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Abstract. The numerical solution of the time dependent wave equa-
tion in an unbounded domain generally leads to a truncation of this
domain, which requires the introduction of an artificial boundary with
associated boundary conditions. Such exact nonreflecting conditions en-
sure the equivalence between the solution of the original problem in the
unbounded region and the solution inside the artificial boundary. We
consider absorbing boundary condition techniques for the wave equation
and their numerical implementation in a finite difference approach. In
particular, exact conditions that annihilate wave harmonics on a spheri-
cal artificial boundary up to a given order are discussed and subsequently
applied for the practical simulation of acoustic wave propagation. The
analysis is complemented by numerical examples illustrating the accu-
racy of transparent boundary conditions.

1 Introduction

Modern trends in the development of numerical methods lead to higher and
higher requirements for the computational accuracy. Solving numerically the
wave equation for modelling wave propagation on unbounded domains with
complex geometry requires a truncation, to fit the infinite region on a finite
computer. Minimizing the amount of spurious reflections requires in many cases
the introduction of an artificial boundary and of associated absorbing bound-
ary conditions. The critical importance of these techniques becomes particularly
evident when one considers that the gains made in the computational domain
by using sophisticated high order and/or adaptive numerical approaches may
vanish to a large extent as result of violating the boundary conditions at the
artificial boundary.

Despite the computational speed of finite difference schemes and the robust-
ness of finite elements in handling complex geometries the resulting numerical
error consists of two independent contributions: the discretization error of the
numerical method used and the spurious reflection generated at the artificial
boundary. This spurious contribution travels back and substantially degrades
the accuracy of the solution everywhere in the computational domain. Unless



both error components are reduced systematically, the numerical solution does
not converge to the solution of the original problem in the infinite region.

There are several techniques for approximately handling with boundary con-
ditions at the external boundary of a finite computational domain that is ob-
tained from the original unbounded domain by means of truncation. While a
first group of boundary conditions is given by local differential operators [2],
[3], including boundary conditions that perfectly annihilate impinging waves at a
finite number of selected angles of incidence [4], a different approximate approach
is based on absorbing layers [5]. Exact nonreflecting boundary conditions for the
scalar, Maxwell and elasto-dynamic equations were derived by Grote and Keller
[6], [7], using an approach based on integral transforms. There are cases, where
some of the difficulties with boundary conditions may be avoided partially by
using a momentum space approach [8], [9]. In contrast to grid methods in coor-
dinate space where continuum waves spread over the entire space, in momentum
space the waves are confined to a small finite volume and the dynamics stays
localized around the origin at all times.

In the present work we discuss absorbing boundary condition techniques for
the scalar wave equation. In contrast to [6] were an integral equation is used,
our approach is based on a recurrence relation that provides a straightforward
derivation of the boundary condition. In addition, we present the numerical im-
plementation using a finite difference method. In Sec. 2, we illustrate the funda-
mental ideas underlying the derivation of exact absorbing boundary conditions
for the one-dimensional wave equation and present the extension to higher di-
mensions. In Sec. 3 we present and discuss numerical examples based on finite
differences. The conclusions of the present study are given in Sec. 4.

2 Theoretical Approach

2.1 The One-Dimensional Wave Equation

We consider the one-dimensional wave equation describing the propagation of
perturbations along the positive real axis (z > 0,¢ > 0) with velocity ¢ = 1 that
are induced by an applied forcing term f(x,t)

@ — ) da.t) = f(o.1) | )

where &(x,t) represents the displacement of an infinitely long string and 9; =
0/0t. Requiring &(0,t) = 0 for the state at rest, ®(x,t) describes the position of
a string that is fixed at one end. We define the initial conditions by the string
position and velocity at ¢t = 0 by &(x,0) = Uy and 0,P(z,1) |,_, = Vo.

The local character of the problem is defined by assuming f(z,t) = 0 for
x > L, Vt>0. Thus, the positive x-axis separates into two distinctly different
regions: the bounded (interior) domain = < L, and the unbounded (exterior)
region x > L where the forcing term f vanishes. The two regions are separated
by the artificial boundary at z = L.



For finding the exact absorbing boundary condition at z = L it is useful to
separate outgoing from incoming waves by defining

v = atgp + az¢,

(2)

Since @(z,t) is a solution of Eq. (1) for z > L, i.e. (02 — 92)® = 0, one has with
(2) in the exterior region

0 = (0 — 0)[(0 + 0,)0] = (0 — Ox)v ,

or

This first order equation has the general solution

oo t) = bla+t)
(5)
wiz,t) = ple—1)

where 1) and ¢ are arbitrary functions that are determined by initial and bound-
ary conditions. It follows for incoming (v)and outgoing (w) waves, respectively,

v(xz,t) = const.,, for x + ¢ = const. (incoming)

(6)

w(z,t) = const., for x — ¢ = const (outgoing)

Since there are no incoming waves in the exterior region, z > L, it follows
v(L,t) = 0, for ¢ > 0. By combining eq. (2) and the last expression, the exact
absorbing boundary condition for the displacement &(z,t) may be written as

@ = 9)P(2,t) [,y = O . (7)

This expression which is local in time guarantees that the artificial boundary
at x = L is perfectly transparent to both incoming and outgoing waves as they
leave the interior region without any spurious reflection. We emphasize that
the derivation of the exact absorbing boundary condition (7) depends solely on
properties in the exterior domain, z > L.



2.2 Transparent Boundary Conditions in Higher Dimensions

The derivation of exact absorbing boundary conditions in higher dimensions is
considerably more challenging as compared to the one dimensional case discussed
previously. Distinctly different from the one-dimensional case where waves can
propagate in two directions only, in two and more dimensions waves propagate
in infinitely many directions.

In the following we consider wave propagation in an unbounded region IR®
and surround the computational region Q containing the forcing term f(r,t) by
an artificial boundary S that is assumed to be a sphere with radius R. In the
exterior domain IR?* \ 2, f(r,t) = 0 and the wave function v (r,t) satisfies the
homogeneous wave equation with constant propagation velocity ¢ > 0, i.e.

(Clzaf _ A) b(rt) = 0 in R\ | 8)

with initial conditions ¢ (r,0) = 0 and #(r,0) = 0 for |r| > R. Since the waves
generated inside 2 propagate into the exterior unbounded region, the wave func-
tion ¥(r,t) # 0 with increasing time. It is useful to insert a multipole decompo-
sition of the solution in spherical coordinates r, 9, ¢

[e%S) l
"/}(r=t) = Z Z ’¢l,m(’rvt)yi,m(79=<p) ) (9)

where the spherical harmonics

VoD )0l t) = \/ AR sy e o)

are orthonormal and the functions Pllm‘ are Legendre polynomials. Using the or-
thonormality properties of the Y] ,,, the radial time-dependent functions ¢ ,, (r,t)
may be written as

™ 27
Unrt) = [ avsing [ api, 0.0 e ()
0 0

We note that in two dimensions, expansion (10) is ¥-independent, i.e. one has
Y(r,t) =307 m(r,t) exp(imep). By inserting expression (11) in eq. (2) one
obtains the radial equation

1 2 (l+1
L_Qag S - Zg 4 S )]wl,mmt) —0, 1

with the initial conditions ¢y ,, (r,0) = 0 and ¢y ,, (7, 0) = 0 in the domain r > R.
Noticing that the differential operator contained in the square brackets which
we denote by Ry, satisfies a remarkable commutation-like relation [10], [11]

R (ar - 171) Bum(ryt) = (aT - 171) Riy i am(rt) = 0, (13)



one obtains the following recurrence relation for the radial functions

Gum(rit) = [0r = (= D/P)] Yr1,m(r1) - (14)

Recursive use of the last relation yields

wlz(ar—l%)(ar—l%ﬂl_g:. 11( '>wo(15>

where we substituted 1; = 1;,,. Since vy is a solution of the radial equation
(12) with I = 0, we find that the modified radial function &(r,t) = ripy satisfies
a simple one-dimensional wave equation, i.e.

<cl283 - a,%) Brt) = 0 . (16)

As shown in Sec. 2.1, a general solution for outgoing waves is written as &(r—ct),
such that for [ > 1 the radial functions v; are expressed as

l .
wnt) = I (ar _ ’_1> %@l(r _ot) (17)

r
i=1

Recursive use of this relations enables one after some rearrangement to rewrite
the [-th radial function as a sum over [, i.e.

l . .
z alfz
Yi(r,t) = Z 7(n T Pli 57 =7 Pu(r — ct)
=0
: 1 9
_ l
- (7) Z cl,i Ti+1 pl,i atlii @l('f’ - Ct) Y (18)

=0
where p;; = (I +4)!/[2%4! (I — i)!]. Note that in the last step we replaced the

spatial derivative with a time derivative using

k k
(D Dt =) = b = et) (19

In analogy with ref. [6] we replace the radial derivative with a time derivative
by applying the operator By on the radial function

1 1 +1 L 101 ol
By Yym = | O +Eat + - 'djlm— Z A—ipitl gl stlm( _Ct)<-20>

1=

Finally, using the multipole expansion (9) and multiplying the last expression
by Y, where we sum over [ and m, yields for r = R

l l—i
Zplz 0
Bi (R, 0, p.t) = ——ZYlmﬁcp ZP(Z it g oim(R = ct) . (21)
i=1




In the general case, the functions @y, are obtained by evaluating Eq. (18) at
r = R. Since p;p = 1 this leads to the solution of a linear, differential equation
of order [

l

1 d - pui_ dT <
o gt (1) = -2 i gt DR ct) & dim(R. 1) (22)

i=1

where we substituted @, = (—)!®y,,, /R and the inhomogeneous term o, (R, t)
is given by Eq. (11) evaluated at r = R.

Expression (21) represents the exact nonreflecting boundary condition in
the form obtained in [6] were an integral transforms formed the basis of the
approach. Note that, in practical calculations, truncation of the summation over
[ at a finite value [ = L leads to an exact representation of modes with [ < L.
Thus, the boundary condition reduces to B1¢|,—g = 0 for harmonic modes with
" > L. In particular, By¢|,—r = 0 is an exact boundary condition for spherically
symmetric modes (I = 0).

3 Numerical Results using Finite Differences

Using the results of the previous section, we illustrate the use of absorbing
boundary conditions and their numerical implementation using a finite differ-
ence formulation. The wave equation is discretized both in space and time using
centred finite differences. At time t;, = k At, we denote by ¥*(n) the numerical
approximation to the time dependent wave function ¢ (r,t) and by f¥(n) the
forcing term at the n-th grid point r,, in radial direction. The numerical solution
is advanced in time using

gFtin) = 20F(n) — TFHn) 4+ (AN? [DTF(n) + fF(n)] , (23)

where D represents a finite difference approximation to the Laplace operator
A. Using a second order finite difference approximation, the radial part D, =
(1/r%)(r%8,) of the complete Laplacian D is expressed as

T72l+1/2¢(n +1) - (TZ+1/2 + TrQL—l/Q) ¥(n) + ri_l/QW(n -1)

Dr¥(n) = (ry, Ar)?

where 1,11/ = 1, & Ar/2. Note from the above equation that the boundary
condition is required when the Laplace operator is to be calculated at the outer
most radial grid point 7,, belonging to the boundary of the computational domain
2, ie. at r, = R. Inspection of the last expression clearly shows that this
calculation uses values of ¥*(n + 1) belonging to the exterior region IR? \ 2.
However, one obtains an additional relation between the quantities ¥*+1(n)
and ¥*(n + 1) by using a finite difference representation of the boundary condi-
tion equation (21) at r, = R. Consequently, the problem is solved by coupling
the two equations for ¥¥*1(n) and ¥*(n + 1), allowing one to solve for &¥*1(n).



Note that the due to the local character of the absorbing boundary condition,
only values at t = t; are needed in a given time step.

This procedure becomes particularly simple and is best illustrated using a
cartesian grid x,, = nAz in one dimension. In this case Eq. (24) leads to the
calculation of the second space derivative 92

UF(n+1) — 20k (n) +¥*(n—1)

DUk (n) = 2
(n) o , (25)
and the finite difference representation of the boundary condition reads
1 TFl(p) — wk=1(n) n TF(n+1) — ¥F(n—1) . (26)
c At Azx

where we used the one dimensional representation of the boundary condition
(21) as given by eq. (7). The last expression may be rewritten as

1 Az

TEn4+1) = A7 [@F i (n) — v*1(n)] + TF(m-1) , (27)

providing the additional equation for #*+1(n). By combining these two equations
for W*+1(n) and ¥*(n + 1), one finds

20%(n) + (a =1 (n) + 202 [TF(n—1) — ¥*(n)]

lpk+1 _
(n) i T a

(28)

where o = cAt/Az. This expression clearly shows that the evaluation of the time
extrapolated function ¥**1(n) at the boundary does not depend on function
values lying outside the computational domain.

Using the approach described above we are now in a position to analyse the
time evolution of perturbations using absorbing boundary conditions. In Fig-
ures 1 and 2 we display snapshots of the wave function at different times for
t = 82,128,250, 450, and 900, respectively. The contour plots on the right hand
side of the figures display the position of time evolved waves in the xy— plane,
where the computational domain extends from an inner radius r~ = 1000 km
to the outer radius r~ = 6371 km. Thus, the position of the artificial boundary
at R = r- corresponds to the Earth’s radius. The plots on the left show the
dependence of the associated wave function on the radial coordinate r. While
the starting point of the calculation is ¢ = 0, the perturbing source is assumed
to be proportional to a Gaussian exp(t — tg)? and is located at rg ~ 5000 km.
For t = 82 we observe a strong peak located in the vicinity of the source. In the
contour plot on the right hand side, one sees that the wave is located in the area
between the two bright circles.

For larger times, at ¢t = 128, the wave separates in two independent contributions
propagating in opposite directions along the radial coordinate r. While one of
the waves moves outwards towards increasing r-values the other wave propagates
inwards towards the rigid boundary associated with the inner circle, as indicated
by the two arrows in the left figure. For later times, t = 250, it is seen that only
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Fig. 1. Snapshots of the time evolved wave function obtained by the numerical solution
of the wave function incorporating the nonreflecting boundary condition for t = 82,128,
and ¢ = 250. The initial wave separates in two parts propagating in opposite directions.
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Fig. 2. The same as in Fig. 1 for larger times ¢t = 450, and 900. At large asymp-
totic times both components leave the computational domain and no reflection at the
artificial boundary is observed.
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the ingoing wave can be found inside the computational region as the outgoing
one passes the artificial boundary ar » = R without any reflection. On the other
hand, the ingoing wave propagating towards smaller r-values changes its sign and
the direction of propagation after encountering the margin r~ of the inner circle.
As aresult, for larger times (t = 450) this wave propagates towards the margin of
the computational domain but with opposite sign. Finally, for even larger times
this wave passes the artificial boundary at » = R without any reflection. Thus,
for t = 900 the computational region is seen to be completely unperturbed and,
as a result of the absorbing boundary condition, the artificial boundary appears
perfectly transparent to the wave as there is no spurious reflection.

4 Concluding Remarks

In conclusion, our numerical results are consistent with and complement the an-
alytic representation of the nonreflecting boundary condition discussed in Sec. 2.
As there is no unphysical reflection at the artificial boundary associated with the
computational region this condition ensures perfect transparency. It is important
to note that since the derivation of the boundary condition depends only on the
behaviour in the exterior domain, the problem inside the computational region
can be arbitrarily complex. As a main result, numerical schemes for wave prop-
agation incorporating nonreflecting boundary conditions are shown to display a
very long time stability.
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