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Abstract 
 

Fault zones are thought to consist of regions with reduced seismic velocity. When 

sources are located in or close to these low-velocity zones, guided seismic head 

and trapped waves are generated which may be indicative of the structure of fault 

zones at depth. Observations above several fault zones suggest that they are 

common features of near fault radiation, yet their interpretation may be highly 

ambiguous. Analytical methods have been developed to calculate synthetic 

seismograms for sources in fault zones as well as at the material discontinuities. 

These solutions can be used for accurate modeling of wave propagation in plane-

parallel layered fault zone structures. However, at present it is not clear how 

modest deviations from such simplified geometries affect the generation efficiency 

and observations of trapped wave motion.  As more complicated models can not 

be solved by analytical means, numerical methods need to be employed. In this 

paper we discuss 3D finite-difference calculations of waves in modestly irregular 

fault zone structures. We investigate the accuracy of the numerical solutions for 

sources at material interfaces and discuss some dominant effects of 3D 

structures. We also show that simple mathematical operations on 2D solutions 

generated with line sources allow accurate modeling of 3D wave propagation 

produced by point sources. The discussed simulations indicate that structural 

discontinuities of the fault zone (e.g. fault offsets) larger than the fault zone width 

affect significantly the trapping efficiency, while vertical property gradients, fault 

zone narrowing with depth, small scale structures, and moderate geometrical 

variations do not. The results also show that sources located with appropriate 

orientations outside and below a shallow fault zone layer can produce 

considerable guided wave energy in the overlying fault zone layer.  
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Introduction 

 
Fault zone structures are thought to contain a highly damaged material having lower 

seismic velocity than the surrounding rocks. If the highly damaged fault zone material 

is spatially coherent it can act as a waveguide for seismic fault zone head and 

trapped waves. Fault zone head waves propagate along material discontinuity 

interfaces in the structure, while trapped waves are critically reflected phases 

traveling inside low velocity fault zone layers with dispersive character (Ben-Zion and 

Aki, 1990; Ben-Zion, 1998). Seismic fault zone waves have been observed above 

several major faults (e.g., subduction zone of the Philippine Sea plate underneath 

Japan, the San Andreas Fault, rupture zones of the Kobe, Japan, and Landers, CA, 

earthquakes) and imaged by several authors with the major conclusion that 

structures can be recovered at a resolution of a few tens of meters (e.g. Fukao et al., 

1983; Leary et al., 1987; Li et al., 1990, 1994a,b, 1999; Ben-Zion and Malin, 1991, 

Ben-Zion et al., 1992; Hough et al., 1994; Michael and Ben-Zion, 2001).  

 

As details of the fault zone structure may have important implications for the stress 

build-up and release, there is considerable interest in devising reliable means to 

image fault zone structure at depth. For example, structural (dis-)continuities of fault 

zones may dominantly affect the size of likely ruptures and thus the magnitude of 

future earthquakes. From an observational point of view more and more aftershock 

regions of large earthquakes are monitored with dense networks of mobile 

seismometers. These networks combined with increased seismicity in such 

circumstances offer unique opportunities to collect large data sets and estimate the in 

situ structure of the associated regions. Accurate determination of fault zone 

structure also has implications for earthquake location, focal mechanisms and 

estimates of pre- , co- and post-seismic deformation.  

 

An important modeling tool of fault zone properties at depth can be provided by 

accurate simulations of seismic fault zone head and trapped waves for realistic 

structures. To calculate synthetic seismograms for low velocity structures several 

approaches can be taken: Cormier and Spudich (1984), Hori et al. (1985) and 

Cormier and Beroza (1987) used ray-theory to model low-velocity zones. In a series 

of papers, Ben-Zion (1989, 1990, 1999) and Ben-Zion and Aki (1990) developed 2D 

and 3D analytical solutions for seismic wavefields generated by double-couple 

sources at material discontinuities in plane-parallel structures. Extensive 2D studies 
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of the dependency of fault zone wave motion on basic media properties and source-

receiver geometries (e.g., Ben-Zion, 1998; Michael and Ben-Zion, 1998) show that 

there are significant trade-offs between propagation distance along the structure, 

fault zone width, impedance contrasts, source location within the FZ, and Q. These 

trade-offs and additional sources of uncertainties make a reliable determination of 

fault zone structure a very challenging endeavor. 

 

So far, the analysis and inversion of head and trapped waveforms were 

predominantly carried out using 2D models (e.g., Li et al., 1994ab; Hough et al., 

1994; Michael and Ben-Zion, 1998, 2001; Peng et al., 2000), resulting in surprisingly 

good waveform fits. However, what aspects of the medium parameters are well 

resolved – particularly given the possibility of 3D structure – is difficult to judge. 

Correct interpretation of fault zone guided waves requires a basic understanding of 

the wavefield in irregular geometries. Several studies attempted to investigate waves 

in fault zones with irregular structures (e.g., Leary et al., 1991, 1993; Huang et al., 

1995 ; Li and Vidale, 1996; Igel et al., 1997; Li et al., 1998). These studies were 

carried out using 2D and/or acoustic approximations. A thorough phenomenological 

study of the effects of deviations from simple fault zone geometries should go beyond 

these approximations.  

 

In this study we present numerical solutions for 3-D elastic wave propagation with 

fault zone structures using a high-order finite-difference method. The main goals are 

(1) to verify the accuracy of the method by comparing numerical with analytical 

solutions, (2) to compare 2D (line source) solutions with 3D (point source) solutions 

and (3) to discuss the effects of some 3-D structures on the wavefield. A study of 

waves associated with a larger set of 3-D fault zone structures and detailed analysis 

of the waveforms is reported elsewhere (Jahnke et al., 2001).  

 
Method, accuracy, verification 

 
In order to calculate the seismic wavefield for irregular 3-D models numerical 

solutions need to be employed. Several numerical techniques are being applied to 

problems in exploration, regional and global seismology. These include the finite-

difference method (e.g. Virieux, 1986; Graves, 1993; Igel et al., 1995) pseudospectral 

methods (e.g. Tessmer, 1995, Furumura et al., 1998; Igel, 1999), spectral elements 

(e.g. Komatitsch et al., 2000), finite volumes (e.g. Dormy and Tarantola, 1995; Käser 

et al., 2001), and coupled normal mode calculations (e.g., Pollitz, this volume). High-
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order staggered-grid finite-difference methods offer a flexible approach, in particular 

since they are easily adapted to parallel hardware due to the local character of the 

differential operators. The calculations presented here are performed with a 4th order 

scheme in space and second order in time. Problems with this approach may arise 

since the elements of stress and strain tensors as well as the components of the 

velocity vector are not defined at the same location due to grid staggering. This is 

especially relevant for general anisotropic media where additional numerical 

interpolations are necessary which in general degrade the solution (Igel et al., 1995). 

Attenuation can be included in such numerical schemes using the concept of 

memory variables (e.g. Carcione et al., 1988).  

 

Another complication may arise in connection with the specific geometries 

encountered in fault zones: Seismic sources are likely to occur directly at material 

interfaces (e.g. Ben-Zion and Andrews, 1998; Sibson, 1999), possibly along the sides 

of near-vertical low-velocity fault zone layers. So far analytical solutions for seismic 

radiation from dislocations along material interfaces (e.g. Ben-Zion, 1989, 1990) have 

only been matched by numerical solutions for the SH case and line sources  (Igel et 

al., 1997) but not for the 3-D case. Matching these solutions is a precondition for a 

reliable numerical modeling of wave propagation in complex fault zone structures.  

 

The geometry of the basic model with a lateral material discontinuity is shown in 

Figure 1. A point source is located at 1000m depth along the interface with material 

parameters given in terms of seismic velocities vp and vs  (or Lamé parameters λ and 

μ) and density ρ. A receiver string is located on the free surface across the material 

discontinuity at a horizontal distance of 1000m from the source. The source is a 

double couple with the only non-zero moment tensor component Mxy=Myx=M0 

situated right at the material interface.  Ben-Zion (1990, 1999) showed that the 

resulting head waves and interface waves strongly distort the near field waveform 

from corresponding waveforms in a homogeneous full space. As sources at material 

interfaces are realistic scenarios it is important to take into account such effects and 

to accurately model them with numerical techniques. The material parameters for the 

comparison are the same as used by Ben-Zion (1990, 1999): In the left half space  

vp=5km/s, vs=3.1km/s, and ρ=2.35 g/cm3. In the right half space vp=3.5km/s, 

vs=2.17km/s, and ρ=1.64 g/cm3. The moment source time function is a ramp of 

duration 0.1 seconds.  
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The elastodynamic equations are implemented as a first-order velocity-stress system 

as introduced in 2D by Virieux (1986) and frequently used in combination with other 

numerical methods (e.g. Tessmer, 1995; Igel, 1999; Käser and Igel, 2001). The 

resulting spatial grid is shown in Figure 2. For our particular problem, the material 

interface is defined in the plane x=const. where the off-diagonal stress elements σxy 

and the displacement components ux are located.  The material parameters 

λ, μ and ρ are also staggered. The question arises which parameters should be 

attributed to the grid points situated at the material interface as this can dominantly 

influence the solution. We note that in order for the numerical solution to match the 

analytical solutions, the material parameters need to interpolated to the material 

interface (e.g. μi=(μ1+μ2)/2), where μi is the shear modulus at the interface and μ1,2 are 

the properties of the two half spaces. The same holds for the density.  

 

Numerical and analytical waveforms (displacement in y-direction) are compared in 

Figure 3.  The grid spacing in this simulation was 25m. The receiver is located right 

at the material interface where the effects are most prominent. The unfiltered 

seismograms show all the details of the analytical solution but are contaminated by 

numerical noise due to the discrete sampling of space and time. When the 

waveforms are filtered in a frequency band where the numerical method is known to 

be accurate the artifacts disappear. For the example shown, the dominant frequency 

(6.7Hz) is sampled with twenty points per wavelength for the shear waves and the 

root-mean square difference between analytical and numerical solution is less than 

3%. This gives us confidence that the behavior of a double couple source at a 

material interface is correctly modeled by our technique and that wavefields for more 

complex models can be investigated. 

 
Geometrical spreading, line sources, corrections 

 
Most of the previous numerical studies of fault zone wave propagation were carried 

out using 2D elastic or acoustic approximations (e.g. Huang et al., 1995, Li et al., 

1996). Furthermore, sophisticated nonlinear inversion procedures are being based 

on analytical solutions of trapped waves propagation for plane layered structures 

using line sources (e.g., Michael and Ben-Zion, 1998, 2001; Peng et al., 2000). This 

raises the question of whether the 2D line source solutions capture the correct 

behavior of 3D point source seismograms for uniform fault zone structures. We 
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discuss this problem using the scalar wave equation. This corresponds to SH waves 

with particle motion in the direction parallel to the fault zone material interfaces.  

 

In the 2D approximation the source is a line of infinite length. As shown by Vidale et 

al. (1985), an approximate SH point source seismogram can be obtained by 

convolving the line source seismograms with  t1 and differentiating with respect to 

time. This is equivalent to a deconvolution with t1 , an approach used by other 

authors (e.g. Crase et al., 1990). In previous studies the accuracy of this 

approximation for complicated geometries such as FZs was not discussed. Therefore 

we investigate here how well the point source waveforms can be reproduced by such 

operations on line source solutions.  The applicability of the line source correction is 

discussed for a simple fault zone model shown in Figure 4. The source is located at 

the center of a fault zone of 50m, 100m, 150m and 200m width. The receiver is 

located at a distance of 700m from the source. The dominant frequency is 15Hz. The 

properties inside the fault zone are vfault=1500m/s and the host rock has 

vhost=2500m/s.  

 

Figure 5 shows 2D, corrected 2D, and 3D seismograms recorded directly above the 

fault. The corrected line source seismograms (dashed lines) are almost 

indistinguishable from the 3D seismograms for the examined cases. The 2D 

seismograms have considerably different amplitude behavior. In addition we 

compare the ratio of the maximum trace amplitude with the maximum fault zone 

wave amplitude for the different solutions. The results in Figure 6 indicate that this 

ratio is somewhat overestimated by the 2D solution, and to a lesser extent also by 

the corrected 2D seismograms. This should be considered when modeling real data 

with line source solutions.  

 
Examples: Discontinuous fault structures 

 
The modeling and interpretation of observed seismograms is usually carried out 

using plane layer structures (e.g. Li et al., 1994a) sometimes in combination with line 

dislocation sources (e.g. Hough et al., 1994; Michael and Ben-Zion, 1998; Peng et 

al., 2000). While it is possible to explain the observations with simple structures, the 

question remains how deviations from these structures would influence the wavefield. 

As mentioned above, the observation and interpretation of fault zone waves offer the 

opportunity of high resolution imaging of fault zone structure at depth. The question 
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of resolution with respect to 3D structure has so far not been answered in a 

comprehensive way. As some important conclusions may be drawn from the 

interpretation of fault zone structure at depth, the reliability of such information is 

important. For example, whether fault zones are connected at depth while offset at 

the surface will have consequences on likely rupture geometries and size of 

earthquake potential on the associated structure. 

 

Snapshots of wave propagation for a source located at the interface of a low-velocity 

fault zone narrowing with depth are shown in Figure 7. The wave motion is not 

strongly affected by the narrowing fault, the trapped waves pass through the 

bottleneck and are observed as strong amplitudes at the surface. However, wave 

motion is considerably affected when the trapped energy hits discontinuities along 

the fault larger than the fault zone width. Figure 8 shows that trapped waves can 

propagate through an offset the size of the fault zone width. Fault zone with larger 

offsets (this may apply to vertical as well as near-horizontal propagation directions) 

may considerably affect the trapping efficiency and the observed relative amplitudes 

above and away from the fault. A more quantitative analysis of such models is given 

in a companion paper (Jahnke et al., 2001).  

 

In the reminder of the paper we concentrate on the following two problems: (1) Can 

trapped energy be generated by sources outside a fault zone? (2) Are trapped waves 

generated when the fault zone is connected at depth but is offset at the surface. In 

Figure 9 three model geometries related to problem (1) are shown. The sources are 

located either directly below the fault zone in the host rock or below and offset by two 

and four fault zone widths, respectively. The source is a strike-slip dislocation with 

non-zero moment tensor components Mxy=Myx=M0. The y-component of velocity is 

calculated for a profile across the fault directly above the source. The moment rate 

function is a Gaussian with a dominant frequency of 4Hz.  The source depth is 

6000m and the fault zone width is 270m. The low velocity fault zone layer extends 

from the free surface to a depth of 4000m. The calculations are carried out on a grid 

with 30m grid spacing. The receiver spacing is 100m. With this setup, the dominant 

wavelength of S-waves within the fault zone is approx. 500m.  

 

The seismograms are shown in Figure 10.  Almost no trapped waves are generated 

when the source is located right below the fault zone. This is primarily because for 

this source-receiver geometry the fault zone is along a nodal plane of the radiated S 

waves from the source. However, when the source is offset by several fault zone 
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widths, sufficient energy is trapped within the low-velocity layer leading to a dominant 

arrival after the shear-wave onset above the fault zone. This example shows how 

difficult the interpretation of such arrivals can be, as the resulting signal might 

erroneously be mapped into fault zone parameters assuming the structure is 

continuous down to source depth. This also highlights the need to combine 

observations from different propagation directions within the fault zone which may 

allow a more reliable imaging of such structures.  

 

The second example may be relevant for efforts to estimate maximum rupture sizes 

of future earthquakes from surface fault zone structure. Situations as shown in Figure 

11 are not unlikely: Faults are offset at the Earth’s surface but may be connected at 

depth. What are the effects of such structures on the wavefield? Is it possible to 

image such structures with fault zone waves? We compare seismograms for a simple 

fault zone with those obtained for a model with a split fault zone which is connected 

at depth. The wave motion is compared on three profiles (L1-3) across the fault at 

different locations with respect to the fault offset (Figure 12). Trapped waves 

recorded  above a simple fault structure remain almost unchanged on profiles across 

the fault zone at moderately different offsets from the epicenter (Figure 12, top row). 

However, the trapped waveforms are severely affected at some receiver lines by the 

splitting of the fault zone structure. The trapping efficiency for propagation directions 

away from the discontinuity is indistinguishable from the simple fault model. As we 

get closer to the discontinuity the trapping is severely weakened (Figure 12, bottom 

right).  

 

As in the cases associated with Figures 9-10, if the profiles would be interpreted 

individually assuming continuous structures with depth, the resulting parameters 

would not represent the actual fault zone structure well. However, the differential 

information which is contained in observations from various propagation directions 

may help in disentangling complexity in fault zone structure at depth.   
 

Discussion 
 

The observation and interpretation of fault zone guided head and trapped waves may 

be an important tool for determining the fault zone structure at depth with a spatial 

resolution not possible with other indirect seismic methods such as ray-theoretical 

tomography. The propagation of fault zone waves for plane-parallel layered 

structures (e.g. Ben-Zion 1998) as well as the nonlinear inverse procedure using 
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analytical forward modeling tools (e.g. Michael and Ben-Zion, 1998, 2001) are well 

established at present. However, the effects of moderate deviations from such simple 

structures for general source-receiver geometries for 3-D models are not. To study 

the seismic wavefield in moderately complex fault zone structures, we use a 3-D 

numerical algorithm based on high-order (4th-order space, second-order time) 

staggered finite-difference method. To verify the numerical method we compared 

numerical calculations with 3D analytical results for point sources along a material 

interface (Ben-Zion, 1990, 1999). Accurate numerical calculations with staggered 

grids for models with sources at material interfaces require interpolations of the 

material constants. Furthermore, when 2D approximations are used conversion to 

point-source solutions should be carried out before modeling real data.  

 

To clarify possible misinterpretations we simulated wavefields through two models 

with laterally and/or horizontally discontinuous fault zone structures. Without 

quantitatively analyzing the results, visual inspections of the seismograms 

demonstrate that fault zone discontinuities may considerably alter the observed 

waveforms. This and the other conclusions on effects of structural irregularities are 

supported by a large number of numerical simulations calculated by the same 

method with detailed analysis of the waveform behavior (Jahnke et al., 2001).  It 

turns out that the most prominent effects are to be expected from structural (dis-) 

continuity along the path of the propagating wavefield. Moderate geometric variations 

(e.g. changes in fault zone width), realistic vertical gradients or small scale scatterers 

have little effect on the trapping efficiency of fault zone waves.  

 

The results shown here demonstrate the necessity to combine inverse procedures 

based on simple fault zone geometries with 3-D modeling. Furthermore, trapped 

mode waveforms should not be analyzed individually but – if observations are 

available – should be jointly interpreted with observations from different source-

receiver paths. Substantial further research is needed to answer the question of 

whether fault zone structure can be determined reliably from surface observations 

using trapped and head waves.  
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Figure 1:  Model setup for the comparison with analytical solutions. The model 
consists of two half spaces with different seismic properties. The source is situated at 
the boundary of the half spaces and head waves are generated in addition to direct P 
and S waves. The source is a double couple and the source time function is a ramp 
of 0.1 s duration. 

 
 

 
 
Figure 2: Left: Staggered grid used in the elastic finite-difference calculations. The 
material discontinuity (e.g. one side of the fault zone) is grey-shaded. The strike-slip 
source is located at the discontinuity and input via the moment tensor components 
Mxy=Myx=M0. The  elements of one unit grid cell are annotated and connected by 
lines. Right: Locations where material parameters are defined. Without the 
interpolation of the material parameters at the interface the analytical solutions can 
not be accurately matched. 
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Figure 3: Left: Unfiltered seismograms of the analytical (dotted) and the numerical 
(solid) solution for the receiver located at the boundary of the two half spaces. For a 
better view the analytical solution is shifted slightly upwards. All prominent features of 
the analytical wave form appear in the numerical solution. The theoretical arrival 
times of P and S waves are marked by vertical lines. Right: Filtered traces of the 
analytical (dotted) and the numerical (solid) solution with a dominant frequency of 6.7 
Hz. The root-mean square error of the numerical solution is less than 3%. 

 
 

 
 
Figure 4: Snapshot  of trapped wave propagation using the scalar wave equation. 
The fault zone width is 100m. The dominant frequency is 15 Hz. The source location 
is indicated by a plus sign. Blue and red colors denote positive and negative 
amplitude, respectively. The FZ is described by 20 grid points.  
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Figure 5:  Comparison of 3D (solid), 2D (dotted) and 2D converted (dashed) 
seismograms for fault zone wave propagation using the scalar wave equation (e.g. SH 
case) for various fault zone widths. In these cases the 2D-3D conversion works very 
well. The uncorrected 2D seismograms have at places considerably different 
amplitudes.  

FZ width 50m FZ width 50m FZ width 100m 

FZ width 150m FZ width 150m FZ width 200m 
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Figure 6:  The variation of the ratio of maximum amplitude to fault zone wave amplitude 
along a profile across the fault zone for 3D (solid), 2D (dotted)) and 2D converted 
(dashed) seismograms for different fault zone widths (same as previous Figure). The 
fault zone region is grey shaded. In general the ratio of fault zone wave amplitude to 
body wave amplitude is overestimated outside the fault zone for 2D and 2D-3D 
converted seismograms using the corrections described in the text. 

50m 50m 100m 

200m 150m 
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Figure 7: Snapshots of elastic wave propagation in a fault zone with bottleneck 
structure. Red and blue colors denote positive and negative velocities of y-
component (SH type motion), respectively. The source at the fault zone boundary is 
indicated by a star.  The second phase propagating to the left of the FZ in the top 
right Figure is the shear wave reflected from right side of the FZ. 

 



 19

 
 

 
 
Figure 8: Snapshots of elastic wave propagation in a fault zone with offset in the 
vertical direction. Red and blue colors denote positive and negative velocities of y-
component (SH type motion), respectively. The source at the fault zone boundary is 
indicated by a star.   
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Figure 9: Three models with sources (A) below, and (B and C) below and at some 
distance from the fault zone. Can trapped waves be excited by such source – fault 
zone geometries? Is it possible to distinguish the wavefield observed for such models 
from models with more simple fault zone geometries? 
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Figure 10: Horizontal component of velocity (drawn to scale) observed above the 
models shown in the previous Figure. Note that sources below and at some distance 
from the fault zone still generate trapped waves. These examples highlight the trade-
off of some of the involved parameters.  
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Figure 11: Left: Model with a fault zone split at the surface but connected at depth. 
The source location is indicated by a star. Right: Location of receiver strings above 
the fault zone at the surface indicated by gray shading.  
 

 
 

 
 
Figure 12: Top:  Horizontal components of velocity across profiles L1-3 on the fault 
for the homogeneous simple fault structure shown in the Figure above.  Bottom: 
Horizontal components of velocity across profiles L1-3 on the fault for the split fault 
model. Note that the trapping efficiency considerably decreases as the receiver 
profile reaches the fault discontinuity. These differential effects may help in 
recovering fault zone structure at depth.  
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