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Abstract. Finite-difference approximations to the
wave equation in spherical coordinates are used to cal-
culate synthetic seismograms for global Earth mod-
els. High-order finite-difference (FD) schemes were
employed to obtain accurate waveforms and arrival
times. Application to SH-wave propagation in the man-
tle shows that multiple reflections from the core-mantle
boundary (CMB), with travel times of about one hour,
can be modeled successfully. FD techniques, which
are applicable in generally heterogeneous media, can be
used to determine realistic global earth structure.

Introduction

Lateral heterogeneities in the Earth have considerable
effects on the arrival times and waveforms recorded at
the Earth’s surface. These effects can not be modeled
by techniques based on the assumptions of spherical
symmetry such as the reflectivity method [Fuchs and
Miller, 1971] or normal modes [see e.g. Woodhouse and
Dziewonski, 1984, Wysession and Shore, 1994, where
only small perturbations about a reference model can
be treated. High frequency approximations [see e.g.
Cerveny et al., 1982] are not adequate in strongly inho-
mogeneous media. The Direct Solution Method [Geller
and Ohminato, 1994, Cummins et al., 1994a,b], a solu-
tion of the weak form of the wave equation for heteroge-
neous media, has been applied to global seismology but
not yet to models with strong lateral heterogeneities.

The FD technique [see e.g. Alterman et al., 1970,
Virieur, 1986, Chaljub et al., 1995] has the advan-
tage that wave propagation can be simulated by di-
rectly solving the equation of motion for arbitrary het-
erogeneous models. One drawback of this technique,
however, is that it requires enormous computational re-
sources.

Recently, the new generation of massively parallel
hardware has led to an increasing number of applica-
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tions of FD techniques to seismic wave propagation in
2D and 3D media [Rodrigues and Mora, 1992; Igel et
al., 1999).

In this study, the second-order scheme based on a
staggered-grid formulation [Chaljub et al., 1995] is ex-
tended to higher orders considering toroidal motion
(SH-waves) in 2D. This leads to considerably improved
accuracy in travel time and waveform.

Theory

In a spherical coordinate systern with coordinates
{r,,0} — assuming invariance in ¢ for all fields —
the equation for toroidal motion u¥ (SH-waves) is
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where p is the mass density, f¥ is a volumetric force,
o; are the components of the stress tensor,
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4 being the shear modulus. Sources and inhomogeneities
are invariant in ¢—direction.

Wave motion is simulated between the Earth’s surface
and the CMB. These boundaries can be approximated
by a free surface boundary condition, where o,.% = 0.
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Finite-difference approximation

FD approximations of space derivatives can be ex-
pressed as a convolution sum [see e.g. Rodrigues and
Mora, 1992 ], where the number of adjacent grid values
used to calculate the derivative determines its accuracy.
The weights for derivative operators of different length
can be obtained analytically [see e.g. Igel et al., 1993].
Convolution-based FD operators are particularly suited
to massively parallel computers since they use the fast
communication between neighbor processors.

The fields are defined on a staggered grid. In stag-
gered grid methods, the derivative of a discrete field is
calculated halfway between the grid points where the
field is defined [Virieuz, 1986]. This implies that u®
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and 0,%, 0¢? of equations (1) and (2) respectively are
defined at different locations. Such a scheme converges
faster and results in improved accuracy [ Virieuz, 1986].

Due to the singularity of the coordinate system at
#=0° the source is located at the grid point closest to
the axis, and the displacement component is kept con-
stant u? = 0 at #=0° and 180° from symmetry consid-
erations.

The displacement field u? is extrapolated in time us-
ing a Taylor’s expansion

N 2n
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where At is the time increment and N is the order of
the time extrapolation. Note that the high-order time
derivatives u®(>®) can be obtained by repeatedly looping
through the algorithm [Igel et al., 1993]. Stability and
dispersion for the cartesian version of such an algorithm
has been studied by Rodrigues and Mora [1992].

Simulation Example

In a feasibility test we apply this algorithm to the
PREM model [Dziewonski and Anderson, 1981] without
absorption. The model is defined on a 4096 x 1000 grid
with an angular range of 180° and a maximum depth
of 2891km. This results in a depth spacing of ~ 2.9km
and an angular spacing (arc length) between ~ 4.9km
(at the surface) and & 2.7km (at the CMB). The time
increment is 0.15 s and 24000 time steps are propagated
(total recording time of one hour). A simulation with an
eight-point operator in space (see Igel et al. [1993] for
the cartesian case) and N=4in time (Eq. 3) requires 150
minutes CPU on a 128-processor Connection Machine
CM-5 including I/0.

Figure 1 shows snapshots of SH-waves. The source
time function is the first derivative of a Gaussian with
a dominant period of &40 s and a cutoff at =10 s.
Fundamental properties of SH-waves reverberating in
the mantle can be observed [see also Shearer, 1991;

Figure 1. SH-wave snapshots. The source is at 640km
depth. The borders of the model are the free surface and
the CMB respectively. The grey shading is relative to
the S-velocity (PREM). Black and white denote positive
and negative displacement, respectively. All amplitudes
above 0.1% of the maximum amplitude in the snapshot
are shown. Top: After 490 s. The source location is
indicated by a dot. Downgoing S has been reflected
at the CMB (ScS). Upgoing S has been reflected by
the Earth’s surface (sS). Middle: After 1090 s. sS
trails S by about 17° at the surface. sSeS reaches the
Earth’s surface. Bottom: After 1690 s. sS has reached

- a distance of 102° at the surface, i.e. its ray-theoretical
core shadow boundary. Note the amplitude decay of the
wavefront still in the mantle. S¢S, is about to reach the
surface and is trailed by sSeS;.
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Wysession and Shore, 1994]: (1) SH-waves reflected by
the CMB reach the surface with a curvature slightly
stronger than the curvature of the Earth’s surface and
are thus reflected back as nearly planar features (Fig-

Time: 490s

Time: 1090s

Time: 1690s
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ure 1, 1090 s, S¢SS). (2) The upper mantle discontinu-
ities produce a train of phases trailing the main phases
(see e.g. Figure 1, 490 s). (3) Multiple S reflections
from the surface lead to an increasing number of Y-
shaped wavefronts (Figure 1, 1090 s and 1690 s). (4)
The wavefield propagating along the surface becomes
increasingly complex due to internal reverberations in
the upper mantle and multiple surface reflections (Fig-
ure 1, 1690 s).

The corresponding seismograms for epicentral dis-
tances up to 125° are shown in Figure 2. Note that
phases such as sSc¢Ss, observed at around 100° epi-
central distance, have propagated more than 100 wave-
lengths.

Numerical Dispersion

Numerical dispersion may alter the travel time and
lead to a distortion of the propagating pulse similar
to the effects of physical dispersion. In order to es-
timate the numerical dispersion of this scheme, waves
are propagated through a homogeneous mantle model
(vs=6.5km/s) and PREM for a source depth of 640km.
The grid parameters are the same as described above;
the dominant period of the source function is 25 sec-
onds. The results are shown in Figure 3. For both mod-
els, seismograms for two epicentral distances (A = 0.6°
and 95.5°) are given. An 80 second time window cen-
tered around the arrival times of S and the CMB re-
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Figure 2. Seismograms for a source at 640km depth.
The seismograms are one hour long. The maximum
epicentral distance is 125°. Large amplitudes have been
clipped. Some of the phases are marked (see also Figure’
1). The 9 June 1994 deep earthquake under northern
Bolivia produced excellent observations of these phases.
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Figure 3. Left: Seismograms for different models
and epicentral distances. The n-th CMB reflection is
marked by n. Right: Normalized phases indicated
on the left, aligned according to ray-theoretical travel
times. If the waveforms deviate from each other they
are marked. S is marked by a solid line. a: Homo-
geneous mantle, A = 0.6°. b: Homogeneous mantle,
A =95.5° c¢: PREM, A = 0.6°. d: PREM, A = 95.5°.

flections, determined by ray theory, was extracted. Su-
perimposition of the waveforms reveal travel time errors
and numerical dispersion effects of these phases relative
to S.

In Figure 3a, the CMB reflections show only a slight
error w.r.t. S in the relative amplitude of the wavelets.
ScS4 has propagated ~140 wavelengths and the travel
time error is &1 s, whereas the other phases have travel
time errors smaller than 0.5 s. Note that with a second
order scheme (same grid) the travel time error for ScSy
is 4 s. In Figure 3b, the change in the waveform of the
S-wave is caused by interference with SeS (A = 95.5°).
The travel time error for S¢Sy and SeSs is smaller than
0.5 s.

The same analysis is applied to seismograms obtained
for PREM (same source parameters, Figures 3c,d). Due
to interference from other signals, it is difficult to esti-
mate dispersion effects. S¢Sy and ScS3 wave forms are
complicated by bottomside reflections from the crustal
discontinuities at 15 and 24.4km depth in PREM. Note
that ScS in Figure 3c shows an excellent fit to S since
it does not have these precursors.
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For all the superimposed waveforms, the travel time
-error, determined at the dominant peak, is below 1 s.
While the waves recorded at A = 0.6° propagate mainly
in a radial direction, the signals recorded at A = 95.5°
propagate at various angles with respect to the grid.
The results in Figure 3 suggest that the directional de-
pendence of the dispersion effects are small. However,
a more quantitative analysis will be desirable in the fu-
ture.

Discussion and Conclusions

The main goal of this study was to investigate whether
high-order FD approximations to the wave equation in
spherical coordinates can be used to model broadband
seismograms.

The main problems with the FD method are numer-
ical dispersion and the computational effort required.
Our results suggest that, with high-order approxima-
tions, it is possible to calculate global Earth synthetic
SH-seismograms in frequency bands up to 0.1 Hz with-
out significant dispersion of the wavetrain. However,
small errors in the travel time exist, depending on the
order of the scheme and the propagation length. Note
that the spherical grid implies that the accuracy of the
FD scheme is not only direction dependent (numerical
anisotropy) but also space dependent (variable grid den-
sity with depth). In general, the scheme is less accurate
near the Earth’s surface due to the increasing horizontal
grid spacing for smaller depths.

At present we are extending the method to the P-SV
case, realistic sources (e.g. double couple), and media
with attenuation.

In this study, we chose to simulate waves in two di-
mensions for models and wavefields invariant in ¢. The
reasons for this choice are that the 2D-approximation
allows higher frequencies to be evaluated. In principle,
3D wave simulations in spherical coordinates are possi-
ble, but the complete wavefield, including all three dis-
placement components, has to be considered. This will
increase the memory requirements and therefore limit
the frequency range that can be achieved.

In view of the developments in parallel hardware tech-
nology it is likely that the FD method will begin to play
an important role for the simulation and inversion of
generally heterogeneous global Earth structures.
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