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Abstract

Sensitivity functionals which allow us to express the total derivative of a physical observable with respect to the model parameters,
are defined on the basis of the adjoint method. The definition relies on the existence of Green’s functions for both the original and the
adjoint problem. Using the acoustic wave equation in a homogeneous and unbounded medium, it is shown that the first derivative
of the wavefield u with respect to the model parameter p = c−2 (c is the wave speed) does not contain traveltime information.
This property also influences objective functions defined on u and in particular the least squares objective function. Therefore, a
waveform inversion should either be complemented by a traveltime tomography or work with initially very long wavelengths that
decrease in the course of the iteration. The definition of the sensitivity functionals naturally introduces waveform sensitivity kernels.
Analytic examples are shown for the case of an isotropic, elastic and unbounded medium. In the case of a double couple source there
are three classes of sensitivity kernels, one for each of the parameters λ, µ (Lamé parameters) and ρ (density). They decompose
into P→P, P→S, S→P and S→S kernels and can be described by third-order tensors incorporating the radiation patterns of the
original wavefield and the adjoint wavefield. An analysis of the sensitivity kernels for density suggests that a waveform inversion
procedure should exclude either the direct waves or the source and receiver regions. S-wave sensitivity kernels, corresponding to
conversions from or to S-waves, are larger than the kernels corresponding to P-waves only. This implies that S-wave residuals caused
by parameter differences between the true Earth model and the numerical model will dominate a waveform inversion that does not
account for that effect.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Inversion; Fréchet derivative; Waveform analysis; Sensitivity

1. Introduction

Seismological observations play an important role in the imaging of the Earth’s interior structure. Radial models
of density and seismic velocities, based primarily on the arrival times of seismic waves at the surface, were developed
by Dziewonski and Anderson (1981), Kennett and Engdahl (1991) and Kennett et al. (1995). The one-dimensional
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models reflect the static increase of pressure and temperature with increasing depth and the associated phase transitions
of mantle minerals. Moreover, they serve as reference models for maps of global three-dimensional variations of
density and seismic velocities obtained on the basis of ray theory and finite mode summations (e.g. Dziewonski,
1984; Grand, 1994; Masters et al., 1996; Grand et al., 1997; Kennett and Gorbatov, 2004). Today, it is possible to
simulate the propagation of seismic waves in realistic Earth models numerically (e.g. Igel et al., 1995; Komatitsch
et al., 2000). This suggests that we replace ray theory and finite normal mode summations as forward models in
inversion schemes by numeric solutions of the wave equation, thus, substantially increasing the amount of exploitable
information.

The inversion of seismic data can be based on different concepts. In probabilistic inverse theory the solution
of an inverse problem is defined as a marginal probability distribution in the model parameter space P (Tarantola,
1987). This definition is very general and elegant. However, a complete characterisation of this probability distribution
usually requires us to evaluate a large number of parameter space elements p ∈ P . Therefore, the probabilistic ap-
proach becomes impractical if the model space is large and if the solution of the forward problem is time-consuming.
As an alternative, the solution of an inverse problem may be defined as the parameter set pmin that minimises an
objective function E(u(p)) defined on the observable u(p). In symbols: pmin = {p ∈ P ;E(u(p)) = min}. Possible ob-
servables are arrival times or waveforms. Typical parameters are seismic velocities and density. In the context of
the minimisation approach the sensitivity plays a central role. It is defined as the first derivative of the observable
u(p) with respect to its parameters p and is denoted by Dpu. The sensitivity is the basis of resolution studies and
minimisation algorithms. Moreover, it influences the choice of data that one wishes to include in the inversion proce-
dure.

Often the computation ofDpu orDpE(u) by means of classical finite differencing techniques is impractical due to
the large number of parameters in realistic models. A solution of this problem is the adjoint method (Tarantola, 1984,
1988). It allows us to obtain the first derivative by solving the original forward problem and its adjoint problem only
once, therefore being very efficient. As a consequence of the continuously increasing computation power the adjoint
method has received much attention in many geo-scientific fields, such as for example meteorology (Talagrand and
Courtier, 1987), geodynamics (Bunge et al., 2003), seismology (Crase et al., 1990; Igel et al., 1996; Tromp et al., 2005)
or groundwater modelling (Sun, 1994).

For any application that employs the derivativeDpu it is important to know the type of information that it contains.
This is particularly true for inversion algorithms that exclusively rely on DpE(u) and therefore on Dpu. Gauthier et
al. (1986) used such an algorithm (the method of steepest descent) for the purpose of acoustic waveform inversion
in two dimensions. They discovered that the derivative of the least squares objective function (the time integral over
the squared waveform residuals) primarily contains information about where the edges of parameter perturbations
are located. However, the interior of their famous ‘Camembert’ shaped bulk modulus perturbation could hardly be
reconstructed during the inversion.

A particularly interesting aspect of the adjoint method is that it allows us to find analytic expressions for the different
sensitivities (one for each parameter) in terms of Green’s functions. This directly leads to the formulation of sensitivity
kernels, i.e., volumetric sensitivity densities. Asymptotic approximations for such sensitivity kernels for body waves
have been derived on the basis normal modes (Li and Tanimoto, 1993; Li and Romanowicz, 1995).

The objective of this study is the analysis of sensitivity functionals, expressing the sensitivity Dpu in terms of
a functional that is independently linear in the source time function and the model perturbations. Based on the ex-
ample of the acoustic wave equation in an unbounded and homogeneous medium, we show that the first derivative
of the least squares objective function only contains information about scatterers and reflectors. Traveltime infor-
mation about a signal with a given wavelength is not contained in the first derivative. A simple numerical example
in two dimensions confirms this result, which has important implications for any seismological waveform inversion
procedure that is founded on the gradient method alone. We find that even in the simple case of an unbounded, homo-
geneous, elastic medium, the waveform sensitivity kernels corresponding to density perturbations exhibit surprising
complexity. Their shape depends on the source orientation, the observation direction and the type of wave consid-
ered. In contrast to numerically computed kernels the analytic kernels automatically decompose into P→P, P→S,
S→P and S→S kernels, meaning that they are sensitivity densities for different types of conversions and therefore
for different types of waveform residuals. The results derived from an analysis of the sensitivity kernels in such a
simplified scenario yield important information concerning the types of waves that one should consider for a waveform
inversion.
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The long-term objective of this study is to contribute to the development of a waveform inversion procedure based
on the adjoint method and applicable on continental or global scales. So far, waveform inversions applied to real data
have mostly been based on simplified forward problems or relatively small parameter spaces (e.g., Cichowicz and
Green, 1992; Marquering et al., 1996; Zielhuis and van der Hilst, 1996).

Before we proceed, we will briefly review the principal results obtained in the first of this series of two papers on
the adjoint method in seismology (Fichtner et al., 2006). Let u be a field defined in time and space and depending on
a set of parameters p, i.e., u = u(p; x, t). (In what follows, vectorial and potentially vectorial quantities are in bold
face.) We assume that u is determined through a differential equation complemented by an adequate set of subsidiary
conditions. Alternatively and equivalently one may consider a differential operator L mapping u onto the right-hand
side h of the differential equation:

L(u; p, x, t) = h(x, t). (1)

The operator L itself may depend on time t, space x and the parameter set p. Solving the differential equation means
to find an inverse of L. It is usually an objective function E(u,p) defined on u and p, rather than u itself that is of
interest. In seismology, E may for example be a time integral over the difference between an observed wavefield u0
and a synthetically generated wavefield u. Here, we shall assume that E can be written as

E(u,p) =
∫
G

∫ t1

t=t0
f (u,p) d3x dt =

∫
G

∫ t1

t=t0
1 · f (u,p) d3x dt =: 〈1, f (u,p)〉, (2)

where G is the region of interest (e.g. the Earth) and [t0, t1] the temporal observation interval. The function f must be
specified for particular applications. Note that for reasons of greater generality the objective function E is assumed
to depend explicitly on both the observable and the parameters. Restricting our attention to linear operators L, we
found that the total derivative of E with respect to the model parameters p in the direction p′ can be expressed
as

DpE(u,p)(p′) = 〈p′, ∂pf (u,p) + Lp(u,ψ)〉, (3)

where Lp is the parameter transpose of L. The adjoint field ψ has to satisfy the adjoint equation

Lu(ψ; p, x, t) + ∂uf = 0, (4)

and a set of adjoint subsidiary conditions. The symbol Lu denotes the transpose of L with respect to the observable.
For the two-dimensional scalar wave equation the operator L is

L(u; ρ,µ, x, t) = ρ∂2
t u− ∇ · (µ∇u), (5)

The symbols ρ and µ represent the density and shear modulus distributions, respectively. The corresponding adjoint
equation coincides with the original wave equation (5) because there is no dissipation involved. Moreover, the spatial
boundary conditions translate one-to-one from the original problem to the adjoint problem, whereas the initial conditions
translate to terminal conditions. Using the adjoint wavefieldψ one can compute the derivative of the objective function
E = 〈1, f 〉:

DpE(u)(p′) = 〈ρ′, ∂ρf − ∂tψ ∂tu〉 + 〈µ′, ∂µf + (∇u) · (∇ψ)〉, p′ = (ρ′, µ′). (6)

In the case of the elastic wave equation with attenuation the operator L is

L(u;�, ρ, x, t) = ρ(x)∂2
t u(x, t) − ∇ ·

∫ ∞

−∞
�(x, t − τ) : ∇u(x, τ) dτ, (7)

with � representing the fourth-order rate of relaxation tensor. The adjoint equation for this problem is found to be

Lu(ψ;�, ρ, x, t) = ρ(x)∂2
t ψ(x, t) − ∇ ·

∫ ∞

−∞
�(x, τ − t) : ∇ψ(x, τ) dτ.

(The sets of subsidiary conditions for both the original and the adjoint problem are omitted here for brevity.) The
operator L is not symmetric, meaning that it is not identical with its transpose Lu. Again, using the adjoint wavefield
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ψ one can obtain the derivative of E = 〈1, f 〉 with respect to the parameters p:

D(�,ρ)E(u,�, ρ)((�′, ρ′)) = DρE(u,�, ρ)(ρ′) +D�E(u,�, ρ)(�′)

=
∫
G

∫ t1

t=t0
ρ′(x)[∂ρf + ψ(x, t) · ∂2

t u(x, t)] dt d3x

+
∫
G

∫ t1−t0

t=0
�′(x, t) ::

[
∂�f +

∫ t1

τ=t0+t
∇ψ(x, τ) ⊗ ∇u(x, τ − t) dτ

]
dt d3x. (8)

The symbol ⊗ denotes the tensor or dyadic product ((a ⊗ b)ijkl = aijbkl) and the symbol :: the quadruple scalar product
(A :: B = AijklBijkl).

2. Definition of the sensitivity functional

We define the sensitivity s to be the derivative of the physical observable u = u(p; x, t) with respect to the model
parameters p in the direction p′ at some time t = τ0 and location x = ξ0. In symbols:

s(ξ0, τ0,p′) := Dpu(p; ξ0, τ0)(p′). (9)

The sensitivity is of particular importance when the solution of an inverse problem in the minimisation sense can be
approximated with gradient methods. They rely on the derivative of the objective function E with respect to the model
parameters p, which is given by

DpE(u,p)(p′) = ∂uE(u,p)(Dpu) + ∂pE(u,p)(p′) = ∂uE(u,p)(s) + ∂pE(u,p)(p′). (10)

The sensitivity s is the only contribution to DpE that is directly due to the change of the observable u arising from a
perturbation of the model parameters p.

In order to obtain an expression for s, we choose a specific objective function Es which is equal to the i-component
of the wavefield observed at x = ξ0 and t = τ0:

Es(u,p) = Es(u) = ei · u(p; ξ0, τ0) = ui(p; ξ0, τ0), i = 1, 2 or 3. (11)

Then the derivative of Es equals the derivative of the ith wavefield component, that is DpEs(u)(p′) = Dpui(p′) = si.
When the parameter space P has a finite dimension m < ∞ and basis vectors êk, with k = 1, . . . , m, then we find

DpEs(u)(êk) = Dpui(p; ξ0, τ0)(êk) = 〈êk,Lp(u,ψ)〉 = d

dpk
ui(p; ξ0, τ0), (12)

where pk is the k-component of the element p ∈ P . Thus, the total derivative of Es coincides with the (i, k)- component
of the parameter Jacobian. Our specific choice of the objective function Es implies that the generator fs that links Es
to the bilinear form 〈., .〉 (see Eq. (2)) is determined through

fs(u,p) = fs(u) = ei · u(p; x, t) δ(x − ξ0) δ(t − τ0), (13)

Therefore, the adjoint equation is

Lu(ψ; p, x, t) = −∂ufs(x, t) = −ei δ(x − ξ0) δ(t − τ0). (14)

The adjoint source is restricted to a single point in time and space, namely to the observation time τ0 and the observation
point ξ0. Hence, by definition, ψ is the ith Green’s function of the adjoint problem multiplied by −1,

ψ(p; x, t) = −g∗
i (p; ξ0, τ0; x, t), (15)

and therefore

si(ξ0, τ0;h,p′) = −〈p′,Lp(u, g∗
i )〉. (16)

Consequently, one can compute Jacobians if the Green’s functions of the adjoint problem are known. In the case of
linear equations, the outstanding property of Green’s functions is that they allow us to represent any solution by means
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of a simple convolution with the source function h (Eq. (1)). Here we let h be a weighted superposition of vector point
sources with different directions and causal source time function h:

h(x, t) =
3∑
k=1

αkek δ(x − x0)h(t − t0), h(t)|t<0 = 0, αk ∈ R. (17)

Then u is determined through

u(x, t) =
3∑
k=1

αk

∫ ∞

−∞
gk(p; x0, t0; x, t − τ)h(τ) dτ. (18)

Combining Eqs. (16) and (18) yields

si(ξ0, τ0;h,p′) = −
3∑
k=1

αk

∫ ∞

−∞
〈p′,Lp[gk(p; x0, t0; x, t − τ), g∗

i (p; ξ0, τ0; x, t)]〉h(τ) dτ. (19)

The sensitivity component si can be represented by a functional Ski which is independently linear with respect to p′
and h, respectively. We will call this operator the sensitivity functional:

Ski(ξ0, τ0;h,p′) := −
∫ ∞

−∞
〈p′,Lp[gk(p; x0, t0; x, t − τ), g∗

i (p; ξ0, τ0; x, t)]〉h(τ) dτ. (20)

The symbol := denotes equality by definition. Thus,

si(ξ0, τ0;h,p′) = Dpui(p; ξ0, τ0)(p′) =
3∑
k=1

αkSki(ξ0, τ0;h,p′). (21)

Here we considered only one receiver and one vectorial source. It is however straightforward to extend the concept of
sensitivity functionals to multiple source/receiver geometries and to fields set off by a dipolar source.

3. Example: The acoustic wave equation

This section concentrates on the sensitivity functional for an acoustic wavefield in a homogeneous medium. Even
though the problem is oversimplified, many of the results translate to more complex cases that include elasticity and
heterogeneity.

3.1. Sensitivity functional

The acoustic wave equation for the case of constant density is given by

L[u;p] = p(x)∂2
t u(x, t) −	u(x, t) = f (x, t), (22a)

with x ∈ R3 and t ∈ [t0, t1] ⊂ R. The parameter p is the squared inverse of the phase velocity:p = c−2. We complement
Eq. (22a) by the regularity and initial conditions

lim
|x|→∞

u(x, t) = lim
|x|→∞

∂tu(x, t) = 0, (22b)

u(x, t)|t≤t0 = ∂tu(x, t)|t≤t0 = 0. (22c)

The Green’s function for Eq. (22) in the case of p = const is

g(p; x0, t0; x, t) = 1

4π

δ((t − t0) − |x − x0|/c)
|x − x0| . (23)

Since the acoustic wave equation operator is symmetric (e.g. Tarantola, 1984), the adjoint equation for g∗ is

p(x)∂2
t g

∗(p; ξ0, τ0; x, t) −	g∗(p; ξ0, τ0; x, t) = δ(x − ξ0)δ(t − τ0) (24a)
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with the subsidiary conditions

lim
|x|→∞

g∗(p; ξ0, τ0; x, t) = lim
|x|→∞

∂tg
∗(p; ξ0, τ0; x, t) = 0, (24b)

g∗(p; ξ0, τ0; x, t)|t≥t1 = ∂tg
∗(p; ξ0, τ0; x, t)|t≥t1 = 0. (24c)

In Eq. (24), ξ0 is the observation point and τ0 ∈ [t0, t1] is the observation time of the acoustic field u. The solution of
Eq. (24) for p = const is

g∗(p; ξ0, τ0; x, t) = 1

4π

δ((τ0 − t) − |x − ξ0|/c)
|x − ξ0|

. (25)

It remains to assemble the building blocks (23) and (25) to form the sensitivity functional S. The expression for the
parameter transpose Lp is the same as in the two-dimensional case. Therefore, we find

S(ξ0, τ0;h, p′) = −
∫ ∞

−∞
〈p′, Lp[g(p; x0, t0; x, t − τ), g∗(p; ξ0, τ0; x, t)]〉h(τ) dτ

= −
∫ ∞

τ=−∞

∫ t1

t=t0

∫
R3
p′(x)g∗(p; ξ0, τ0; x, t)∂2

t g(p; x0, t0; x, t − τ)h(τ) dτ dt d3x

= − 1

(4π)2

∫ t1

t=t0

∫
R3
p′(x)δ[(τ0 − t) − |x − ξ0|/c]

ḧ(t − t0 − |x − x0|/c)
|x − ξ0||x − x0| d3x dt. (26)

The integral over t is non-zero only if the condition

τ0 ∈ [t0 + |x − ξ0|/c, t1 + |x − ξ0|/c] (27)

is satisfied. (Note that we already require τ0 ∈ [t0, t1].) If relation (27) indeed holds, we obtain

S(ξ0, τ0;h, p′) = − 1

(4π)2

∫
R3
p′(x)

ḧ[τ0 − t0 − (|x − x0| + |x − ξ0|)/c]
|x − ξ0||x − x0| d3x. (28)

This is the derivative of the displacement field of an acoustic wave in a homogeneous medium with respect to p = c−2.

3.2. Traveltime information

Due to the causality of h the sensitivity functional is non-zero only if the relation

c(τ0 − t0) ≥ |x − x0| + |x − ξ0| (29)

can be satisfied for some x ∈ R. This is possible only for c(τ0 − t0) ≥ |x0 − ξ0|, because c(τ0 − t0) < |x0 − ξ0| would
violate the triangle inequality. Thus,

Dpu(p; ξ0, τ0)(p′) = 0, ∀ τ0 < t0 + |x0 − ξ0|/c. (30)

In other words: The derivative of the acoustic wavefield u with respect to the parameter p = c−2 in any direction p′
at some observation point ξ0 is identically zero prior to the first arrival which occurs at the time t = t0 + |x0 − ξ0|/c.
Consequently, we can perturb the medium arbitrarily andDpu(p; ξ0, τ0)(p′) will always be zero prior to the first arrival
at x = ξ0. However, we know that increasing the wavespeed somewhere between source x0 and receiver ξ0 will lead
to earlier arrivals.

The resolution of this apparent paradox imposes significant constraints on the applicability of pure gradient methods
in the field of waveform inversion. Assume that the wave field u(p; x, t) is sufficiently smooth with respect to p to
allow its expansion into a Taylor series,

u(p+ p′; x, t) = u(p; x, t) +Dpu(p; x, t)(p′) + 1

2
D2
pu(p; x, t)(p′, p′) + . . . . (31)
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(Note that the perturbation p′ = p′(x) does not need to be restricted to a point. It can be spatially extended.) The
unperturbed field u(p; x, t) and the perturbed field u(p+ p′; x, t) are both governed by an acoustic wave equation

p ∂2
t u(p; x, t) −	u(p; x, t) = δ(x − x0)h(t − t0), (32)

(p+ p′) ∂2
t u(p+ p′; x, t) −	u(p+ p′; x, t) = δ(x − x0)h(t − t0). (33)

Combining Eqs. (32) and (33) and inserting the Taylor expansion of u, we obtain, correct to first order in ||p′||,
p ∂2

t Dpu(p; x, t)(p′) −	Dpu(p; x, t)(p′) = −p′∂2
t u(p; x, t). (34)

Eq. (34) states that correct to first order in ||p′|| the perturbed wave field u(p+ p′; x, t) is given by the sum of the
unperturbed wave field u(p; x, t) and the wave field Dpu(p; x, t)(p′). The latter is set off by secondary sources that
act when the unperturbed wave field reaches the perturbation p′(x). The time when the sources for Dpu(p; x, t)(p′)
act, is therefore independent of the actual perturbation p′(x). Consequently, correct to first order, the wave field
Dpu(p; x, t)(p′) must arrive later at some point x = ξ0 than the unperturbed field u(p; x, t). The first derivative of the
displacement field u with respect to the model parameters only accounts for scattering caused by finite perturbations.
This implies that traveltime differences must be contained in higher derivatives. Hence, one may symbolically write

u(p+ p′; x, t) − u(p; x, t) = scattering (1st derivative) + travel time differences (higher derivatives). (35)

Note that Eq. (10) states that this property also influences the derivative of any objective function E(u,p) with respect
to the parameters. This phenomenon also manifests itself in a simple numerical example (see Fig. 1) that is based on
a finite differences solution of the two-dimensional scalar wave equation

ρ(x)∂2
t u(x, t) − ∇ · (µ(x) ∇u(x, t)) = g(x, t), x ∈ G ⊂ R2 (36)

in a square region. The parameters ρ and µ are density and shear modulus, respectively. The upper boundary is free
(no tractions), the lower boundary is rigid (no displacement) and periodic boundary conditions are implemented on
the left and right boundaries. Ten receivers at a mutual distance of 10 km are located along the upper boundary. Their
positions coincide with those of 10 sources which radiate a Ricker wavelet. Homogeneous density and shear modulus
distributions (ρ = 3.0 × 103 kg m−3, µ = 75.0 × 109 N m−2) serve as references. The perturbed model contains in its
centre a square box where the density is reduced to a value of 2.75 × 103 kg m−3 (see Fig. 1, left). The shear modulus
distributionµ(x) remains unchanged. A time integral over the sum of all squared residuals is used as objective function
E:

E(u) = 1

2

10∑
k=1

∫ t1

t=t0
[u(xk, t) − u0(xk, t)]2 dt. (37)

The wavefields u and u0 correspond to the perturbed and the unperturbed models, respectively. As expected, the
derivative of E with respect to density depends strongly on the dominant wavelength λ0 of the signal. Choosing
λ0 = 14 km results in the derivative shown in the middle of Fig. 1. Rather than mapping the entire box, the derivative is
large only along its upper and lower edges. Those parts of the perturbation act as reflectors for signals with a wavelength
that is short compared to the extension of the perturbation. Since it depends on the wavelength whether a perturbation
acts completely as scatterer or not, it is possible to map the entire density perturbation by choosing a longer wavelength.
The derivative of Ewith respect to density for the wavelength λ0 = 40 km is shown on the right of Fig. 1. As predicted,
the density perturbation is mapped in the form of a single gradient contribution because it acts as one scatterer for this
particular wave. Naturally, the gradient peak is much broader due to the longer wavelength.

A profound implication arising from the above considerations is that a waveform inversion based exclusively on
the first derivative of the wavefield or any associated objective function is not well suited for the determination of
structure that has a significantly longer wavelength than the signal. Consequently, the waveform inversion must either
be based on a more sophisticated iterative procedure that includes higher derivatives or it must be complemented by a
conventional traveltime tomography. That a waveform inversion requires a background model that explains traveltimes
sufficiently well has also been found by Crase et al. (1990) and Igel et al. (1996). That small background models can
be estimated by means of Monte-Carlo methods has been demonstrated by Koren et al. (1991).
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Fig. 1. Left: Perturbed density model. The reference model is homogeneous in both density and shear modulus (ρ = 3.0 × 103 kg m−3, µ =
75.0 × 109 N m−2). There are no shear modulus perturbations. Middle: Derivative of the objective function E with respect to density for a dominant
signal wavelength of λ0 = 14 km. Only the edges of the perturbation are mapped byDρE. The interior of the density perturbation remains invisible.
(The gray-scale values apply only to the figure on the left because the amplitude of the derivatives are proportional to the amplitudes of the signal.)
Right:DρE for λ0 = 40 km. Since the wavelength is longer, the entire density perturbation acts as a scatterer. It therefore maps as one single object
into the derivative.

4. Waveform sensitivity kernels in homogeneous isotropic media

Based on Eq. (20) one may approximate sensitivity functionals numerically for almost arbitrarily complex media.
However, in order to gain physical understanding it is important to analyse simplified problems that can be solved
analytically. In the particular case of the wave equation in a homogeneous, isotropic and unbounded medium, it is
possible to demonstrate the complexities arising from wave conversions which are due to perturbations in different
parameters.

Consider the operator L corresponding to the general wave equation (Eq. (7)). By inserting the time-localised and
isotropic constitutive relation

�(x, t) = �0(x)δ(t), �0
ijkl = λδijδkl + µδikδjl + µδilδjk, (38)

the operator L and its displacement transpose Lu reduce to

L[u; ρ, λ, µ, x, t] = ρ∂2
t u − (2µ+ λ)∇∇ · u + µ∇ × (∇ × u) (39)

and

Lu[ψ; ρ, λ, µ, x, t] = ρ∂2
t ψ − (2µ+ λ)∇∇ · ψ + µ∇ × (∇ × ψ). (40)

The Lamé parameters λ and µ are assumed constant. Since the time-localised rheology eliminates anelasticity, L
becomes symmetric. Also based on (38), one finds that the total derivative of the least squares objective function E
with respect to the parameters p = (ρ, λ, µ) and in the direction p′ = (ρ′, λ′, µ′) simplifies to

DpE(u)(p′) = −
∫
R3

∫ t1

t=t0
ρ′ ∂tψ · ∂tu dt d3x +

∫
R3

∫ t1

t=t0
λ′(∇ · ψ)(∇ · u) dt d3x

+
∫
R3

∫ t1

t=t0
µ′[(∇ψ) : (∇u) + (∇ψ) : (∇u)T ] dt d3x. (41)

Here it is assumed thatE does not explicitly depend on p. The sources of most tectonic earthquakes can be approximated
by a superposition of dipoles

fpq(x, t) = (eq · ∇x0 )δ(x − x0)h(t − t0) ep = lim
ε→0

1

ε
[δ(x − x0 + εeq) ep − δ(x − x0) ep]h(t − t0), (42)
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where h is a causal source time function. With gp(x0, t0; x, t) the Green’s function for a single spatio-temporal point
force acting at x = x0 and t = t0 in the direction of ep, the solution for the (p, q)-dipole fpq is

gpq(x0, t0; x, t) := (eq · ∇x0 )gp(x0, t0; x, t). (43)

The symbol := denotes equality by definition. A general displacement field resulting from a weighted superposition
of all possible dipoles can then be expressed in the form

u(x, t) =
3∑

p,q=1

Mpq

∫ ∞

−∞
gpq(x0, t0; x, t − τ)h(τ) dτ, (44)

where the scalars Mpq are the moment tensor components. A comparison with Eqs. (18)–(21) suggests that the
appropriate definition of the sensitivity functional for the case of a dipolar source is given by the following set of
equations:

sn(ξ0, τ0;h,p′) =
3∑

p,q=1

MpqSpqn(ξ0, τ0;h,p′), (45a)

Spqn(ξ0, τ0;h,p′) = Sρpqn(ξ0, τ0;h, ρ′) + Sλpqn(ξ0, τ0;h, λ′) + Sµpqn(ξ0, τ0;h,µ′), (45b)

Sρpqn(ξ0, τ0;h, ρ′) =
∫ ∞

−∞

∫ t1

t=t0

∫
R3
ρ′∂tgpq(x0, t0; x, t − τ) · ∂tg∗

n(ξ0, τ0; x, t)h(τ) d3x dt dτ, (45c)

Sλpqn(ξ0, τ0;h, λ′) = −
∫ ∞

−∞

∫ t1

t=t0

∫
R3
λ′[∇ · gpq(x0, t0; x, t − τ)] · [∇ · g∗

n(ξ0, τ0; x, t)]h(τ) d3x dt dτ, (45d)

Sµpqn(ξ0, τ0;h,µ′) = −
∫ ∞

−∞

∫ t1

t=t0

∫
R3
µ′[∇gpq(x0, t0; x, t − τ)] : [∇g∗

n(ξ0, τ0; x, t)]h(τ) d3x dt dτ,

−
∫ ∞

−∞

∫ t1

t=t0

∫
R3
µ′[∇gpq(x0, t0; x, t − τ)] : [∇g∗

n(ξ0, τ0; x, t)]T h(τ) d3x dt dτ. (45e)

Due to the simplicity of the problem it is possible to derive exact expressions for the dipole Green’s functions (e.g.
Aki and Richards, 2002). Restricting our considerations to the far field we may write gpq as a sum of an S-wave and a
P-wave contribution:

gPFFpq (x0, t0; x, t) = γ (s)
p γ

(s)
q

4πρα3r(s)

r(s)

r(s) δ̇

(
t − t0 − r(s)

α

)
, (46a)

gSFFpq (x0, t0; x, t) = γ (s)
q

4πρβ3r(s)

(
ep − r(s)

r(s) γ
(s)
p

)
δ̇

(
t − t0 − r(s)

β

)
. (46b)

The P-wave speed α and the S-wave speed β are
√

(2µ+ λ)/ρ and
√
µ/ρ, respectively. The distance from the source is

r(s) = |x − x0| and γ (s)
i = r

(s)
i /r

(s) is the direction cosine measured from the source. The superscript XFF withX = P

or X = S is a reminder that this is a far field approximation. As a final building block we require the adjoint Green’s
functions. Since the adjoint wave equation coincides with the original wave equation in the case of perfect elasticity,
the adjoint Green’s functions g∗

n are identical to the original Green’s functions, the only difference being that the g∗
n

have to satisfy the terminal conditions. Therefore, we find

g∗PFF
n (ξ0, τ0; x, t) = 1

4πρα2r(r)

r(r)

r(r) γ
(r)
n δ

(
r(r)

α
+ t − τ0

)
, (47a)

g∗ SFF
n (ξ0, τ0; x, t) = 1

4πρβ2r(r)

(
en − r(r)

r(r) γ
(r)
n

)
δ

(
r(r)

β
+ t − τ0

)
. (47b)

with r(r) = (x − ξ0) and γ (r)
i the corresponding direction cosines measured from the receiver. Again, this is a far field

approximation, which is justified when the parameter perturbations ρ′, λ′ and µ′ are several wavelengths away from
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both source and receiver. However, if a perturbation is close to the receiver it becomes necessary to include the near field
terms in the adjoint Green’s functions g∗

n. Similarly, perturbations near the source will require the near and intermediate
field terms in gpq. Consequently, both the source and the receiver regions have to be excluded from the considerations
in the case of the far field approximation.

In the appendix it is demonstrated that the sensitivity functional for density perturbations can be reduced to

Sρpqn(ξ0, τ0;h, ρ′) = −
∫
R3

aPFFpq · bPFFn

···
h(τ0 − t0 − r(s)/α− r(r)/α) d3x

−
∫
R3

aPFFpq · bSFFn

···
h(τ0 − t0 − r(s)/α− r(r)/β) d3x

−
∫
R3

aSFFpq · bPFFn

···
h(τ0 − t0 − r(s)/β − r(r)/α) d3x

−
∫
R3

aSFFpq · bSFFn

···
h(τ0 − t0 − r(s)/β − r(r)/β) d3x. (48)

The contributions for the volumetric sensitivity kernels aXFFpq and bYFFn , where X and Y can be P or S, are given by

aPFFpq = γ
(s)
p γ

(s)
q

4πρα3r(s)
r(s)

r(s)
, aSFFpq = γ

(s)
q

4πρβ3r(s)

(
ep − r(s)

r(s)
γ (s)
p

)
,

bPFFn = γ
(r)
n

4πρα2r(r)
r(r)

r(r)
, bSFFn = 1

4πρβ2r(r)

(
en − r(r)

r(r)
γ (r)
n

)
.

(49)

Evidently, these factors just coincide with the radiation patterns of the original and the adjoint Green’s functions,
respectively. In the case of perturbations in Lamé’s parameters the corresponding expressions will become more
complex. Note that the causality of the source time function h implies that all sensitivity functionals for density with
kernels

RX→Y
pqn := −aXFFpq · bYFFn (50)

are identically zero if the observation time τ0 does not satisfy the condition

τ0 ≥ t0 + r(s)/cX + r(r)/cY , cp = α, cs = β. (51)

This is again a manifestation of the fact that the first derivative of E and therefore the sensitivity functionals do not
contain traveltime information. The observation time has to be larger than the time required for a wave in the unperturbed
medium to travel from the source x0 to a perturbation at x and from there to the receiver at ξ0. The volumetric sensitivity
kernels themselves are not dependent on time. However, only those regions of them are sampled where the expression

···
h(τ0 − t0 − r(s)/β − r(r)/β) (52)

is non-zero. The existence of four kernels is the consequence of possible conversions from P-waves to S-waves and
vice versa.

Superpositions of two dipoles (double couples) are of particular interest in seismology. They can be used to ap-
proximate sources corresponding to slip across a fault plane. The number of possible sensitivity kernels in the case
of a double couple source is 36 for each one of the parameters ρ, µ and λ. There are 3 observation directions n
(n = 1, 2, 3), 3 distinct double couples ((p, q) = (1, 2), (1, 3), (2, 3)), and 4 different types of kernels (P→P, P→S,
S→P, S→S). Figs. 2–5 show iso-surfaces of the 36 kernels corresponding to density perturbations. They are plotted
for values of ±s · [(600 km)2 · (4πρc3

pq) · (4πρc2
n)]−1, where the scaling factor s is given in the sub-figure titles. The

velocity cpq is α = 5 km s−1 for the P→Y kernels and β = 5/
√

3 km s−1 for the S→Y kernels. Similarly, cn is α for
the X→P kernels and β for the X→S kernels. Source and receiver are located at (x, y, z) = (200, 500, 500) km and
(x, y, z, ) = (800, 500, 500) km, respectively. Black lines intersecting at the source indicate the directions p and q.

Despite the simplicity of the problem, the sensitivity densities reveal a considerable complexity. As expected, they
depend on both the observation direction n and the source orientation (pq). In general, all the sensitivity densities
are small along the line connecting source and receiver. This has important consequences: Assume that we observe
a waveform difference in the direct wave (either P or S) that is due to a density perturbation. (Of course, in practice
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Fig. 2. Iso-surfaces of the sensitivity kernels −aPFFpq · bPFFn plotted at values of ±s · [(600 km)2 · (4πρα3) · (4πρα2)]−1, where the scaling factor s
is given in the sub-figure captions. Yellow (gray in the print edition) denotes positive and blue (black in the print edition) negative values. Wave
speeds are α = 5 km s−1 and β = α/

√
3 km s−1. The source is located at (x, y, z) = (200, 500, 500) km and the receiver, marked by a star (*), is at

(x, y, z) = (800, 500, 500) km. Black lines intersecting at the source indicate the (pq)-plane. The index n represents the observation direction. The
sensitivity kernels plotted in the first row ((1, 2)-couple) have expected correspondences in the second row ((1, 3)-couple). It is noteworthy that there
are significant sensitivity contributions between source and receiver only if one of the two source dipoles points towards the receiver. Therefore, in the
case of the (2, 3)-couple the sensitivities practically vanish in the region between source and receiver. Large sensitivity contributions in regions behind
source or receiver and far away from the line connecting source and receiver arise if the observation direction n does not point toward the source.

we may not know the character of the perturbation. This is a gedanken experiment.) Then we know that this density
perturbation must be located somewhere along the line (or more generally the ray) connecting source and receiver.
If it were not located on that line, the secondary wave emanating from that density perturbation would arrive later
and therefore not translate to a waveform change of the direct wave, at least if its temporal bandwidth is sufficiently
short. However, the sensitivity kernels for density perturbations are small or even zero on that line. But there are two
exceptions, namely the source and the receiver regions where all sensitivity kernels have a singularity. Thus, we can
conclude that the density perturbation is very likely to be located near the source or receiver because if it were located
somewhere else along the source-receiver line, it would have to have a very large and probably unrealistic amplitude.
Consequently, one may want to exclude direct waves from a waveform inversion because the corresponding residuals
will map almost exclusively into the source and receiver regions. Alternatively, one could use the direct wave but at
the same time exclude the source and receiver regions from the inversion by setting the derivatives there to zero.

Another important aspect of Figs. 2–5 is their scaling. The values of the P→P kernels are proportional to α−3α−2,
whereas the other kernels have values proportional toα−3β−2 (P→S),β−3α−2 (S→P) andβ−3β−2 (S→S), respectively.
The implication for any waveform inversion is that S-wave residuals dominate and that P-wave residuals are suppressed,
therefore potentially leading to an unbalanced exploitation of information contained in a seismogram. Waveform
residuals due to a perturbation in λ will be comparatively small because they are pure P-wave residuals.

In Fig. 2 we observe that the (1, 2)-double couples correspond to kernels for the (1, 3)-double couples with different
observation directions. This symmetry arises from choosing the source-receiver line parallel to the x-direction. Similar
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Fig. 3. The same as Fig. 2 but for the sensitivity kernels −aPFFpq · bSFFn (P to S conversions) plotted at values of ±s · [(600 km)2 · (4πρα3) · (4πρβ2)]−1.
The scaling factor s is given in the sub-figure titles. Symmetries between the first row ((1, 2)-couple) and the second row ((1, 3)-couple) are again due
to choosing the line connecting source and receiver as parallel to the x-direction. In general the sensitivity densities are small near the region between
source and receiver. This effect is especially pronounced in the case of the (2, 3)-couple, as already observed for the P→P kernels shown in Fig. 2.

correspondences can be found for the P→S, S→P and S→S kernels. Since the sensitivity kernels for density are just
a product of the radiation pattern of the source double couple and the radiation pattern of a single force pointing in
the observation direction, they can directly be interpreted in terms of these patterns. The (121)-kernels in Figs. 2 and
3 must vanish on the source-receiver line because the P-wave amplitude along this line is zero.

Similar arguments can be found for the S→P kernels in Fig. 4. The (1, 2)- and (1, 3)-double couples do generate
S-wave motion between source and receiver. However, a P-wave set off by an S-wave incident on a density perturbation
located somewhere on the source-receiver line, has zero amplitude along that line. This is because the incident S-wave
acts as a single force in the y- or z-direction, respectively.

Generally, the sensitivity kernels corresponding to λ and µ do not allow such simple interpretations because they
are the products of more complicated patterns.

At this point one may conclude that one general feature of the density sensitivity kernels involving S-waves (primary
or secondary) is that they are collectively small or even zero between source and receiver. So far however, we considered
only very specific geometries, namely those where the dipole directions coincide with the coordinate directions. A
different set up is presented in Fig. 6 for the case of P→S kernels. The source-receiver line has been rotated by 45◦, so
that the source is now located at (x, y, z) = (300, 300, 500) km and the receiver is at (x, y, z) = (724, 724, 500) km.
Despite this modification, the P→S kernels shown in Fig. 6 do not differ much from those presented in Fig. 3. Only
the size of the lobes changes and they are curved towards either source or receiver. The general feature, namely the
fact that they vanish in the region between source and receiver, remains.

Finally, we consider the sensitivity kernels corresponding to the parametersµ and λ. A perturbation inµ is expected
to set off both a secondary S- and a secondary P-wave. In particular we find that the far field sensitivity kernels for µ
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Fig. 4. The same as Fig. 2 but for the sensitivity kernels −aSFFpq · bPFFn (S to P conversions) plotted at values of ±s · [(600 km)2 · (4πρβ3) · (4πρα2)]−1.
The scaling factor s is given in the sub-figure titles. As expected from the source-receiver asymmetry of the sensitivity kernels, there are no similarities
between the S→P kernels and the P→S kernels shown in Fig. 3. Generally, the sensitivity densities are small in the region between source and
receiver, the only exceptions being the (121) and the (131) kernel.

are given by

MX→Y
pqn = −AXFFpq : BYFFn − AXFFpq : (BYFFn )T , (53)

where X and Y denote either S or P. It is demonstrated in the appendix that the cartesian components of the second-order
tensors AXFFpq and BYFFn are

(APFFpq )ij = γ
(s)
p γ

(s)
q γ

(s)
i
γ

(s)
j

4πρα4r(s)
(ASFFpq )ij = γ

(s)
q γ

(s)
i

4πρβ4r(s)
(δjp − γ

(s)
j γ

(s)
p ),

(BPFFn )ij = γ
(r)
j
γ

(r)
i
γ

(r)
n

4πρα3r(r)
, (BSFFn )ij = γ

(r)
i

4πρβ3r(r)
(δjn − γ

(r)
j γ

(r)
n ).

(54)

It is not possible to interpret these kernels simply in terms of multiplied radiation patterns. Their maximum values are
a factor of α−1β−1 smaller than the maximum values of the sensitivity kernels for density.

From equation (45d) we see that the sensitivity functionals for λ do not involve S-waves. Consequently, there is
only one sensitivity kernel for the different double couple orientations and observation directions:

LFFpqn := −aFFpq bFFn . (55)

The scalars aFFpq and bFFn are given by

aFFpq = γ (s)
p γ

(s)
q

4πρα4r(s) , bFFn = γ (r)
n

4πρα3r(r) . (56)
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Fig. 5. The same as Fig. 2 but for the sensitivity kernels −aSFFpq · bSFFn plotted at values of ±s · [(600 km)2 · (4πρβ3) · (4πρβ2)]−1. The scaling
factor s is given in the sub-figure titles. Again, most of the sensitivity densities are concentrated in regions around source or receiver. Significant
contributions along the line connecting source and receiver can only be observed in the cases of the (122) and (133) kernels.

See the appendix for a detailed derivation. The general characteristics of the sensitivity kernels for density translate to
the kernels for µ and λ. In particular, they are small in the region between source and receiver.

5. Discussion

The sensitivity s is defined as the first derivative of an observable u(p) with respect to the model parameters p.
It can be expressed by the Green’s functions of the original and the adjoint problem (e.g. Tarantola, 1984, 1988;
Talagrand and Courtier, 1987; Sun, 1994; Bunge et al., 2003). An analysis for the case of the acoustic wave equation
p ∂2

t u−	u = f led to the result that the sensitivity s(ξ0, τ0) vanishes for times τ0 that are smaller than the arrival time
of the first wavefront at the observation point ξ0. This is true for all possible differentiation directions (perturbations)
δp(x) and in particular for those that would lead to earlier arrivals. Information about traveltime anomalies must
therefore be contained in higher derivatives of the wavefield.

This characteristic influences the total derivative of an objective function E with respect to p through Eq. (12).
When E is chosen to be the least squares objective function defined in Eq. (37) then DpE only detects the edges
of a perturbation if the signal wavelength is too short. The interior of the perturbation remains ‘invisible’ (Gauthier
et al., 1986). However, choosing the signal wavelength several times longer than the dimension of the perturbation,
causes the perturbation to act as a diffractor and therefore it maps into the derivative as one single but relatively broad
peak. It can be concluded that such a waveform inversion relies on a sufficiently precise background model in order to
guarantee that the remaining parameter differences between the true Earth model and the numerical model merely act
as scatterers. The background model can be obtained by conventional traveltime tomography, geodynamic modeling
(Bunge et al., 1998) or by compiling a priori information about Earth structure (Nataf and Ricard, 1996). Alternatively
one could start with very long wavelengths which then successively decrease in the course of the waveform inversion.
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Fig. 6. The same as Fig. 3 but with the source and the receiver located at (x, y, z) = (300, 300, 500) km and (x, y, z) = (724, 724, 500) km,
respectively. Symmetries between the first row ((1, 2)-couple) and the second row ((1, 3)-couple) as observed in Fig. 3 do not exist. In general the
sensitivity densities are small in the region between source and receiver. This effect is again especially pronounced in the case of the (2, 3)-couple.

The extent to which the lack of traveltime information in the sensitivity maps to the properties of the derivative of
an objective function E depends on the definition of E itself. Luo and Schuster (1991) explicitly introduced traveltime
differences into the objective function. Their approach overcomes the problem that only the edges of perturbations are
detected but it also results in a lower resolution.

Pratt et al. (1998) proposed to use also the second derivative of the least squares objective function to solve the
minimisation problem. They demonstrated that DpE multiplied by the inverse Hessian images a perturbation better
than DpE alone. However, the calculation and inversion of the second derivative is computationally too expensive for
sufficiently realistic Earth models.

The problem of missing traveltime information could alternatively be circumvented by using Monte Carlo methods
in order to minimise the objective function. This approach relies on the evaluation of a large number of parameter space
elements p ∈ P and it therefore becomes impractical if the solution of the forward problem is as time consuming as it
is in seismology.

It is important to note that sensitivities and first derivatives in general are physically meaningful only if the problem
is either linear or if it can be reasonably linearized. The latter requires that the reference model be sufficiently close
to the true model so that parameter differences only act as scatterers. If significant non-linearities remain, the first
derivatives of E and u only bear insufficient information.

Dipolar sources are of particular interest in seismology because they allow us to represent the sources of most
tectonic earthquakes observed at great distances from the source region. By considering the elastic wave equation in
an unbounded homogeneous medium we found that the sensitivity kernels for each parameter (density ρ and the two
Lamé parameters µ and λ), decompose into four summands to which we referred as P→P, P→S, S→P and S→S
kernels. The X→Y kernels, where X and Y are either P or S, may be interpreted in terms of secondary Y-waves set
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off by a primary X-wave incident on a parameter perturbation. Generally, the sensitivity kernels can be represented by
a product of two factors. In the case of the sensitivity kernels for density, the two factors correspond to the radiation
patterns of the forward field and the adjoint field, respectively. The factors involved in the sensitivity kernels for λ and
µ are more complex than the normal radiation patterns of elastic waves.

All sensitivity kernels exhibit singularities at the source and receiver and are small in the region between them.
This together with the fact that the first derivative only accounts for scattering implies that waveform residuals of the
direct waves (P or S) will almost exclusively map into the source and receiver regions. Therefore, one should exclude
either the direct waves or the source and receiver regions from the inversion procedure.

Some of the sensitivity kernels are almost restricted to regions behind the source or receiver. Consequently, one may
wish to exclude these unfavourable source-receiver configurations from the inversion. This requires information about
both the source orientation and the waveform that one attempts to reconstruct. Good quality information about the source
orientation is usually available. It is however practically impossible to identify a waveform residual as being due to a
particular X→Y conversion arising from parameter differences between the true Earth model and the numerical model.

In the same context we also found that the S→S kernel is larger than the S→P and P→S kernels, which in turn are
larger than the P→P kernels. Since this is true for any parameter perturbation, with the exception of perturbations in λ
which do not involve S-waves, we conclude that waveform changes corresponding to the S kernels dominate those cor-
responding to the pure P kernels. This implies that S-wave residuals, i.e., residuals with zero divergence, will dominate
the misfit functional or objective function. The implications of such an unbalanced use of waveform information on the
actual inversion outcome certainly need further investigation. Generally it can be expected that variations in λ will be
more difficult to detect than variations in µ or ρ because they do not generate S-waves. One may correct for this effect
of S-wave dominance by including measurements of rotational motion that allow to separate P- and S-wave motion
(e.g. Nigbor, 1994; Pancha et al., 2000; Igel et al., 2005). Alternatively, one could only consider the waveform of the
direct P wave, therefore minimising the influence of S-waves. This would unfortunately eliminate the major advantage
of waveform inversion, namely the possibility of accounting for a maximum of information contained in a seismogram.

Most of the results obtained in the course of this study are based on very simple models that are not realistic. But
still, since the deduced phenomena have fundamental character one can assume that they will also be present in more
complicated scenarios.

An adjoint method based waveform inversion should also be viewed in the context of seismic inversions based
on ray theory and truncated normal mode expansions (e.g. Masters et al., 1996; Grand et al., 1997; Mégnin and
Romanowicz, 2000; Kennett and Gorbatov, 2004). Seismic imaging based on ray theory relies on a dense sampling
of the regions of interest because ray traveltime sensitivities are in theory spatially restricted to the ray. Therefore, a
localised traveltime anomaly will not be visible if there is no ray that penetrates it. However, sensitivity off the ray
path can be artificially introduced through a parametrization of the model with sufficiently extended basis functions
and through regularization. This produces smoothed inhomogeneities that may influence ray paths that are unaffected
by a rough and spatially less extended inhomogeneity. Normal modes map local effects into global ones. This is an
advantage because the normal mode waveforms, obtained by a finite summation over global basis functions contain
information about every point inside the Earth. This, however, affects the resolution negatively. If based on the adjoint
method, waveform inversion is in that sense between the two extremes of ray theory and normal modes. Depending on
the particular sensitivity distribution, a parameter perturbation can be observed even if there is no ray passing through
it. But still, this parameter perturbation will not have a global effect as it would if the synthetic seismograms were
computed via a truncated normal mode expansion. The fact that the first derivative of the observed wavefield with
respect to the parameters does not account for traveltime differences determines the possible applications of an adjoint
method based waveform inversion. It may for example be used to determine the sharpness of discontinuities such as
those caused by phase transitions in the Earth’s mantle. Other regions where such a waveform inversion may be useful
include the thermal boundary layers, i.e., the crust and D′′, where one may expect more short wavelength heterogeneity
than in the remaining mantle.

6. Conclusions

Departing from the definition of sensitivity functionals that allow us to express the sensitivity in terms of Green’s
functions, we confirm that the first derivative of an observed wavefield with respect to the model parameters does
not account for traveltime differences. The direct consequence is that a gradient-method based waveform inversion
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relies on an accurate background model. This background model may for example be obtained through a conventional
traveltime inversion or by using longer wavelengths. In the case of elastic wavefields set off by dipolar sources we saw
that the surprisingly complex shape of waveform sensitivity kernels depends strongly on both the source orientation
and the observation direction. The fact that most kernels vanish in the region between source and receiver implies
that one should exclude either the direct waves or the source and receiver regions from a waveform inversion. The
effect of S-wave residual dominance may significantly affect the inversion outcome, therefore posing the problem of
exactly characterising different wave types in a seismogram. This may in the future be accomplished by including
rotational measurements that allow a separation of P- and S-wave motion. Possible applications of the adjoint method
in the context of waveform inversion include the imaging of smaller scale structures that act as scatterers and which
cannot be resolved by ray tomography or inversions based on truncated normal mode expansions. Moreover, it may be
possible to determine the sharpness of discontinuities with increased accuracy.
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Appendix A. Sensitivity kernels

We begin with the derivation of the sensitivity kernels for density. The kernels corresponding to the parameters λ
and µ can be derived in a similar way. Inserting the expressions of Green’s functions in Eqs. (46) and (47) into the
density sensitivity functional given in Eq. (45b) yields

Sρpqn(ξ0, τ0;h, ρ′) =
∫ ∞

−∞

∫ t1

t=t0

∫
R3

∑
X,Y

ρ′ aXFFpq · bYFFn δ̈(t − τ − t0 − r(s)/cX)δ̇(r(r)/cY + t − τ0)h(τ) dτ dt d3x,

(A.1)

where the summation
∑
X,Y is over the four possible combinations of X = P, S and Y = P, S. Moreover, cP = α and

cS = β. The vectors aXFFpq and bYFFn are defined by

aPFFpq = γ
(s)
p γ

(s)
q

4πρα3r(s)
r(s)

r(s)
, aSFFpq = γ

(s)
q

4πρβ3r(s)

(
ep − r(s)

r(s)
γ (s)
p

)
,

bPFFn = γ
(r)
n

4πρα2r(r)
r(r)

r(r)
, bSFFn = 1

4πρβ2r(r)

(
en − r(r)

r(r)
γ (r)
n

)
.

(A.2)

Integration with respect to τ gives

Sρpqn(ξ0, τ0;h, ρ′) =
∫ t1

t=t0

∫
R3

∑
X,Y

ρ′ aXFFpq · bYFFn ḧ(t − t0 − r(s)/cX)δ̇(r(r)/cY + t − τ0) dt d3x. (A.3)

The remaining integral is non-zero only if the observation time τ0 satisfies the condition

τ0 ∈ (t0 + r(r)/cY , t1 + r(r)/cY ). (A.4)

Note that we also require τ0 ∈ [t0, t1] which means that the observation time must be in the observation interval.
Assuming that (A.4) is satisfied, we obtain

Sρpqn(ξ0, τ0;h, ρ′) = −
∫
R3

∑
X,Y

ρ′ aXFFpq · bYFFn

···
h(τ0 − t0 − r(s)/cX − r(r)/cY ) d3x. (A.5)

The causality of the source time function h implies that Sρpqn is non-zero only if

τ0 ≥ t0 + r(s)/cX + r(r)/cY . (A.6)

The integrations in the case of the sensitivity functional for µ are identical to those outlined for the density sensitivity
functional. It therefore suffices to derive the kernels themselves. For the gradients of the different Green’s functions
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we find

∇gPFFpq (x0, t0; x, t) FF= −APFFpq δ̈(t − t0 − r(s)/α), (7a)

∇gSFFpq (x0, t0; x, t) FF= −ASFFpq δ̈(t − t0 − r(s)/β), (7b)

∇g∗PFF
n (x0, τ0; x, t) FF= BPFFn δ̇(r(r)/α+ t − τ0), (7c)

∇g∗ SFF
n (x0, τ0; x, t) FF= BSFFn δ̇(r(r)/β + t − τ0), (7d)

where FF indicates that all near field terms generated through the differentiation have been neglected. The cartesian
components of the second-order tensors AXFFpq and BYFFn are given by

(APFFpq )ij = γ
(s)
p γ

(s)
q γ

(s)
i
γ

(s)
j

4πρα4r(s)
, (ASFFpq )ij = γ

(s)
q γ

(s)
i

4πρβ4r(s)
(δjp − γ

(s)
j γ

(s)
p ),

(BPFFn )ij = γ
(r)
j
γ

(r)
i
γ

(r)
n

4πρα3r(r)
, (BSFFn )ij = γ

(r)
i

4πρβ3r(r)
(δjn − γ

(r)
j γ

(r)
n ).

(A.8)

These tensors must be multiplied according to Eqs. (45e) and (53) in order to give the sensitivity kernels. The sensitivity
functional for λ is substantially simpler than the ones for ρ and µ due to the fact that the divergence of all S-wave
Green’s functions has no far field component. For the P-wave Green’s functions we find

∇ · gPFFpq (x0, t0; x, t) FF= −aFFpq δ̈(t − t0 − r(s)/α), (9a)

∇ · g∗PFF
n (x0, τ0; x, t) FF= bFFn δ̇(r(r)/α+ t − τ0). (9b)

The two scalars aFFpq and bFFn are

aFFpq = γ (s)
p γ

(s)
q

4πρα4r(s) , bFFn = γ (r)
n

4πρα3r(r) . (A.10)
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