric half-spheres. They are capable of 

computing periods down to 60s and distances up to 50°. Recently, Nissen-Meyer et al 

(2006) presented a 2D spectral-element method for axi-symmetric geometries and 

arbitrary double-couple sources.  

 

In this paper we extend the axi-symmetric FD approach of Igel & Weber (1995) 

for modeling SH-wave propagation (SHaxi) for use on parallel computers. The 

performance of the method allows the generation of synthetic seismograms with 

dominant periods on the order of 5-10 seconds on workstation clusters or down to 2.5s on 
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state of the art high performance parallel computers (I think that is based on th Hitachi 

and so out of date!). We furthermore present an application of the SHaxi method to 

modeling the SH- wavefield in models of whole mantle random S-wave velocity 

perturbations. In a companion paper (Thorne et al. 2006) we make an extensive 

comparison of SHaxi generated seismograms with results from recent data analyses of 

lower mantle structure. The SHaxi source code is available at: http://www.spice-

rtn.org/library/software. 

 
1 THE AXI-SYMMETRIC FINITE-DIFFERENCE SCHEME 
 
1.1 Formulation of the wave equation 
 

The general 3D velocity stress formulation of the elastic wave equation in 

spherical coordinates is given by Igel (1999). The coordinate system is shown in Figure 

1. The relevant equations for pure SH wave generation are: 
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with: σij: Stress tensor, vφ: φ-component of velocity, fφ: external force, εij: Strain tensor, 

and ρ: density. 

In the axi-symmetric system, Eq. 1 can be further simplified by assuming the 

external source and model parameters are invariant in the φ-direction. The resultant 

equations are: 
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Due to axi-symmetry, spatial properties vary solely in the r and θ-directions. Hence the 

computational costs of this formulation are comparable to 2D methods, while the correct 

3D spreading of the wave field is still preserved in contrast to purely 2D methods 

provided the source is centred at the symmetry axis. Due to the cot(θ) term in Eq. 2, SH 

motion is undefined directly on the symmetry axis and the seismic source can not be 

placed there. We discuss the seismic source below. 

A staggered grid scheme was used for the discretization of the seismic 

parameters, so the stress components and the velocity are calculated at different locations. 

This scheme has a higher numerical precision compared to non-staggered schemes 

(Virieux 1984). A schematic representation of the grid is shown in Figure 3. In addition 

to the grid points which define the model space, auxiliary points were added above the 

Earth’s surface, below the core-mantle boundary (CMB) and beyond the symmetry axis 

(θ < 0° and θ > 180°) for the calculation of the boundary conditions (discussed below). 

1.2 The properties of the SH ring source 

Due to axi-symmetry it is not possible to implement sources which generate the SH 

portion of an arbitrary oriented double couple. Moreover, exact point sources are not 

possible since SH motion is not defined directly at the axis. We will discuss the properties 

of the implemented axi-symmetric SH source and show that its displacement far-field is 

proportional to that of an appropriately oriented double-couple source. 
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Similarly to other schemes, the point source approximation is valid when the 

wavelength of interest is made sufficiently larger than the grid size. As we will see, the 

ring source has a radiation pattern whose far-field term corresponds to the far field of an 

appropriately orientated double couple. 

Ring source expression 

In order to derive the analytical solution of an SH ring source of infinitesimal size in a 

homogeneous isotropic elastic media, it is convenient to use Eq. (4.29) of Aki & Richards 

(2002), which gives the displacement field due to couples of forces, each of moment Mpq.  

We start by noting that the ring source can be seen as the summation of individual 

couples of forces F over half the perimeter of a circle (see Figure 2), keeping in mind that 

the radius R ultimately tends to 0 and the forces tend to +∞, so as to have a finite moment 

(this is analogous to the discussion p. 76 of Aki & Richards (2002)). 

Projecting the forces on the axes x1 and x2, we can write that the moment due to this 

couple is  

)sin()sin(2)cos()cos(2)( ψψψψψ RFRFdM ⋅−⋅=             (3) 

with FF
r

= , and Ψ the orientation of the individual couple of forces F. 

Obviously, the total moment M0 due to the ring force is M0 = 2πFR, so the contributions 

from M21 and M12 are (M0/π) ·cos2(Ψ) and -(M0/π)·sin2(Ψ), respectively.  Inserting those 

expressions in Eq. (4.29) of Aki and Richards (2002), and further integrating from 0 to π, 

provides: 
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with: Ringvϕ : φ-component of velocity, ρ: density, β: S-velocity, M0(t), (t)M 0
& : 

seismic moment and moment rate, t: S-wave travel time, r: source-receiver distance, and 

γ: take-off angle. This source will be compared with the far-field term of a strike-slip 

source (in the x1/x3 plane with slip along x1) in the nodal plane for P radiation (φ=0). 

Using the equations analogous to Eq. 4.32 and 4.33 of Aki & Richards (2002) (with 

appropriate permutation of axis) we get: 

2
0

4
//M3)sin(

rρβ
β)r(tMr+β)r(tγ=t)γ,(r,v 3

0DC −− &β . (5) 

Eq. 4 and 5 both have a far-field component )rM( 2
0 /~ &  and an intermediate component 

r)M( /~ 0 . The intermediate-term of the double couple is three times larger than the 

intermediate term of the ring source.  

We see that the far-field terms for the two sources only differ by a factor π2 . Hence, in 

the nodal plane for P radiation and for distances where the near and intermediate term 

can be neglected (i.e. more than a few dominant wavelengths), the wave field of the SH 

ring source can be compared to that of the corresponding strike-slip source. Finally, the 

influence of the finite size of the implemented ring source has to be considered: due to 

the finite grid spacing the source grid cell corresponds to a torus-like volume dV which is 

proportional to the resulting seismic moment MGC. We get: 

dRdRdRdV hh )sin)((2 θθπ= , (6) 

with source distance from the Earth’s center Rh, radial and angular grid spacing dR and 

dθ respectively, and a corresponding moment of:  

)(sin2 23 θθπρϕ ddRdRvM hGC = . (7) 

We compare SHaxi with the analytical solution of Eq. 4 in Section 2. 
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1.3 Boundary conditions 

At the symmetry axis, the free surface, and the CMB, adequate boundary 

conditions must be applied. For the horizontal surfaces (the CMB can be treated similarly 

to the free surface since SH waves reflect totally at both boundaries) the boundary 

condition is given by the zero-stress condition which requires σrφ = 0 for the surface (e.g., 

Levander 1988; Graves 1996). Due to the staggered grid scheme σrφ is not defined 

exactly on the free surface but a half grid spacing below the surface (Figure 3). Therefore 

the zero-stress condition is realized by giving the auxiliary ϕrσ grid points above the 

surface the inverse values of their counterparts below the surface at each time step 

(Figure 4). This results in a vanishing stress component at the surface in a first order 

sense. For the symmetry axis, the boundary conditions are derived from geometric 

constraints: all grid points beyond the axis are set to the values of their partners inside the 

model space, meaning that the fields are extended according the axi-symmetry condition. 

Directly at the axis vφ and σrφ are set to zero since both values are undefined here 

according to Eq. 2. In general, the number of rows of auxiliary grid points which have to 

be added correspond to half the length of the FD operator used for the boundary 

condition. This enables the FD operator to operate across the boundary and calculate a 

derivative for grid points residing directly at the boundary. For the simulations shown 

here a FD operator length of 2 at the model boundaries corresponding to one row of extra 

grid points is added. For the boundary at the symmetry axis this choice is crucial because 

convergence to the analytical solution is achieved only for the two-point FD operator. We 

do not yet understand why higher order operators fail here. For the grid points off to the 

boundaries a 4-point FD operator is used. In combination with the used Taylor expansion 
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for the time evolution this is known to achieve the highest accuracy compared to other 

operator lengths. 

1.4 Parallelization 

Actual high performance computers or workstation clusters usually consist of 

several units of processors (nodes) each having their own private memory. These nodes 

work independently and are interconnected for synchronization and data exchange. In 

order to take advantage of such systems the model space is divided vertically in several 

domains. Each domain can now be autonomously processed by a single node. Figure 5 

shows such a domain decomposition for a total number of three domains. Similarly to the 

implementation of the boundary conditions described above, auxiliary grid points are 

added adjacent to the domain boundaries for the communication between the nodes. This 

communication is implemented using the Message Passing Interface (MPI) library. The 

values of these auxiliary points are updated at each time step from their counterparts in 

the adjacent domain as indicated by the arrows in Figure 5 (points with identical column 

indices – underlain in gray). The number of columns of the auxiliary points must be equal 

to half of the FD operator length. We use a 4-point FD operator inside the model; 

therefore the auxiliary regions must be 2 points wide.  

1.5 Computational costs -> move to appendix as this is already out of date 

Compared to 3D modelling techniques the resources necessary for SHaxi 

simulations are comparatively low. Simulations with relatively long periods ~10-20 

seconds can be done on a single PC within a couple of hours. For shorter periods the 

required memory and processing time increases strongly: The highest achievable 

dominant frequency fDOM of the seismograms is inversely proportional to the grid spacing 
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dx, whereas the time increment between two iterations is proportional to dx. Thus the 

memory needed to store the (2D) grids is proportional to 2
DOMf and the time needed to 

perform a simulation is proportional to 3
DOMf . To give an idea about the achievable 

frequencies on PC clusters and high performance computers we give two examples: 1) 

The 24-node, 2.4 GHz PC-cluster located at Arizona State University is capable of 

computing dominant periods down to 6s for S waves at 80° distance (Table 1). For a 

simulation time of 2700s the run time was about 2 ¼ days and each node needed 428 Mb 

of memory. 2) With 64 nodes of the Hitachi SR8000 high performance computer of the 

Leibniz Rechenzentrum in Munich – each node consisting of 8 processors - dominant 

periods down to 2.5s can be achieved. The run time was less than 1 ½ days.  

 

2 COMPARISON WITH THE ANALYTICAL SOLUTION 

A first comparison of axi-symmetric FD methods was done by Igel et al. (2000). 

Good waveform fits of single seismograms were achieved although the SH source was 

not examined in detail. In order to show that the SHaxi method provides the correct wave 

field we compare synthetic seismograms for two receiver setups with the analytical 

solution of a ring source (Eq. 4) in an infinite homogeneous media, with parameters 

shown in Table 2. The size of the numerical model was chosen so that reflected waves 

from the model boundaries were significantly delayed and therefore not interfering the 

time window of interest. To quantify the difference between synthetic seismograms 

computed using SHaxi with the analytic solution, the energy misfit of the seismograms 

was computed. The energy misfit E of a time series xi with respect to a reference series yi 

is given by: 
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(e.g., Igel et al. 2001). Good agreement between the seismograms and the analytic 

solution can be said to be attained if the energy misfit is below 1%. Two receiver 

configurations, shown in Figure 6a and 7a, were used for two different purposes: (1) a 

circular array consisting of 15 evenly spaced receivers placed on a half circle with the 

source in its center. This setup covers the whole range of possible take off angles and is 

optimally suited for investigating the angular source radiation, (2) a linear array with the 

receivers placed on a straight horizontal line originating from the source. With this linear 

array the propagation effects and the spreading for a constant take off angle and varying 

source receiver distance can be investigated. Table 2 lists the simulation parameters for 

the two setups. Figure 6 shows the results for the circular array. In Figure 6b the 

computed seismograms (red) together with the analytical traces (black) are displayed. To 

make the difference between both solutions apparent, the topmost trace shows the 

difference trace for receiver no. 8 scaled by a factor of 25. Figure 6c shows the radiation 

pattern for all computed traces (marked with red circles) together with the analytical 

curve f(γ) = sin(γ), with γ the take off angle, plotted with solid lines. The SHaxi radiation 

pattern is calculated from the maximum amplitudes of the individual seismogram traces. 

Figure 6d shows the energy misfit between the SHaxi solution and Eq. 4. The 

energy misfit is well below 0.4% and depends on the take off angle. For steep angles the 

accuracy of the solution decreases. This behavior is caused by the boundary condition for 

the symmetry axis which works best for take off angles perpendicular to the axis. 

In Figure 7b on the left the numerical (red) and analytical (black) seismograms for 

the linear array are shown. In Fig. 7c the geometrical spreading of both solutions are 
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shown similar to Fig. 6c. The analytical function is f(r) ~ 1/r with r: source-receiver 

distance. The bottom right figure shows the energy misfit for the linear array. Except for 

receiver 1 the energy misfit is below 0.4%. The increased energy misfit for locations very 

close to the source is a numerical effect caused by the grid discretization. This effect 

occurs for source-receiver distances closer than one dominant wavelength which should 

be avoided for getting an acceptable misfit. 

 
3 APPLICATION: SCATTERING FROM THE WHOLE MANTLE 

Propagating seismic waves lose energy due to geometrical spreading, intrinsic 

attenuation and scattering attenuation. The scattering, or interaction with small spatial 

variations of material properties, of seismic waves affects all seismic observables 

including amplitudes and travel-times and also gives rise to seismic coda waves. In order 

to demonstrate the usability of the SHaxi method at high frequencies we present a 

comparison of synthetics computed from purely elastic models that have been 

stochastically perturbed from the PREM reference model (Dziewonski & Anderson, 

1981). 

 

3.1 Inference of whole mantle scattering 

Many techniques have been developed to study the properties of seismic 

scattering (see Sato & Fehler, 1998 for a discussion on available techniques). Recently, 

advances in computational speed have allowed numerical methods such as FD techniques 

to be used in analyzing seismic scattering (e.g., Frankel & Clayton 1984, 1986; Frankel 

1989; Wagner 1996). The majority of FD studies had thus far focused on S-wave 

scattering in regional settings with source-receiver distances of just a few hundred 
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kilometers. Thus, these recent advances have greatly improved our understanding of 

scattering in the lithosphere where strong scattering is apparent with VS perturbations on 

the order of 5 km in length and 5% RMS velocity fluctuations (e.g., Saito et al. 2003).  

Recently, small-scale scattering has been observed near the core-mantle boundary 

(CMB). Cleary & Haddon (1972) first recognized that precursors to the PKP phase may 

be due to small scale heterogeneity near the CMB. Hedlin et al. (1997) also modeled 

PKP precursors, with a global data set. They concluded that the precursors are best 

explained by small-scale heterogeneity throughout the mantle instead of just near the 

CMB. Hedlin et al.’s (1997) finding suggests scatterers exist throughout the mantle with 

correlation length scales of roughly 8 km and 1% RMS velocity perturbation. Margerin & 

Nolet (2003) also modeled PKP precursors corroborating the Hedlin et al. (1997) study 

that whole mantle scattering best explains the precursors, although Margerin & Nolet 

suggest a slightly smaller RMS perturbations of 0.5% on length scales from 4 to 24 km. 

Lee & Sato (2003) examined scattering from S and ScS waves beneath central Asia, 

finding that scattering from ScS waves may dominate over the scattering from S waves at 

dominant periods greater than 10s and that as much as 80% of the total attenuation of the 

lower mantle may be due to scattering attenuation. Because Lee & Sato (2003) used 

radiative transfer theory to model scattering coefficient, it is not possible to directly 

translate the scattering coefficients determined in their study to correlation length scales 

or RMS perturbations (personal communication, Haruo Sato, 2005) for comparison with 

the studies of Hedlin et al. (1997) or Margerin & Nolet (2003). Nevertheless, their 

conclusion is important in that whole mantle scattering is necessary to model their data. 
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 Baig & Dahlen (2004) sought to constrain the maximum allowable RMS 

heterogeneity in the mantle as a function of scale length. Their study also suggests that as 

much as 3% RMS S-wave velocity perturbations are possible for the entire mantle for 

scale lengths less than about 50 km. Baig & Dahlen (2004) also suggest that in the upper 

940 km of the mantle, scattering may be twice as strong as in the lower mantle. The 

suggestion of stronger upper mantle scattering is also supported by Shearer & Earle 

(2004). They find that, in the lower mantle, 8 km scale length heterogeneity with 0.5% 

RMS perturbations can explain P and PP coda for earthquakes deeper than 200 km. They 

also find that shallower earthquakes require stronger upper mantle scattering with 4-km 

scale lengths and 3-4% RMS perturbations. 

Although a growing body of evidence suggests that whole mantle scattering is 

necessary to explain many disparate seismic observations, the characteristic scale lengths 

and RMS perturbations are determined using analytical and semi-analytical techniques 

which in many cases are based on single-point scattering approximations and do not 

synthesize waveforms. As whole mantle scattering may affect all aspects of seismic 

waveforms, it is thus important to synthesize global waveforms with the inclusion of 

scattering effects. The first attempt at synthesizing global waveforms was by Cormier 

(2000). He used a 2-D Cartesian pseudo-spectral technique to demonstrate that the D" 

discontinuity may be due to an increase in the heterogeneity spectrum. Cormier (2000) 

suggests that as much as 3% RMS perturbations may be possible for length scales down 

to about 6 km.  

 

3.2 Implementation of random velocity perturbations in SHaxi 
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Models of random velocity perturbations (referred to as random media hereafter) are 

characterized by their spatial autocorrelation function (ACF), the Fourier transform of 

which equals the power spectrum of the velocity perturbations. Construction of random 

media for FD simulations is implemented using a Fourier based method (e.g., Frankel & 

Clayton 1986; Ikelle et al. 1993; Sato & Fehler 1998) which can be written as a 

convolution: 

 )y,ACF(x)y,R(x=)y,M(x kikiki ∗ ,  (9) 

 With xi,yk: coordinates of a Cartesian grid, R(xi,yk): random matrix, ACF(xi,yk): 

autocorrelation function, M(xi,yk): the resulting model perturbation, and *: the 

convolution operator. For performance issues the convolution is replaced by 

multiplication in the Fourier space using the 2D Fast Fourier Transform ℑ  and its inverse 

1−ℑ : 

)))y,(ACF(x))y,(R(x(=)y,M(x kikiki ℑ⋅ℑℑ−1  (10) 

The most popular choices of ACFs are defined in Frankel & Clayton (1986) as: 

·  Gaussian:           
22 / are=y)ACF(x, − ,  (11) 

·  Exponential:      are=y)ACF(x, /− ,  (12) 

·  von Kármán:     ⎟
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 where r is the offset or spatial lag: 22 y+x=r , a is the autocorrelation length (ACL), 

Km(x) is a modified Bessel function of the second kind of order m and Γ(m) is the gamma 

function. The power spectrum of an ACF is flat out to a corner wavenumber that is 

roughly proportional to the inverse of the ACL. From the corner wavenumber the power 
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spectrum asymptotically decays. The primary difference between ACFs is their 

roughness, which is defined as how fast the rate of fall of (???) is in the decaying portion 

of the power spectrum. The most important factor that the roughness of the ACF affects 

is the frequency dependence of scattering (e.g., Wu 1982). We construct models of 

random media using the ACFs defined in Eqs. 11-13, noting that other choices of ACFs 

also exist (e.g., Klimeš 2002a; 2002b).  

Challenges arise in implementing random media in SHaxi as the Fourier 

technique (e.g., Frankel & Clayton 1986) is defined on a Cartesian grid and not on the 

spherical grid used in SHaxi. Using this Cartesian grid M(xi,yk) directly as spherical grid 

in SHaxi would therefore lead to an artificial anisotropy due to the now decreasing grid 

spacing for increasing depth. To avoid this, M(xi,yk) is first calculated on a very fine 

Cartesian grid which contains the SHaxi model space. Then the VS perturbations at the 

SHaxi grid points M(θi,rk) are interpolated from M(xi,yk) using a near neighbor algorithm. 

The VS perturbations are then applied to the PREM background model. VS perturbations 

are clipped at ±3 times the RMS VS perturbation in order to avoid extreme perturbations 

that may affect the finite difference simulations stability. Analysis of the statistical 

properties of the original Cartesian random media M(xi,yk) and the interpolated random 

media M(θi,rk) on SHaxi’s grid show no significant difference. However, the creation of 

the very large initial Cartesian grid and the interpolation to the SHaxi grid points makes 

this method of model generation unhandy. A promising approach for a direct model 

generation using the Karhunen-Loève Transform was recently developed by Thorne et al 

(2006). Figure 8 shows an example of random media interpolated onto SHaxi’s grid. 
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Fully 3D random media cannot be incorporated in SHaxi because of the axi-

symmetric approximation. As explained in Section 1.1 model invariance in the φ-

direction causes the random perturbations to effectively be zero in this direction. The 

effect of this apparent anisotropic ACF in SHaxi will likely be to produce less scattering 

than for fully 3D models (e.g., Makinde et al. 2005). We compute synthetic seismograms 

for a suite of realizations of random media with ACLs of 8, 16, and 32 km  and RMS VS 

perturbations of 1, 3, and 5%. The ACL range corresponds to the scattering regime of SH 

waves, which typically have dominant periods in the order of 4s and an average dominant 

wavelength of 24 km for the chosen geometry. We analyze the effect of these random VS 

perturbations on S and ScS waveforms in the distance range 65° to 75° for a source depth 

of 200 km. 

 

3.3 Whole mantle scattering simulation results 

The effect of random media on the seismic wave field is shown in Fig. 9. The top 

panel displays the seismic wave field at one snapshot in time (300s) for a 200-km-deep 

event for the unperturbed PREM reference model. The wave fronts for the seismic phases 

S and sS are labeled. Smaller amplitude arrivals are also apparent, corresponding to 

reflections from the transition zone and upper mantle discontinuities in the PREM model. 

The lower panel shows the effect on the wave field for the same snapshot in time, when 

the PREM model has random VS variations applied. Significant coda wave development 

is observed in the wave field. Furthermore, the smaller amplitude arrivals that were 

clearly visible in the upper panel are barely discernible within the scattered wave field.  

Global SH-wave propagation using a parallel axi-symmetric FD scheme 



Last Updated:  9/24/2006 18:09 a9/p9  Page 18 of 36 

The frequency dependence of scattering is displayed in Figure 10. Here synthetics 

computed for an epicentral distance of 75° are shown for a Gaussian ACF with 3% RMS 

perturbations and ACL of 16 km overlain on top of synthetics computed for the PREM 

model. The effects of scattering are most pronounced for the shortest dominant period 

synthetics. Here the direct S-arrival is broadened with a delay of the peak energy of 

roughly two seconds. A similar effect is observed for the ScS arrival. Substantial energy 

is also seen between the S and ScS arrivals that do not appear in the PREM synthetics. 

However, for longer period waveforms, these scattering effects become less apparent, and 

for dominant periods of 20s, the PREM and Gaussian ACF synthetics are nearly 

identical. This is due to the short-scale length of the random perturbations applied to the 

model. As the dominant wavelength of the propagating energy increases to values 

significantly greater than the dominant wavelength of the random media the propagating 

energy can much easier heal around the perturbations. 

The effect of ACL on the waveform shape is demonstrated in Figure 11 for 

models produced with Gaussian ACF’s. The largest amount of scattering is observed for 

the largest ACL of 32 km. Here the absolute amplitude of the S arrival is most 

significantly reduced as more energy is robbed from the direct S-wave to go into later 

arrivals. Significant delay in S-wave peak arrival time is also apparent which may 

strongly affect the results of cross-correlation techniques at picking arrival times.  

Note that there is potentially non-uniqueness in determining scattering structure. 

For many observable properties of the wave field, such as delay time of peak arrivals, 

broadening of the arrivals wave packets, and coda energy, it may be very difficult to 

distinguish between various models. E.g., A Gaussian ACF with ACL=8 km and 
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RMS=3% behaves very similarly to an Exponential ACF with ACL=32 km and 

RMS=1%. Ultimately distinguishing between these various models will require 

examination of data in a range of frequencies. 

3.4 Discussion of the scattering simulation results 

Scattering in the mantle affects all parts of the seismic waveform and may 

account for a significant portion of the total attenuation we map into the lower mantle. 

We have implemented scattering in a global numerical method, but much work needs to 

be done in comparing our results with data and in producing more realistic models of 

mantle scattering. For example, models with anisotropic ACF’s in the lateral direction or 

models with differing ACL’s or ACF’s in different layers of the mantle may provide 

better approximations to the Earth structure.  

Yet, it is difficult to implement multi-layered models using the Fourier technique 

to produce random velocity perturbations. Different models have to be constructed on 

Cartesian grids and then interpolated onto the SHaxi grid. This will produce undesirable 

first-order discontinuities in between layers with different scattering properties. 

SHaxi is a viable technique for which models of whole mantle scattering can be 

implemented. Although fully 3D techniques exist, it is still impossible to model scattering 

in 3D because current computational limits do not allow for computation of the wave 

field at the small dominant periods where scattering effects are observed in the Earth. 

Furthermore, the SHaxi method may provide a better alternative to finite frequency 

approximations of scattering since the entire wave field is computed and there is no 

reliance on single-point scattering approximations. Our results are calculated for elastic 

velocity models and do not include intrinsic attenuation. Inclusion of inelasticity may 
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weaken the effects of multiple scattering (e.g., Yomogida & Benites, 1996), yet future 

efforts should combine both attenuation mechanisms. 

 
4 DISCUSSION AND CONCLUSIONS 
 
In this paper, we presented a method to calculate high-frequency global SH seismograms 

for axi-symmetric geometries. Axi-symmetric methods fill the gap between 1D methods 

which are often too limited to explain teleseismic observations and full 3D methods, 

which require very high computational resources. On teleseismic scales the major portion 

of the wave field propagates in the great circle plane. As a consequence, out of plane 

variations of the seismic properties can often be ignored. Although the computational 

effort of SHaxi is equivalent to 2D methods the correct 3D geometrical spreading is 

preserved in contrast to traditional 2D methods. The applied ring-source in SHaxi is 

equivalent to a vertical strike-slip source for source-receiver distances larger than about 

five dominant wavelengths where the near and intermediate wave fields vanish. Although 

arbitrary sources cannot be modeled and comparisons with real seismograms can not be 

directly made, the method can be used to probe many teleseismic questions. The method 

is especially suited to investigating relative amplitudes and/or travel-times. Moreover 

when the take-off angle of the investigated phases is known, amplitude correction terms 

can be calculated. The reduction of computational effort has permitted exploration of 

teleseismic waveforms at frequencies where whole mantle scattering may come into play. 

For example, determination of the length scales and spatial location of small scale 

seismic heterogeneity may provide important geodynamic implications, such as the 

degree of convective mixing in the mantle or compositional heterogeneity (e.g., van der 

Hilst & Kárason 1999; Davies 2002).  Fixing the spatial extent of small scale 
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heterogeneity in the mantle may be challenging, however techniques focused on 

measuring differential attenuation (for example the differential t* technique of Ford et al. 

2006) may prove useful.   A companion paper (Thorne et al. 2006) uses SHaxi to 

examine the high frequency wave form effects of recent data analyses for D" 

discontinuity structure beneath the Cocos Plate region. As investigations of whole mantle 

scattering become more and more prominent, numerical techniques such as SHaxi that 

are capable of synthesizing waveforms with the inclusion of scattering will become 

important, as they have for regional scale modeling. 
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Figure 1. Spherical coordinate system used in the formulation of the wave equation. All 

properties are invariant in the φ-direction. The distance from the Earth’s center is denoted 

by r, and θ is the angular distance from the symmetry axis. 
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Figure 2. Scheme illustrating the ring source used in the SHaxi algorithm. The origin of 

the coordinate system corresponds to the symmetry axis. The ring source can be thought 

as a superposition of single forces F acting perpendicular to the radius vector R(ψ).

Global SH-wave propagation using a parallel axi-symmetric FD scheme 



Last Updated:  9/24/2006 18:09 a9/p9  Page 28 of 36 

 

 

Figure 3. The staggered grid scheme used in the SHaxi algorithm. The origin of the 

coordinate system is placed at the Earth’s center. The symmetry axis (θ = 0°) is 

horizontally aligned as labelled at the origin. The model boundaries (surface, CMB and 

symmetry axis) are framed with thick lines. The additional points outside the model space 

are used for implementation of the boundary conditions. The symbols representing the 

wave field properties vϕ, σrϕ, and σθϕ are labelled in the unit grid-cell shown in the top 

left corner of the figure. 

Global SH-wave propagation using a parallel axi-symmetric FD scheme 



Last Updated:  9/24/2006 18:09 a9/p9  Page 29 of 36 

 

 

Figure 4. Detail of the top-left corner of the SHaxi grid where the free surface and 

symmetry boundaries are encountered. The interior grid points (region underlain in gray) 

are part of the physical model space. To fulfill the boundary conditions, grid points 

outside of the physical model space (region not underlain in gray) must be added to the 

total grid. These outer points are updated at each time step by corresponding values of 

grid elements inside the physical model space, as indicated by the arrows and the plus (+) 

and minus (-) symbols. 
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Figure 5. Schematic illustration of the domain decomposition used for parallelization of 

the SHaxi algorithm. The model space is divided into multiple domains (here shown for 

three domains) which are each processed by an individual node. After each time step the 

grid points at the boundaries of the domain (grid points underlain in gray) are copied to 

the corresponding grid points of the adjacent domain. The lateral size of the gray regions 

correspond to half the FD operator length. 
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Figure 6. a) Source-receiver setup of the circular array used to examine the angular 

variation of the radiation pattern. In this setup the entire range of take-off angle is 

covered. b) Numerical FD (red solid line) and analytical (black solid line) seismograms 

for the array. The dashed line on top shows the difference trace for receiver no. 8 scaled 

by a factor of 25. c) The maximum FD amplitudes of all traces (red filled circles) are 

plotted on top of the analytical curve (solid line). d) The energy misfit of the FD solution 

with respect to the analytical solutions. Receivers 01 and 15 are on the nodal SH plane 

and the energy misfit is undefined. The energy misfit across all receivers is less than 

0.3%. 
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Figure 7. a) Source-receiver setup of the linear array used to examine the geometrical 

spreading of the wave field. The receiver spacing corresponds to 0.6 dominant 

wavelengths (1.2 km) in the simulation. b) Numerical FD (red solid line) and analytical 

(black solid line) seismograms for the array. c) The maximum FD amplitudes of all traces 

(red filled circles) are plotted on top of the analytical curve (solid line). d) The energy 

misfit between the FD and analytical solutions. The misfit is below 0.8% for the entire 

section.
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Figure 8. Example of SHaxi model for which random VS variations were applied to the 

PREM background model. In this example a Gaussian autocorrelation function was 

applied with a corner correlation length of 32 km. The RMS S-wave velocity perturbation 

is 1% and the maximum perturbation varies between ±3%. The left model boundary at 

θ=0° is the symmetry axis.
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Figure 9. a) The SH velocity wavefield for a 200-km-deep source in the PREM 

background model at time = 300s. The S and sS wave fronts are labeled. b) The velocity 

wave field at the same time step as in panel a) for the PREM model with random VS 

variations applied. The random variations were created with a Gaussian autocorrelation 

function with corner wavelength of 32 km and 3% RMS VS perturbations. 
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Figure 10. Frequency dependence of scattering. Shown are SHaxi displacement 

seismograms for the PREM earth model (dashed line) compared to seismograms for a 

stochastically perturbed model with a Gaussian autocorrelation function created with a 

RMS VS perturbation of 3% and a 16 km corner correlation length superimposed on 

PREM (solid line). Each pair of seismograms has been filtered to a different dominant 

period listed directly above the seismogram pair. Seismograms are normalized to unity on 

the S arrival.  

 

Figure 11. a) The dependence of autocorrelation length (ACL) on SH-wave envelopes. 

Envelopes of displacement seismograms are shown for the PREM model (black line) and 

for the PREM model with three realizations of random S-wave velocity perturbations 

applied. The perturbations are produced for a Gaussian autocorrelation function with 3% 

RMS velocity perturbations. Envelopes are shown for random perturbations with ACL’s 

of 8 km (blue), 16 km (green) and 32 km (red). b) Detail of direct S arrival from panel a). 
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Table 1. Example SHaxi parameters and performance. 
Grid Size Dominant Periodd (s) 

nptsa (θ) dθb (km) Npts (r) dr (km) 
Number of 
Time Steps 

Memory 
Usagec 

(Mb) 
S 

(40º)
S 

(80º)
SS 

(120º)
SS 

(160º) 
Run Timee

5000/24 4.0/2.2 1000 2.9 16894 17 16 18 25 30 19 m
10000/24 2.0/1.1 1800 1.6 33785 52 10 12 17 19 2 h  9 m
15000/24 1.3/0.7 2900 1.0 50758 122 8 10 12 15 7 h 39 m
20000/24 1.0/0.5 3800 0.76 67649 210 6 8 10 11 17 h 33 m
30000/24 0.7/0.4 5200 0.55 101512 428 5 6 8 9 2 d 6 h 21 m

aValues are: Total number of grid points / Number of processors used. 
bValues are:  dθ (at Earth surface) / dθ (at CMB) 
cMemory is reported as total memory (code size + data size + stack size) for one processor.  Code size is ~800 kb. 
dDominant Period based on phase and epicentral distance listed for a source depth of 500 km. 
eTotal run time is based on 2700.0s of simulation time. 
 

 

Table 2.  Simulation parameters used in SHaxi 
verification. 
Parameter Linear Array Circular Array 
VS  2000 m/s 2000 m/s 
Density (ρ) 2000 kg/m3 2000 kg/m3

dr 77.5 m 38.7 m 
Rdθ  48.9 m 24.4 m 
Tdom 1.0s 0.6s 
λdom 2000 m 1200 m 
Points per wavelength 20 (radial) 40 (lateral) 
Receiver spacing 976 m 13.5° 
Source-receiver distance varies 5859 m 
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