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Abstract 
 

In order do understand details in the seismic wave field observed on regional and 

global scales on the Earth's surface accurate modeling of 3-D wave propagation is 

necessary. While numerical techniques are now routinely applied to local seismic 

wave propagation, only recently the possibility of simulating wave propagation on 

larger scales in spherical geometry has been investigated. We apply a high-order 

staggered-grid finite-difference scheme to the elastic wave equations in spherical 

coordinates [ϕ,θ,r]. Using regular grid spacing in a single domain the physical space 

is limited to spherical sections which do not include the axis θ=0. While the 

staggering of the space-dependent fields improves the overall accuracy of the 

scheme, some of the tensor elements have to be interpolated to the required grid 

locations. By comparing with quasi-analytical solutions for layered Earth models we 

demonstrate the accuracy of the algorithm.  Finally, the technique is used to study 

the effects of a source located in a simplified slab structure. The 3-D technique will 

allow us to study the wave field due to laterally heterogeneous structures such as 

subduction zones, plumes or oceanic ridges.  
 
Keywords:  wave propagation, subduction zones, finite differences, spherical 

coordinates, parallel algorithms 

 
Introduction 

 
Many questions on the dynamics of the Earth's interior depend on structural imaging 

using seismic tomography. While ray-theory based techniques offer the 
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reconstruction of the long-wavelength structures explaining predominantly phase 

effects, it is desirable to be able to investigate frequency-dependent wave form 

effects of 3D structures due to scattering. This applies particularly to the most 

laterally heterogeneous areas of the mantle, the upper part with subduction zones, 

ridge structures and plumes and the lower part with the strongly heterogeneous 

lowermost mantle structure (D")  the origin of which is still not well understood. With 

3-D reference Earth models in sight, the development of methods which allow the 

accurate simulation of the complete wave field on regional and global scales is an 

important step towards understanding the complexity of the observed seismic motion. 

 

Numerical methods have been applied successfully to wave propagation problems 

on local scales (e.g. Graves, 1993, 1998; Olsen and Archuleta, 1996) using 

discretizations of the equations of motion in cartesian coordinates. Particularly the 

finite-difference method played an important role due to its simplicity and the ease 

with which it is implemented on parallel hardware. The early work of Virieux (1986) in 

two dimensions was soon extended to 3-D (Witte and Richards, 1987; Mora, 1989), 

and anisotropic media (Igel et al., 1995). Other approaches include the pseudo-

spectral method (e.g. Kosloff et al., 1984; Reshef et al., 1988; Tessmer and Kosloff, 

1994; Tessmer, 1995, Furumura et al., 1998), the finite-element method (e.g. 

Padovani et al., 1994) and a combination of pseudo-spectral and finite-element 

methods, the spectral element method (e.g. Priolo and Seriani, 1991; Komatitsch, et 

al., 2000).  

 

A pioneering application of numerical techniques to wave propagation in spherical 

geometry was carried out by Alterman et al. (1970) using a centered finite-difference 

technique to solve the problem of P-SV wave propagation in spherical coordinates in 

the axi-symmetric approximation. Along similar lines - but using high-order 

approaches and staggered-grid techniques - Igel and Weber (1995, 1996) studied 

global wave propagation (SH, and P-SV waves, respectively) and investigated the 

effects of heterogeneous mantle structures. Chaljub and Tarantola (1997) studied 

topographic effects of the upper mantle discontinuities using a finite-difference 

algorithm for SH waves (axi-symmetric approach).  These discrete grid models 

allowed the investigation of waveform effects of slab structures (Igel and Ita, 1997), 

and finite-frequency effects of statistical upper mantle models (Igel and 

Gudmundsson, 1997). A multi-domain technique allowing waves to be simulated in a 

complete sphere (axi-symmetric approach) was presented by Thomas et al. (2000) 
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with applications to scatterers in the lower mantle and their effects on the PKP 

phase.  

 

Standard regular grid methods like the finite-difference method can not directly be 

applied to model wave propagation in a complete sphere due to the singularities 

present in the equations of motion in spherical coordinates. However, when the 

physical domain is restricted to a spherical section away from the poles, then 

standard techniques can be used. Igel (1999) presented a pseudo-spectral solution 

to this problem on a centered grid using the Chebyshev technique previously applied 

to cartesian systems (e.g. Tessmer and Kosloff, 1994). While the pseudo-spectral 

method has advantages concerning the accuracy of the spatial differential operators, 

the method is more difficult to implement on parallel hardware due to the global 

communication schemes required to perform Fourier transforms (or matrix-matrix 

multiplies). Therefore, we investigate the possibility of using a high-order staggered-

grid method to numerically solve wave propagation in a spherical section. 

 

In the following we first present the governing equations and their numerical solution 

algorithm. We then discuss the accuracy of the algorithm and show examples of 3-D 

wave propagation through models with a simple subduction zone structure in the 

upper mantle. 

    
Governing equations 

 
As we intend to solve the governing time-dependent partial differential equations with 

a staggered-grid finite-difference method a first-order description of the equations as 

previously  used in cartesian coordinates (e.g. Virieux, 1986, Tessmer and Kosloff, 

1994, Tessmer, 1995) seems appropriate. In spherical coordinates [θ,ϕ,r] the 

equations of motion for elastic anisotropic wave propagation read 
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where vi are the components of velocity, ρ is the mass density, σij are the 

components of the stress tensor, and fi are the force components. In general 

anisotropic media the stress-strain relation is given as  

)2(ijklijklij Mc += εσ  

where cijkl are the components of the fourth-order elasticity tensor, εkl are the 

components of the deformation tensor, and Mij are the components of the source 

moment tensor. The deformation rate is related to the velocities by 
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The elasticity parameters are conveniently described in the condensed notation 

)4(6,...,1, == qpc qpqp εσ  

where - in spherical coordinates - the mapping: 

1→θθ,  2→ϕϕ,  3→rr,    4→ϕr,  5→θr, 6→θϕ  applies. The corresponding elements of 

the elasticity tensor are then given by 
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and they reduce to   
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in the isotropic elastic case, where λ and μ are the Lamé constants and all other 

elements are zero. 
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In the following we will present a numerical solution to these equations for the 

isotropic case based on a staggered-grid finite-difference method.  

 
Numerical solution 

 
All space-dependant fields (velocities, stresses, material parameters) are defined on 

an equidistant grid in spherical coordinates [θ,ϕ,r]. As mentioned above, due to the 

singularities present in the equations of motion, the physical domain is limited to 

regions away from the axis θ=0, where motion is not defined. A convenient choice is 

to center the spherical section around the equator. In Figure 1 a spherical section 

with angular ranges 80o (for both ϕ and θ) is shown with a depth extent of 5000km. 

Centering the domain around the equator minimizes the range of grid increments on 

the spherical shell thus optimizing the stability for a particular model range. 

 

The first-order formulation of the equations of motion suggests the use of a 

staggered-grid scheme as applied in several cartesian algorithms (e.g. Virieux, 1986; 

Graves, 1993; Frankel, 1993; Igel et al., 1995; Olsen et al., 1995).  The staggering of 

the vector and tensor elements as well as the material parameters is shown in Figure 

2. Note that due to the spherical coordinate system geometrical terms appear in the 

equations and r and θ need to defined at all the staggered locations. The finite-

difference operators are convolutional operators as used by Igel et al. (1995). In the 

numerical tests carried out below a 4-point operator is being applied. The time 

extrapolation is carried out by a first-order Taylor expansion.  

 

We define the material parameters (ρ and tensor of elastic constants cpq) at the grid 

locations where the diagonal elements of the stress tensor are defined.  This implies 

that those parameters which are needed elsewhere in the grid cell have to be 

interpolated to these locations. This interpolation is carried out using a second order 

scheme. To accurately model the location of interfaces or sources at material 

discontinuities such interpolations are necessary (e.g. Igel et al., 2001). In 

comparison with cartesian schemes a further complication occurs: as can be seen 

from equations (1) and (3) the staggering does not lead to a completely decoupled 

scheme as the calculation of velocity or stress components requires terms which are 

not defined or centered at the corresponding grid locations. For example, to calculate 

the acceleration vθ (left-hand side of the top equation (1)) the stress components 
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σθθ, σϕϕ, σρθ need to be interpolated to the location of vθ. These interpolations are 

carried out using a second-order scheme.  

 

The free surface boundary condition  

)7(0=== θϕ σσσ rrrr  

is implemented in the same way as in the case of a cartesian system by using an 

explicit method based on (anti-)symmetry conditions as suggested by Graves (1996).  

Simple absorbing boundary conditions are implemented by tapering the fields as well 

as seismic velocities with decreasing values using Gaussian functions. There are two 

grid levels at which the free surface can be defined (at the level of the diagonal stress 

elements or the level of the radial velocity component). Note that Gottschämmer and 

Olsen (2001) investigated these two options and concluded that the overall errors are 

smaller when the free surface is defined at the latter location, which is the approach 

we adopted.  The computationally demanding algorithm is implemented using  

domain decomposition in the vertical direction and the message passing interface 

(MPI). Hereby, the 3D grid is divided into n depth sections, where n is the number of 

computational nodes. To be able to calculate the space derivatives with respect to 

the vertical direction across the domain boundaries nop/2 grid slices have to be 

communicated to the neighboring processor, where nop is the length of the 

differential operator (in our case nop=4). Typical performance data for a model of 

size 720x1220x406 and a simulation run for 4200 time steps are a memory 

requirement of ca. 60GBytes and a runtime of 10.5 hours on 13 nodes of a Hitachi 

Sr8000-F1. 

 
Verification, Accuracy, Snapshots 

 
To assess the accuracy of the proposed algorithm we compare the numerical 

solutions with synthetic seismograms calculated with the reflectivity method (Fuchs 

and Müller, 1971; Wang, 1999) for regional wave propagation. The model 

parameters are vp=8.08km/s, vS=4.47km/s, and ρ=3.37g/cm3. The grid size is 2003 

(θ,ϕ,r) and the grid distance at the Earth's surface is approximately 4km, leading to a 

cube of 800km side length. The source is a vertical point force fr acting at a depth of 

100km. 600 time steps were evaluated with a time increment of 0.2 seconds. We 

simulate a delta-like point source in space and time at the corresponding grid 

location. This leads to synthetic seismograms containing numerical artifacts which 
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are reduced through convolution with a source time function of appropriate dominant 

frequency. The source-time function is the first derivative of a Gaussian.  

 

In Figure 3 synthetic seismograms (vertical  velocity component) are shown for 

epicentral distances up to 400km using both the reflectivity method and the finite-

difference algorithm. The reflectivity seismograms have been calculated with the 

Earth-flattening transformation. We calculate the  energy misfit ε of the waveforms for 

a particular velocity component v summing over samples i  
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The misfit is shown in Figure 4 as a function of dominant period and distance. As 

expected the error generally decreases with increasing dominant period as the wave 

field is sampled with a larger number of grid points per wavelength. The error also 

increases with propagation distance. For a dominant period of 20 seconds (this 

corresponds to approx. 22 points per dominant wavelength) the error is below 1% for 

distances smaller than 350km.  

 

Seismograms are compared for a two-layer model in Figure 5 (vertical velocity 

component). The grid size is the same as for the homogeneous model. The top layer 

has the same properties as mentioned above. Below 240km depth the material 

parameters are vp=8.89km/s, vS=4.92km/s, and ρ=3.7g/cm3
. The source is an 

explosion at 100km depth. 900 time steps were evaluated with a time increment of 

0.2 seconds. The comparison with the reflectivity seismograms shows that all signals 

are present in the numerical solution. The reflections and conversions from the 

discontinuity are labeled with letter g. Ray-theoretical arrival times were calculated 

using a Gaussian beam method and superimposed on the seismograms. The misfit 

energy as functions of  distance and frequency (Figure 6) shows that for this setup at 

a dominant period of 20 seconds the misfit is approximately 1% for all epicentral 

distances.  

 

Snapshots for wave propagation simulation on a 2003 grid are shown in Figure 7 at 

four different times. The physical domain is 90ox90ox5000km. The source is an 

explosion at 600km depth and the dominant period of the wave field is approximately 

40 seconds. The simulation was carried out for the spherically symmetric PREM 

model (isotropic part, no crust).  The snapshots show predominantly the direct P 
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waves and the surface reflections and conversions (pP, pS) as well as the core-

mantle boundary reflections (PcP, PcS).  

 
Numerical Example: slab effects 

 
Subducted lithosphere constitutes the strongest laterally heterogeneous structures in 

the Earth's upper mantle and it hosts the largest earthquakes on this planet. The 

wave field radiated by seismic sources inside subduction zones may be severely 

affected by their heterogeneous structure. In addition to the high-velocity anomaly 

associated with a cool slab, low-velocity layers due to untransformed oceanic crust at 

the top of the slab may exist (e.g. Hori et al., 1985), possibly containing water (Ihmlé 

and Madariaga, 1996).  The effects of subduction zones on seismic waveforms and 

arrival times were previously investigated by Vidale (1987), Cormier (1989), Weber, 

(1990), Vidale et al. (1991), Bostock et al. (1993), and Sekiguchi (1992). Shapiro et 

al. (2000) studied wave effects of  accretionary  prisms with evidence from long-

period surface waves propagating along the trench. As an application of our 

algorithm we investigate the effects of a subduction zone structure for an earthquake 

source inside a low-velocity layer at the top of the slab.  

 

The background model is the isotropic part of PREM (Dziewonski and Anderson, 

1981) without the crustal layers. The model with grid size 720x1200x406 has a lateral 

extent of 220 and 130 in ϕ− and θ-directions, respectively. The maximum depth is 

808km. The S-velocity model is shown in Figure 8. The slab has a maximum positive 

velocity perturbation of 8% and horizontal width of approx. 100km. A low-velocity 

layer is located on top of the slab with a maximum negative perturbation of 4% and a 

width of 20km. Please note that the thickness of this layer has been imposed through 

the still relatively coarse grid spacing.  The source (black star) is located at 260km 

depth and is a dip slip source with strike Φs=0o, rake λ=90o, and the fault plane (and 

the slab) dips at δ=52o at the source location. The slab is invariant in θ-direction. We 

situate a receiver profile across the slab (in ϕ-direction) directly above the source and 

a receiver semi-ring around the epicenter at a distance of 5o. The receiver strings are 

schematically shown in Figure 9. In all subsequent seismogram plots the moment 

rate function is a Gauss function with dominant period of 6 seconds. 

 

Snapshots of the simulation of wave propagation through the slab structure are 

shown in Figure 10. We focus on shear wave propagation and show the curl 
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component perpendicular to the particular model faces. The shear energy 

propagating in the slab direction (upwards and downwards) is characterized by an 

additional phase developing due to the low-velocity structure. In addition, at the top of 

the slab both these shear waves are reflected in eastern direction.  The vertical 

component of velocity along a profile across the subduction zone is shown in Figure 

11. The time window displayed contains predominantly the direct S-wave arrival. The 

waves traveling upwards through the slab are advanced several seconds (negative 

distances) while the waves propagating away from the slab are unaffected (positive 

distances). Most noticeable are additional phases recorded at distances around -2o in 

the wake of the direct arrival. Due to the slab there is a sudden decrease in 

amplitude at around  -3o indicating the edge of the high-velocity structure at the 

surface.   

 

The vertical component of motion recorded on a semi-ring at 5o distance from the 

epicenter is shown in Figure 12. The P-wave arrives at approx. 75 seconds and the 

S-wave at 140 seconds. The slab has strong effects on relative amplitudes and wave 

forms of both these arrivals: (1) The amplitudes of the P-wave for azimuths greater 

100o (away from the slab) are not affected. However,  for propagation in the direction 

of the slab the amplitudes are reduced by up to 50%.  In case these signals are used 

to determine the source mechanism errors may occur. (2) The S-waves are severely 

affected in the azimuthal range 0o-80o. This corresponds to waves propagating inside 

the slab. The S-pulse is advanced, broadened (i.e. two distinct phases) and the 

amplitude reduced. (3) In addition, a diffracted S-wave is propagating in easterly 

direction away from the slab. The transverse component of motion recorded on the 

semi-ring of receivers further highlights the effects of the slab (Figure 13). Within a 

very small azimuthal range (at azimuths 60o and 80o) the wave form of the S-arrival 

splits up into two distinct arrivals and a diffracted wave propagates away from the 

slab. The presence of the slab leads to considerable reduction of the amplitude of the 

S-wave (azimuths around 20o). 

 
Discussion 

 
To account for wave field complexities which may occur for waves propagating 

through strongly heterogeneous regions of the mantle (subduction zones, ridges, 

lowermost mantle) an accurate modelling of 3-D wave propagation in general 

heterogeneous structures in spherical geometry  is required. In this study we present 

a staggered-grid finite-difference solution to the isotropic elastic wave equation in 
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spherical coordinates which is applicable to intermediate epicentral distances (e.g. up 

to 100o) as the physical domain is limited to spherical sections excluding the Earth's 

center and the axis θ=0. The finite-difference approach - in comparison to previous 

work using pseudo-spectral methods (Igel, 1999) - offers advantages concerning the 

implementation of the algorithm on parallel hardware. Finite difference schemes rely 

on local operators, thus considerably reducing the amount of communication 

necessary to calculate the numerical partial derivatives. Such algorithms will for 

some time remain computational intensive approaches and to tackle realistic 

problems parallelization is necessary. 

 

In this study we apply a standard finite-difference method which in the future should 

be extended to incorporate recent advances in the understanding of finite-difference 

operator accuracy (e.g. Geller and Takeuchi, 1998; Takeuchi and Geller, 2000). 

Here, the algorithm was compared with quasi-analytical solutions using the 

reflectivity method. The comparison shows that the body waves are well modeled as 

long as a sufficiently large number of grid points per wavelength is employed. Further 

research is needed to carefully investigate the accuracy for surface wave 

propagation as strong effects for surface wave propagating through subduction 

zones, plume heads, or along or across ridge axes are to be expected.  

 

We applied this algorithm to simulate waves radiated by a source inside a subducting 

slab. The slab consists of a maximally 8% positive velocity perturbation and a 

maximally 4% negative velocity perturbation at the top of the slab. The source is 

located inside this low-velocity layer. The synthetic seismograms show pronounced 

effects on the direct P- and S-waves propagating upwards along the slab. With small 

changes of propagation direction the wave forms and their spectral content changes. 

The slab also affects the polarities of the first motion. This implies that errors may 

occur when the source mechanism is estimated using laterally homogeneous 

models. While the magnitude of these effects may be exaggerated through the 

thickness of the low-velocity zone, the simulated effects may indicate at least 

qualitatively what effects are to be expected. Further complications may arise 

through strongly heterogeneous Q-structure inside the slab. The inclusion of 

viscoelasticity and anisotropy into the algorithm presented here is work in progress.  

 

These results as well as previous studies show that a systematic investigation of 

such effects for likely subduction zone structures is necessary. Some of the wave 
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form effects reported could be used to further constrain the structural details in the 

upper mantle.  
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Figure 1:  Physical domain for wave field computations. In order to avoid problems 
with the singularities in the elastic wave equations in spherical coordinates along the 
axis θ=0 we center the model on the equator (solid lines). Geographical models can 
be rotated accordingly.  
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Figure 2: Top: Staggered grid used in the finite-difference calculations. The 
elements of a cell unit are linked by lines. Note that some of the elements need to be 
interpolated to calculate the acceleration (see text). Bottom: Locations where 
material parameters are defined. Note that in heterogeneous media the material 
parameters (e.g. ρ) may vary within a grid cell.  
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Figure 3: Comparison of synthetic seismograms (vertical velocity component) by the 
FD method (solid lines) with seismograms calculated using the reflectivity technique 
(dashed lines, slightly offset)  for a homogeneous model (vp=8.08km/s, vs=4.47km/s, 
ρ=3.37g/cm3). The source is a vertical force at 100km depth. The dominant period is 
12 seconds.    
 

 
 
Figure 4: The  energy misfit of the traces shown in the previous Figure as a function 
of receiver distance and dominant period. 
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Figure 5: Comparison of synthetic seismograms (vertical velocity component) by the 
FD method (solid lines) with seismograms calculated using the reflectivity technique 
(dashed lines on top of solid lines)  for a two-layer model (see text) with an interface 
at 240km depth. The source is an explosion at 100km depth. The dominant period is 
12 seconds.  

 

 
 
Figure 6: The  energy misfit of the traces shown in the previous figure as a function 
of receiver distance for seismograms with varying dominant frequency. 
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Figure 7: Snapshots of elastic wave propagation for an explosive source at 600km depth. The 
model is the isotropic part of PREM (no crust). The vertical displacement is shown at four 
different times: Top left: t=125s. Bottom left: t=200s. Top right: t=260s. Bottom right: t=320s. 
Red and yellow colors denote positive and negative vertical velocity, respectively. At the 
surface a gray scale is employed. Only amplitudes larger than 1% of the total wavefield are 
displayed. The major phases are the direct P wave, pP, pS, PcP, PcS and a P wave entering 
the outer core.  
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Figure 8:  Vertical cross section through 3-D model at a plane θ=const. The colour 
scaling shows the S-wave velocity (in m /s). The slab is invariant in the ϕ direction 
and reaches down to a depth of 600km. The background model is PREM. The 
positive velocity perturbation towards the centre of the slab has a 8% maximum. A 
thin low velocity layer at the top of the subduction zone has a maximum negative 
perturbation of 4%. The source (*) is located inside this low velocity zone. The 
maximum depth is 808km and the horizontal range is 22° and 13° for ϕ− and θ-
directions, respectively. 
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Figure 9:  Schematic diagram of the receiver profile and ring at the surface. The 
receiver ring is at an epicentral distance of 5o. The azimuth is calculated clockwise 
from the ϕ-axis. 
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Figure 10: Snapshots of slab simulation. The component of the curl perpendicular to 
the relevant plane is shown.  Top: Wavefield after 50s. Note the development of an 
additional shear wave within the slab due to the low-velocity zone. Bottom: 
Wavefield after 120s. In the direction of the slab two distinct shear phases develop. 
At the top of the slab shear waves are reflected in eastern direction. Coastlines of 
South America are superimposed.  
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Figure 11: Synthetic seismograms (vertical-component) on a profile perpendicular to 
the strike of the subduction zone (along ϕ) through the epicenter. A 30s time window 
around the S-wave arrival is shown for both PREM and the laterally heterogeneous 
slab model. Note the phase effects for waves propagating inside the slab and the 
strong effects on the amplitudes and waveforms at distances around -2o. 
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Figure 12: Synthetic seismograms (vertical component) recorded on a semi-ring at 
5o epicentral distance (W-N-E). The dominant period is 6 seconds. Left: 
seismograms for background model. Right: Seismograms for model with slab. 
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Figure 13: Synthetic seismograms (transverse component) recorded on a semi-ring 
at 5o epicentral distance (W-N-E). The dominant period is 6 seconds. Left: 
seismograms for background model. Right: Seismograms for model with slab. 
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