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Abstract

The adjoint method is a powerful tool in geophysics that permits the computation of the exact first derivative of a physical observ-
able or an associated objective function with respect to its parameters. Typical observables are displacement fields and flow patterns
at the surface. Possible geophysical parameters are density, viscosity or elastic coefficients. When the observable can be modelled by
solving a differential equation, the computation of the derivative only consists in solving the forward problem and its adjoint problem.
Therefore, the adjoint method is far more efficient than any finite difference approximation. Here we present a mathematical formal-
ism that generalises the derivation of the adjoint problem. In order to connect to work by Tarantola [Tarantola, A., 1984. Inversion
of seismic reflection data in the acoustic approximation. Geophysics 49 (8), 1259–1266] we first give a derivation of the adjoint
equations for the scalar wave equation in two dimensions. As objective function we choose the L2 distance between the modelled
wave field and real data. In this case the adjoint problem coincides with the original forward problem, the only difference being that
the adjoint field satisfies terminal rather than initial conditions. A numerical example in two dimensions demonstrates that the adjoint
field focusses near the location of a parameter perturbation at the same time when the original wavefront reaches that location. Based
on this simple example, we introduce a generalised formalism for the adjoint method. It is independent of the existence of Green’s
functions and their spatio-temporal reciprocity relations. Moreover, the formalism applies to non-linear equations such as the Navier–
Stokes equations. This may become important in mantle flow reconstructions. The source term of the adjoint equations depends only
on the specific objective function. Choosing the objective function to coincide with the observable itself allows us the computation of
Jacobians, i.e., the derivative of the observable with respect to the model parameters. To demonstrate the consistency of our formalism
with earlier analyses, we consider the anisotropic elastic wave equation with attenuation, which is of major interest in seismology.
©2006 Elsevier B.V. All rights reserved.

Keywords: Inversion; Fréchet derivative; Waveform analysis; Sensitivity

1. Introduction

Determination of the structure and dynamics of the Earth’s deep interior is one of the principal objectives of
geophysics. Efforts of imaging the Earth on a global scale led to radial density and velocity models deduced primarily
from global observations of the arrival times of seismic phases (Dziewonski et al., 1975; Dziewonski and Anderson,
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1981; Kennett and Engdahl, 1991; Kennett et al., 1995). These models are consistent with petrologic mantle models and
form the basis of three-dimensional global tomographic images of the Earth’s interior. Following the pioneering work by
Dziewonski et al. (1977) and Dziewonski (1984), Masters et al. (1996) inverted for a shear-velocity model in the mantle
combining surface wave, free oscillation and traveltime data. Similar models were obtained by Grand (1994) and Grand
et al. (1997). Mégnin and Romanowicz (2000) employed an asymptotic coupling theory for normal modes in order to
invert body, surface and higher-mode waveforms for shear heterogeneity in the mantle. Body and Rayleigh waves as
well as normal mode splitting functions have been used by Ritsema and van Heijst (2000). Tomographic images of
the lowermost mantle have been obtained by Kárason and van der Hilst (2001) by including differential traveltimes of
core phases. Gorbatov and Kennett (2003) and Kennett and Gorbatov (2004) jointly inverted the arrival-times of P and
S waves for bulk-sound and shear wavespeed anomalies in the mantle, thus increasing the interpretability in terms of
temperature and compositional variations. These studies have greatly improved our understanding of three-dimensional
heterogeneity and the large-scale mantle structure is now well agreed upon (Becker and Boschi, 2002).

In a related effort geodynamicists have demonstrated a strong correlation between the history of subduction and
large-scale seismic mantle heterogeneity structure (Richards and Engebretson, 1992; Lithgow-Bertelloni and Richards,
1998). This latter insight has led to the construction of so-called mantle circulation models (Bunge et al., 1998, 2002).
The dynamic processes of mantle convection manifest themselves as lateral variations in density, temperature and
composition, which map into the visco-elastic structure of the mantle. This means that temperature and density variations
correspond to variations in seismic velocities (Brown and Shankland, 1981; Duffy and Ahrens, 1992). Therefore, the
analysis of seismic waves allows us to infer flow patterns in the mantle (van der Hilst et al., 1997; Kárason and van der
Hilst, 2000).

It is indisputable that the existing tomographic images of the mantle successfully contributed to the understanding of
the planet’s dynamics. Still, the inversions are based on substantially simplified forward models, namely ray theory and
finite normal mode summations. Ray theory is only applicable to the arrival times of high frequency waves, therefore
significantly reducing the amount of exploitable information. Normal mode approximations rely on smoothly varying
structure and long period waveforms, resulting in a limitation of resolution.

The fact that today’s computational power is sufficient to accurately solve the wave equation in realistic Earth models
(e.g. Igel et al., 1995; Komatitsch et al., 2000) suggests that the next step in seismic inversion consists in replacing
the approximate forward models by the exact forward model. This may allow us to invert for seismic waveforms with
shorter periods. Intuitively, one expects that the resulting increase of exploited information translates to an increase of
resolution especially in regions poorly sampled by seismic rays.

There exist different conceptions of what it means to solve an inverse problem. In probabilistic inverse theory
(Tarantola, 1987) the solution of the inverse problem is defined as a marginal probability density in the model space.
Unless the probability density is very simple, it can only be characterized by exploring the model space, usually on the
basis of Monte Carlo methods (e.g. Press, 1968; Tarantola, 1987). Though very general and elegant, this approach suffers
from the large number of forward problem evaluations necessary to perform the model space exploration. Therefore
the process of solving the inverse problem is in practice often equated with the minimization of the difference between
observed and synthetic data with respect to the model parameters. In the context of waveform inversion, the solution
would thus be defined as the model pmin that minimizes the difference between an observed waveform u0 and a synthetic
waveform u. This difference can be quantified through an objective function E, which may additionally depend on the
model parameters p and a priori parameters p0.

In this context the total derivative of E with respect to p, denoted by DpE, becomes important. It may be used for
an inversion based on a gradient method and for sensitivity and resolution analyses. The major complication is that
the computation of DpE requires the computation of Dpu, i.e., the total derivative of the wavefield u with respect to
the model parameters. Due to the very large size of the model space it is practically infeasible to obtain this quantity
by classical finite differencing techniques.

An elegant and physically insightful solution to this problem is the adjoint method. It allows us to compute the
derivative with respect to the parameters by combining the synthetic forward wavefield and an adjoint wavefield
governed by a set of adjoint equations and adjoint subsidiary conditions. This concept was introduced by Tarantola
(1984, 1988) into the field of seismology. It forms the basis of numerical studies by Gauthier et al. (1986) and
applications to the inversion for 1-D and 2-D structure from marine reflection seismograms (Crase et al., 1990; Igel
et al., 1996). Recently, the adjoint method was used in the context of finite-frequency traveltime kernels (Tromp et
al., 2005). One of the principal characteristics of the adjoint problem in seismology is time reversal, meaning that the
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adjoint problem consists of a propagation of the observed waveform residuals backward in time and from the receiver
to the source. Time reversals are relatively common in physics and in particular in the fields of reverse acoustics (e.g.
Fink, 1999) and reverse-time migration (e.g. Baysal, 1983). The latter technique however, focusses only on the imaging
of structures that, for a given seismic signal frequency, appear as a discontinuity. Moreover, reverse-time migration
applies the acoustic approximation. It therefore neglects radiation patterns of both the field emitted by the source and
the secondary field set off by a perturbation in density or elastic parameters. Adjoint problems have already been
used in other branches of the earth sciences such as meteorology (Talagrand and Courtier, 1987) and geodynamics
(Bunge et al., 2003). Even though the principal ideas are identical, the differences between the physics of the Navier–
Stokes equations and the wave equation renders a one-to-one translation of methods from geodynamics to seismology
impossible.

In the present paper we derive the adjoint problem for the case of a simple two-dimensional scalar wave equation
and a least squares objective function. Based on this example we introduce a formalism that allows us to generalise
the adjoint method to arbitrary differential operators and objective functions. The derivatives of the objective functions
are exact. Moreover, it becomes clear that it is possible to extend the method to non-linear equations and to compute
Jacobians by simply choosing specific objective functions. As an application relevant for seismology, we consider the
anisotropic wave equation with attenuation. The resulting adjoint problem coincides with the one found by Tarantola
(1988), which demonstrates the consistency of our approach.

The results presented in this paper form the basis of a second paper on the adjoint method in seismology (Fichtner
et al., 2006). The theory introduced in the following sections will there be used in order to deduce expressions for
waveform sensitivity kernels and information about the physical meaning of the first derivative. A waveform inversion
procedure applicable on continental or global scales is the long-term objective to which this study hopes to contribute.

2. Preliminaries

The adjoint method can be described most elegantly and most efficiently with a modern mathematical notation which
we will briefly introduce here (e.g. Kantorowitsch and Akilow, 1964). Consider an operator P mapping an element x
of a space X to an element y of another space Y, i.e., P(x) = y. The operator P may for example be an ordinary scalar
function or a tensor of any order. The elements x and y can be scalars, tensors or even other operators. A linear operator
U satisfying the relation

lim
ε→0

1

ε
[P(x+ εx0) − P(x)] = U(x0) (1)

for all x0 ∈ X, is called the first derivative of P with respect to x in the direction x0. Symbolically, we write U(x0) =
DP(x)(x0). This derivative is called the Gâteaux derivative or weak derivative. If it exists uniformly with respect to the
differentiation directions x0, it is termed the Fréchet derivative or strong derivative. A justification for this notation,
which is in contrast to the commonly used dy/dx, is that a quotient of two elements y ∈ Y and x ∈ Xmay not be defined.
This is the case for example if x is a vector in Rn or a distributed variable that vanishes at some point. Moreover, the
generalised derivative has always a direction x0 that has to be part of the notation. When f is a function depending on
a vector x ∈ R3, we may alternatively write Df (x)(x0) = (x0 · ∇)f (x). One may extend the well-known chain rule to
the case of composed operators. Assuming that for an operator R the expression R(x) is given by R(x) = P(Q(x)), i.e.,
the composition of the operators P and Q, the generalised chain rule states that the derivative of R with respect to x in
the direction x0 is given by

DR(x)(x0) = DP(Q(x))(y0) with y0 = DQ(x)(x0). (2)

When P takes more than one variable, e.g. y = P(x1, x2), with x1 and x2 elements of the spacesX1 andX2, respectively,
we define

lim
ε→0

1

ε
[P(x1 + εx′

1, x2) − P(x1, x2)] =: U1(x′
1) =: ∂x1P(x1, x2)(x′

1), (3)

where =: denotes equality by definition. If U1 exists and if it is linear with respect to x′
1, it is called the first partial

derivative of P with respect to x1 in the direction of x′
1. The partial derivative ∂x2P(x1, x2)(x′

2) is defined in analogy to
Eq. (3).
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When the function u is a physical observable (e.g. a seismic wavefield) depending on a parameter set p (e.g.
density and elastic moduli), then Taylor’s theorem yields a physical interpretation of the direction of differentiation:
u(p+ q) − u(p)=̇Du(p)(q). Hence, the first derivative with respect to the parameters p in the direction q is, correct to
first-order in ‖q‖, the difference between u(p) and u(p+ q).

3. The adjoint method for the two-dimensional scalar wave equation and the least squares objective
function

This section gives a simple example that demonstrates the principal idea of the adjoint method. It proceeds in two
steps. First, the definition of an objective function E that depends on the physical observable u. Second, the derivation
of the adjoint problem of the two-dimensional scalar wave equation and its subsidiary conditions. The total derivative
ofEwith respect to the parameter set p, can then be expressed in terms of u and the solution of the adjoint problemψ. In
our case, u is a scalar wavefield and p comprises the density and a shear modulus distributions, i.e., p(x) = (ρ(x), µ(x)).

An objective function is a functional that acts on a physical observable. More specifically, it can be used to quantify
the difference between synthetic data u and observed data u0. Due to its simplicity the least squares objective function
plays a central role in many physical applications. It will be used here in order to connect to work by Tarantola (1984,
1988). Let u0(ξ, t) be scalar data observed at the point x = ξ ∈ G ⊂ R2 and in the time interval t ∈ [t0, t1]. G is the
region in which u is defined. Then the least squares objective function is given by

E(u) = 1

2

∫ t1

t=t0
[u(ξ, t) − u0(ξ, t)]2 dt = 1

2

∫ t1

t=t0

∫
G

[u(x, t) − u0(x, t)]2δ(x − ξ) d2x dt, (4)

where u is a synthetic wavefield computed from the two-dimensional wave equation with parameters p = (ρ,µ). We
may write the integral (4) in the condensed form

E(u) = 〈1, f (u)〉 with f (u) := 1

2
[u(ξ, t) − u0(ξ, t)]2δ(x − ξ), (5)

which will be useful in Section 4. We are interested in the total derivative of E with respect to the parameters p in the
direction of q = (ρ′, µ′). The application of the chain rule yields

DpE(u)(q) = ∂uE(u)(Dpu(q)) = 〈1, ∂uf (u)(Dpu(q))〉. (6)

The obvious problem is the presence of Dpu(q) in Eq. (6). Due to the size of the parameter space (all possible
distributions of µ and ρ), this quantity can usually not be approximated through finite differencing. The objective of
the adjoint method is the elimination of Dpu(q) from Eq. (6).

Now consider the two-dimensional scalar wave equation in the domain G with boundary ∂G, given by

ρ(x)∂2
t u(x, t) − ∇ · (µ(x) ∇u(x, t)) = g(x, t) (7a)

for x ∈ G ⊂ R2, t ∈ [t0, t1] and complemented by the set of subsidiary conditions:

u(x, t)|x∈∂G1 = 0, Cauchy condition (7b)

n · ∇u(x, t)|x∈∂G2 = 0, Neumann condition (7c)

u(x, t)|t=t0 = ∂tu(x, t)|t=t0 = 0, initial conditions (7d)

with ∂G1 ∪ ∂G2 = ∂G. All vector quantities in these equations, including the gradient operator, are two-dimensional.
Noting that Dp = Dµ +Dρ, we can differentiate Eq. (7a) with respect to the parameters p,

ρ′∂2
t u− ∇ · (µ′∇u) + ρ∂2

t v− ∇ · (µ∇v) = 0 , (8)

with v := Dpu(q). Eq. (8) is homogeneous because the source term g is independent of the parameters p = (ρ,µ).
We now introduce an arbitrary, but sufficiently nice test function ψ. Combining ψ and Eq. (8) by means of the integral
〈. , .〉 yields

〈ψ, ρ′∂2
t u− ∇ · (µ′∇u)〉 + 〈ψ, ρ∂2

t v− ∇ · (µ∇v)〉 = 0. (9)
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The next task is to transform the second summand in Eq. (9) such thatψ and v exchange their positions. In doing so we
will have to subject the test function ψ to various conditions. Finally, a complete set of conditions will lead to a precise
determination of ψ, therefore transforming it from the originally arbitrary test function ψ into the well-defined adjoint
wavefield. We start with the term involving ∂2

t v. It can easily be transformed using a double integration by parts.

〈ψ, ρ∂2
t v〉 =

∫
G

ρψ∂tv d2x|t1t=t0 −
∫
G

ρv∂tψ d2x|t1t=t0 + 〈v, ρ∂2
t ψ〉. (10)

The homogeneous initial conditions for v = Dpu(q), which follow from the differentiation of the initial conditions
(7d) for u, imply that we can eliminate the first two terms on the right-hand side of (10) by imposing the terminal
conditions ψ(x, t)|t=t1 = 0 and ∂tψ(x, t)|t=t1 = 0 upon ψ. Then we obtain

〈ψ, ρ∂2
t v〉 = 〈v, ρ∂2

t ψ〉. (11)

Similarly, the term 〈ψ,∇ · (µ∇v)〉 can be transformed with the two-dimensional version of Gauss’ theorem and the
differentiated boundary conditions (7b) and (7c). Using the identity

∇ · (µψ∇v) − ∇ · (µv∇ψ) = ψ∇ · (µ∇v) − v∇ · (µ∇ψ), (12)

we find

〈ψ,∇ · (µ∇v)〉 =
∫ t1

t=t0

∫
∂G1

(µψ∇v) · n ds dt −
∫ t1

t=t0

∫
∂G2

(µv∇ψ) · n ds dt + 〈v,∇ · (µ∇ψ)〉, (13)

where ds is a line element and n is the outward-pointing normal on the curves ∂G1 and ∂G2, respectively. By imposing
the two additional conditions ψ(x, t)|x∈∂G1 = 0 and n · ∇ψ(x, t)|x∈∂G2 = 0 upon ψ, Eq. (13) reduces to

〈ψ,∇ · (µ∇v)〉 = 〈v,∇ · (µ∇ψ)〉. (14)

Without imposing any additional constraints on ψ, similar transformations lead to

〈ψ, ρ′∂2
t u− ∇ · (µ′∇u)〉 = −〈ρ′, ∂tψ ∂tu〉 + 〈µ′, (∇u) · (∇ψ)〉. (15)

We may now rewrite Eq. (9) as

〈v, ρ∂2
t ψ − ∇(µ∇ψ)〉 − 〈ρ′, ∂tψ ∂tu〉 + 〈µ′, (∇u) · (∇ψ)〉 = 0. (16)

Remembering that v = Dpu(q) is the derivative that we wish to eliminate from the derivative of E (see Eq. (6)), we
add the homogeneous Eq. (16) to Eq. (6),

DpE(u)(q) = 〈v, ∂uf + ρ∂2
t ψ − ∇(µ∇ψ)〉 − 〈ρ′, ∂tψ ∂tu〉 + 〈µ′, (∇u) · (∇ψ)〉. (17)

It is possible to eliminate v by imposing one last condition upon ψ, namely

ρ(x)∂2
t ψ(x, t) − ∇ · (µ(x)ψ(x, t)) = −∂uf (18a)

At this point we can state our final result: given that the function ψ satisfies Eq. (18a) for x ∈ G ⊂ R2, t ∈ [t0, t1] and
the set of subsidiary conditions:

ψ(x, t)|x∈∂G1 = 0, Cauchy condition (18b)

n · ∇ψ(x, t)|x∈∂G2 = 0 Neumann condition (18c)

ψ(x, t)|t=t1 = ∂tψ(x, t)|t=t1 = 0, terminal conditions (18d)

then the total derivative of the objective function E with respect to the model parameters p = (ρ,µ) in the direction of
q = (ρ′, µ′) is given by

DpE(u)(q) = −〈ρ′, ∂tψ ∂tu〉 + 〈µ′, (∇u) · (∇ψ)〉. (19)

The set of Eqs. (18a)–(18d) is referred to as the adjoint problem of Eqs. (7a)–(7d). They correspond to the results
found by Tarantola (1984, 1988). Combining u and the adjoint field ψ according to Eq. (19) gives the exact derivative
of the objective function E. What makes this method attractive is the fact that the adjoint problem is very similar
to the original problem. It also consists in a two-dimensional wave equation subject to a set of initial and boundary
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conditions. The spatial boundary conditions translate one-to-one, whereas the temporal boundary conditions translate
from an initial condition in the original problem to a terminal condition in the adjoint problem. This unusual terminal
condition can be interpreted by considering the source term of the adjoint equations, namely

−∂uf = −[u(x, t) − u0(x, t)] δ(x − ξ). (20)

The source acts at a single point and its time function consists in the negative linear residuals, i.e., the linear difference
between the synthetic and observed data. Therefore, solving the adjoint problem can be interpreted as a propagation of
the residuals backward in time, meaning from t = t1 to t = t0. As will become clear in the next section, the residuals
will focus in the region where they came from: a parameter perturbation of the model parameters p with respect to the
true model parameters p0. Note that the source of the forward wavefield is completely absent in the adjoint problem.
It merely enters implicitly via u.

The two-dimensional scalar wave equation is well suited for an illustration of the physical meaning of wave
equation adjoints in general because the principal concept translates to more complex cases which include elasticity
and anisotropy.

The numerical examples in this section are based on a finite differences solution of Eqs. (7a)–(7d). A free surface
condition is implemented at the top (z = 0 km), whereas the bottom boundary (z = 150 km) is rigid. Periodic boundary
conditions are implemented on the left and right boundaries. The parameter model p0 = (ρ0, µ0) used to generate the
data u0 is homogeneous in both density (ρ = 3.0 × 103 kg m−3) and shear modulus (µ = 75 × 109 N m−2) with
the exception of one single cell located at (x, z) = (150, 70) km where the density is increased to a value of ρ =
3.5 × 103 kg m−3. Therefore, the shear velocity equals vs = 5 km s−1 almost everywhere in the parameter model.
The reference model p is completely homogeneous. Hence, the observed residuals arise merely from a single-cell
perturbation of one model with respect to the other. The two wavefields u(p) and u(p0) are both recorded at 150 evenly
spaced receivers on the free surface (z = 0). This relatively high number of receivers will mostly be unrealistic in
practical applications but it can well be justified for the purpose of illustration. Note that due to linearity an objective
function consisting of a sum of time-integrated squared residuals,

E(u) = 1

2

N∑
i=1

∫ t1

t=t0
[u(p; ξi, t) − u(p0; ξi, t)]

2 dt, (21)

where ξi are the locations of the N receivers, simply translates to a superposition of adjoint sources and therefore to
a superposition of adjoint wavefields. Since the source of the forward wavefields does not explicitly enter the adjoint
equations, there are no restrictions whatsoever on that source. It may be a spatially extended source, a point source or a
number of point sources. Here, for simplicity, we used a single point source located at (x, z) = (150, 1) km, i.e., close
to the free surface and directly above the density perturbation. The source radiates a Ricker wavelet with a dominant
frequency of 0.3 Hz.

Fig. 1 shows snapshots of the forward field u(p; x, t) (left) and the adjoint field ψ(x, t) (right) at times t =
(100, 185, 300, 400) s. The gray scales are not uniform but individually adjusted in order to emphasise the geometries
of the wavefields at different times. Before t = 150 s the two wavefields overlap only weakly, therefore resulting in a
small contribution to the derivative of the objective function derivative, which isDpE(u)(ρ) = −〈ρ′, ∂tψ ∂tu〉. Around
t = 185 s the adjoint wavefield focusses near the location of the density perturbation, namely at (x, z) = (150, 70) km.
At the same time the wavefront of u passes through this point. Consequently, the product ∂tu ∂tψ becomes large,
resulting in a significant contribution toDpE(u)(q). Subsequently, the adjoint field de-focusses and finally disappears,
as required by the terminal conditions.

The resulting total derivative of E with respect to ρ is shown in Fig. 2. Its major contribution is located near
the density perturbation, as expected. However, various additional branches extend up to the surface. Moreover, the
derivative peak is not restricted to the one grid cell where the density perturbation is situated. This effect is related to
both the finite width of the signal and the limited number of sources and receivers.

It is straightforward to repeat the above example with a shear modulus perturbation rather than a density perturbation.
Even though the equation for the derivative with respect to µ is different, the fundamental effects remain unchanged
and the patterns of the derivative differ only in details.

The derivative DρE(u)(ρ′) provides information on the first-order changes in density that we have to apply to our
density model in order to obtain the perturbed model, which in practice is the Earth model that we wish to invert for.
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Fig. 1. Snapshots of the forward wavefieldu(p; x, t) (left) and the adjoint wavefieldψ(x, t) (right). The major contribution to the derivativeDpE(u)(q)
arises from a focussing of the adjoint field near the location of the density perturbation at (x, z) = (150, 70) km (indicated by ‘×’) and a simultaneous
passage of the wavefront of the forward field through that point. The two fields overlap only weakly before and after the focussing, therefore leading
to significantly smaller contributions. A single point source indicated by ‘◦’ is at (x, z) = (150, 1) km.

Fig. 2. Total derivative of the least squares objective function Ewith respect to density. A clearly visible peak is located near the density perturbation
at (x, z) = (150, 70) km. Additional non-zero contributions extend to the surface in the form of narrow branches.
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However, a certain waveform residual caused by a pure density perturbation may also by explained by a shear modulus
perturbation. Mathematically this phenomenon manifests itself by a mapping of a density perturbation into the shear
modulus derivative and vice versa.

4. A generalisation of the adjoint method

For various reasons it is desirable to obtain a generalisation of the adjoint method, outlined in the previous section
for the specific case of the two-dimensional scalar wave equation and the least squares objective function. First of all,
such a generalisation will provide deeper insight into the mathematical structure of the problem, therefore potentially
leading to new applications. Also, a condensed notation will allow us to treat more complex problems.

4.1. Generalised notation

First, it is necessary to introduce the condensed notation already mentioned: it proves to be efficient to replace an
explicit differential equation by an abstract operator L. It maps a physical observable u = u(x, t) to a right-hand side
g(x, t). The operator L may itself depend on a set of parameters p as well as on the spatial variable x and the time
variable t. In symbols:

L(u; p, x, t) = g(x, t). (22)

We use bold face symbols to indicate that they are (potentially) vector quantities. The dependence of L on the parameters
p implies a dependence of u on p. Therefore, it is more precise to write u = u(p; x, t). As an example we may once
more consider the two-dimensional scalar wave equation. Its corresponding operator is

L([ . ]; p, x, t) = ρ∂2
t [ . ] − ∇ · (µ∇[ . ]), (23)

where [ . ] indicates the position of the function to which the operator can be applied. The parameters p are µ and ρ.
Using this notation, we can rewrite the two-dimensional scalar wave equation in the form L(u; p, x, t) = g(x, t).

A special notation has already been introduced for the least squares objective function. Now, we will consider an
arbitrary objective function that in addition to u also depends on the model parameters p, i.e., E = E(u,p). Moreover,
we assume that E can be expressed as

E(u,p) = 〈1, f (u,p)〉, (24)

where f is an adequate scalar function and 〈 . , . 〉 a bilinear form, i.e., an expression that is independently linear in both
arguments. Eqs. (4) and (5) define one possible bilinear form.

4.2. The adjoint method

We are interested in the total derivative of an objective function E(u,p) = 〈1, f (u,p)〉 with respect to the model
parameters p in some direction q. Invoking the chain rule gives

DpE(u,p)(q) = 〈1, ∂uf (u,p)(v)〉 + 〈1, ∂pf (u,p)(q)〉, (25)

with v := Dpu(p; x, t)(q). As already mentioned in the section on the two-dimensional scalar wave equation, the
presence of Dpu in Eq. (25) is problematic. Due to time-consuming forward problem solvers and very large model
spaces it will often be unfeasible to approximate this derivative by means of finite differencing. To eliminateDpu from
the expression for DpE we first rewrite Eq. (25) as

DpE(u,p)(q) = 〈v, ∂uf (u,p)〉 + 〈q, ∂pf (u,p)〉. (26)

This can be done because all derivatives are by definition linear with respect to the differentiation direction and therefore
the new expressions are still bilinear. In order to avoid overnotation we did not indicate that the bilinear forms 〈 . , . 〉
in (26) are not identical to the one in (25). Differentiating the operator Eq. (22) with respect to p yields

DpL(u; p)(q) = ∂uL(u; p)(v) + ∂pL(u; p)(q) = 0. (27)
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The dependence of L on x and t has been omitted in the notation. Now let ψ be an arbitrary but sufficiently nice test
function. Since 〈 . , . 〉 is independently linear in both arguments we find

〈ψ, ∂uL(u; p)(v)〉 + 〈ψ, ∂pL(u; p)(q)〉 = 0. (28)

Assuming that there exist two operators ∂uL∗(u; p) and ∂pL∗(u; p) satisfying the relations

〈ψ, ∂uL(u; p)(v)〉 = 〈v, ∂uL∗(u; p)(ψ)〉 and (29a)

〈ψ, ∂pL(u; p)(q)〉 = 〈q, ∂pL∗(u; p)(ψ)〉, (29b)

Eq. (28) can be rewritten as

〈v, ∂uL∗(u; p)(ψ)〉 + 〈q, ∂pL∗(u; p)(ψ)〉 = 0. (30)

It is part of the problem to find the transposed operators ∂uL∗(u; p) and ∂pL∗(u; p). In the case of the two-dimensional
scalar wave equation operator, integration by parts and Gauss’ theorem lead to expressions for ∂uL∗(u; p) and
∂pL∗(u; p). But still, their existence was bound to a number of conditions on the test function ψ. This means that
the transposes exist only for a smaller class of test functions, namely those satisfying the adjoint subsidiary conditions.
Adding Eqs. (26)–(30) leads to

DpE(u,p)(q) = 〈v, ∂uf (u,p) + ∂uL∗(u; p)(ψ)〉 + 〈q, ∂pf (u,p) + ∂pL∗(u; p)(ψ)〉. (31)

The term v = Dpu(p; x, t) may now be eliminated from (31) by imposing

∂uf (u,p) + ∂uL∗(u; p)(ψ) = 0. (32)

This is the adjoint equation. Together with the adjoint subsidiary conditions, required for the existence of the transposed
operators, it forms the adjoint problem. Its solution ψ, if it exists, is the adjoint field. If the adjoint problem can be
solved, we can express DpE(u,p)(q) as

DpE(u,p)(q) = 〈q, ∂pf (u,p) + ∂pL∗(u; p)(ψ)〉. (33)

Eq. (33) relates the total derivative of the objective function E to a bilinear functional of the direction q and the adjoint
field ψ. Therefore, to obtain DpE(u,p)(q), it is sufficient to solve only once the original problem and the adjoint
problem.

At this point let us briefly summarise the assumptions that we made so far. Firstly, we assumed that there exist two
transposed operators. This may indeed be an obstacle. Depending on the operator L, it may not be possible to find them.
Secondly, we required an adjoint field ψ, satisfying both the adjoint subsidiary conditions and the adjoint equation.
However, the adjoint problem may not have a solution, and if the solution exists, it may not be unique. Fortunately,
we can find and uniquely solve the adjoint problems for all linear wave propagation phenomena, i.e., for all types of
linear wave equation operators L complemented by adequate subsidiary conditions.

4.2.1. Bilinear operators
The theory outlined so far simplifies significantly if the operator L is bilinear, i.e., if it satisfies the relation

L(αu + βv; γp + εq) = αγL(u; p) + αεL(u; q) + βγL(v; p) + βεL(v; q) (34)

for all fields u, v,p,q and for all scalars α, β, γ, ε. Due to the bilinearity, the total derivative of L(u; p) with respect to
the parameters p is

DpL(u; p)(q) = ∂uL(u; p)(v) + ∂pL(u; p)(q) = L(v; p) + L(u; q), (35)

where v(p) = Dpu(p)(q). Introducing the notation ∂uL∗ = Lu and ∂pL∗ = Lp, Eqs. (32) and (33) reduce to

Lu(ψ; p) + ∂uf = 0, DpE(u; p)(q) = 〈q, ∂pf (u; p) + Lp(u;ψ)〉. (36)

It is straightforward to verify that the scalar wave equation operator defined in (23) is bilinear, i.e., independently linear
in u and p = (ρ,µ). Moreover, in this specific case, we find the identity

Lu(ψ; p) = ρ∂2
t ψ − ∇ · (µ∇ψ) = L(ψ; p). (37)
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Therefore, the two-dimensional scalar wave equation is self-adjoint. This property is closely related to energy con-
servation and spatial reciprocity. Note that the adjoint equation is independent of the field u in the case of a bilinear
operator.

4.2.2. Non-linear operators
An important mathematical aspect of the adjoint method is that we are strictly speaking not interested in the transpose

of the operator L but in the transposes of its two partial derivatives ∂uL and ∂pL. Since the derivatives are by definition
linear in the differentiation directions we can hope to find transposes even if L itself is non-linear. As an example we
analyse the substantial derivative term

L(u(p)) = (u · ∇)u, (38)

which appears in the momentum equations of continuum mechanics and equations derived from it, such as the Navier–
Stokes equations. It is assumed that u is defined in a region G and that the condition u · d� = 0 holds for every boundary
element d�. Differentiating L with respect to u in the direction v yields

〈ψ, ∂uL(u)(v)〉 = 〈ψ, (u · ∇)v〉 + 〈ψ, (v · ∇)u〉, (39)

where ψ is a test function. The bilinear form is defined as 〈 . , . 〉 = ∫
G

( . , . ) d3x. The first summand in Eq. (39) can
be transformed with Gauss’ theorem,

〈ψ, (u · ∇)v〉 = −〈v, (u · ∇)ψ〉 − 〈v,ψ(∇ · u)〉. (40)

Combining Eqs. (39) and (40) gives

〈ψ, ∂uL(u)(v)〉 = 〈v, (∇u) · ψ − ψ(∇ · u) − (u · ∇)ψ〉 (41)

and therefore

∂uL∗(u(p))(ψ) = (∇u) · ψ − ψ(∇ · u) − (u · ∇)ψ. (42)

This result may become important in fluid dynamics inverse problems that go beyond the Boussinesq approximation.
Since L is non-linear, ∂uL∗ and the resulting adjoint equations are dependent on u. This is in contrast to linear
operators where the adjoint equations are independent from u. Note that it is not possible to derive the adjoint problem
in a non-linear case with the Green’s function approach (e.g. Tarantola, 1984; Tromp et al., 2005).

5. Objective functions

In this section we will consider some specific objective functions E and the corresponding source terms ∂uf in the
adjoint equations. The analysis will be based on the bilinear form

〈α, β〉 :=
∫ t1

t=t0

∫
G

α(x, t)β(x, t) dt dnx, (43)

for two arbitrary integrable functions α and β and G ⊂ Rn.

5.1. Jacobians

Let the objective function equal the ith component of the vector field u at the point x = ξ and the time t = τ, i.e.,
E(u,p) = ei · u(ξ, τ) =: ui(ξ, τ). The relation E(u,p) = 〈1, f (u,p; x, t)〉 implies

f (u,p; x, t) = f (u; x, t) = ei · u(x, t) δ(x − ξ) δ(t − τ). (44)

It follows that the source term of the adjoint equation is given by

∂uf = eiδ(x − ξ)δ(t − τ). (45)
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This means that the adjoint field ψ has its source acting on a point at the observation time τ and the observation point
ξ. Given that the model space has a finite dimension m and basis vectors ek with k = 1, . . . , m, the derivative of Ewith
respect to the parameters ek gives the Jacobian of u, i.e.,

DpE(u,p)(ek) = Dpui(p)(ek) = ∂

∂pk
ui(ξ, τ). (46)

5.2. Generalised least squares

Let u0(ξ, τ) denote values of the observable u measured over time t at the location x = ξ. When measurement and
modelisation errors, as well as departures from the a priory model p0 can be modelled with Gaussian distributions, the
objective function E may be given by

E(u,p) = 1

2

∫ ∞

−∞
[u(ξ, t) − u0(ξ, t)] · C−1

d (t) · [u(ξ, t) − u0(ξ, t)] dt

+ 1

2

∫
G

[p(x) − p0(x)] · C−1
p (x) · [p(x) − p0(x)] d3x. (47)

The symmetric second-order tensor C−1
d describes measurement and modelisation errors, while the symmetric second-

order tensor C−1
p contains all prior information on the parameter space (e.g. Tarantola, 1987). The function f corre-

sponding to E is

f (u; x, t) = 1

2
[u(x, t) − u0(x, t)] · C−1

d (t) · [u(x, t) − u0(x, t)]δ(x − ξ)

+ 1

2
[p(x) − p0(x)] · C−1

p (x) · [p(x) − p0(x)]δ(t). (48)

This translates to the following source term of the adjoint problem:

∂uf = C−1
d (t) · [u(x, t) − u0(x, t)]δ(x − ξ). (49)

A point source is located directly at the observation point x = ξ. Its source time function and the amplitude of the
source are specified by the development of the residuals u − u0 over time, weighted by C−1

d .
In practice it is often impossible to verify whether errors are truly Gaussian and the least-squares objective function

is often used for computational convenience. Crase et al. (1990) also studied other objective functions that are more
robust against seismic noise. In general, the adjoint method allows to employ any objective function as long as it is
differentiable.

6. The anisotropic wave equation with attenuation

As an application of the theory outlined so far we analyse in this section the adjoint problem for the anisotropic
wave equation with attenuation. Similar results have already been obtained by Tarantola (1988) who used an approach
based on the Born approximation and the existence of the Green’s function.

The linearised conservation of momentum is given by

ρ(x)∂2
t u(x, t) − ∇ · T(x, t) = g(x, t), (50)

where ρ is the initial mass density distribution, u the incremental displacement field, T the incremental stress tensor and
g is a body force density. The incremental stress tensor T can be related to the displacement field u via the constitutive
relation

T(x, t) =
∫ ∞

−∞
�(x, t − τ) : ∇u(x, τ) dτ. (51)

The rate of relaxation function � is a fourth-order tensor assumed to satisfy the relations

�(x, t)|t<0 = 0 and Φijkl = Φklij = Φjikl, (52)
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i.e., causality and elastic symmetry. In the case of cartesian coordinates the invariant notation � : ∇u is equivalent to
Φijkl∂kul in index notation. Inserting (51) into (50) allows us to express the wave equation operator L in terms of the
displacement field u and the medium parameters � and ρ,

L(u;�, ρ, x, t) = ρ(x)∂2
t u(x, t) − ∇ ·

∫ t

−∞
�(x, t − τ) : ∇u(x, τ) dτ, (53)

for t ∈ [t0, t1]. In order to guarantee uniqueness, the equations have to be complemented by a set of subsidiary conditions.

u(x, t)|t=t0 = g1(x) (initial condition) (54a)

∂tu(x, t)|t=t0 = g2(x) (initial condition) (54b)

u(x, t)|t<t0 = 0 (quiescent past) (54c)

u(x, t)|x∈Γ1 = b1(x, t) (Cauchy condition) (54d)

n ·
∫ t

−∞
�(x, t − τ) : ∇u(x, τ) dτ

∣∣∣∣
x∈Γ2

= b2(x, t) (Neumann condition) (54e)

Again, we require ∂G = Γ1 ∪ Γ2. It is convenient to decompose L into L = L1 + L2 with

L1(u; ρ, x, t) := ρ(x)∂2
t u(x, t), (55)

L2(u;�, x, t) := −∇ ·
∫ t

−∞
�(x, t − τ) : ∇u(x, τ) dτ, (56)

and to analyse the two summands separately. Using the bilinear form

〈a,b〉 :=
∫
G

∫ t1

t0

a(x, t) · b(x, t) d3x dt, (57)

for any two integrable fields a and b, we find

〈ψ,DρL1(u; ρ)(ρ′)〉 = 〈ψ, ∂ρL1(u; ρ)(ρ′)〉 + 〈ψ, ∂uL1(u; ρ)(v1)〉 = 〈ψ, ρ′∂2
t u〉 + 〈ψ, ρ∂2

t v1〉
= 〈ρ′,ψ · ∂2

t u〉 + 〈v1, ρ∂
2
t ψ〉 = 〈ρ′, ∂ρL∗

1(u; ρ)(ψ)〉 + 〈v1, ∂uL∗
1(u; ρ)(ψ)〉 = 0, (58)

with v1(�, ρ; x, t) := Dρu(�, ρ; x, t)(ρ′). To obtain this equality, we repeatedly integrated by parts and imposed the
homogeneous terminal conditions ψ(x, t)|t=t1 = 0 and ∂tψ(x, t)|t=t1 = 0 onto the adjoint field. It remains to consider
the spatial derivative operator L2. Due to the bilinearity of L2 with respect to� and u, its derivative with respect to�
in the direction of �′ is

DΦL2(u;�, x, t)(�′) = ∂ΦL2(u;�, x, t)(�′) + ∂uL2(u;�, x, t)(v2)

= −∇ ·
∫ t

−∞
�(x, t − τ) : ∇v2(x, τ) dτ − ∇ ·

∫ t

−∞
�′(x, t − τ) : ∇u(x, τ) dτ, (59)

with v2(�, ρ; x, t) := DΦu(�, ρ; x, t)(�′). The perturbation or differentiation direction �′ should satisfy the same
symmetry relations as � and be causal. In Appendix A, we demonstrate that the complete adjoint problem is

Lu(ψ;�, ρ, x, t) = ρ(x)∂2
t ψ(x, t) − ∇ ·

∫ ∞

−∞
�(x, τ − t) : ∇ψ(x, τ) dτ = −∂uf, (60)

with subsidiary conditions

ψ(x, t)|t=t1 = 0 (terminal condition) (61a)

∂tψ(x, t)|t=t1 = 0 (terminal condition) (61b)

ψ(x, t)|t>t1 = 0 (quiescent future) (61c)

ψ(x, t)|x∈Γ1 = 0 (Cauchy condition) (61d)
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n ·
∫ ∞

−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

∣∣∣∣
x∈Γ2

= 0 (Neumann condition) (61e)

The explicit formula for the derivative of the objective function E is

D(Φ,ρ)E(u,�, ρ)((�′, ρ′)) = DρE(u,�, ρ)(ρ′) +DΦE(u,�, ρ)(�′)

=
∫
G

∫ t1

t=t0
ρ′(x)

[
∂ρf + ψ(x, t) · ∂2

t u(x, t)
]

dt d3x +
∫
G

∫ t1−t0

t=0
�′(x, t) ::

[
∂Φf +

∫ t1

τ=t0+t
∇ψ(x, τ) ⊗ ∇u(x, τ − t) dτ

]
dt d3x. (62)

The symbol ⊗ denotes the tensor or dyadic product ((a ⊗ b)ijkl = aijbkl) and the symbol :: the quadruple scalar product
(A :: B = AijklBijkl). In these formulae we prefer the invariant tensor notation because it is better suited to reveal the
structure of an equation and moreover, it is valid in all coordinate systems.

The most remarkable similarity between the adjoint problem and the original problem is the structure of the equations
themselves. They are linear and the time derivative term translates one to one from the original to the adjoint equation.
The invariance of the time derivative term is due to the invariance of a second derivative to a sign change. This symmetry
is closely related to the conservation of energy. It is therefore not surprising that the spatial derivative term is different
in the adjoint equations because it incorporates the loss of elastic energy in the form of a time-dependent rheology.
Interestingly, the sign change in the temporal variable t provokes a transition from causality to anti-causality. The time
reversal in the governing equations also translates to a time reversal in the respective subsidiary conditions, meaning
that the adjoint fieldψ is required to have a quiescent future (instead of a quiescent past, as u) and thus no future strains
that could translate to present stresses. Also, note that the spatial subsidiary conditions of the adjoint problem, i.e., the
adjoint Cauchy and Neumann conditions, are necessarily homogeneous, meaning that the boundaries are either free
(no stresses) or rigid (no displacements). The terminal conditions are homogeneous as well, irrespective of possible
non-zero initial displacement or velocity distributions.

Eqs. (60)–(62) were obtained by Tarantola (1988). He founded his derivation on the first-order Born approximation
and the reciprocity relations of Green’s functions. In most applications it is not possible to specify spatial variations
of anelasticity or to determine complete rate of relaxation functions. Simplified equations for perfectly elastic and
isotropic media can in general be obtained by specifying the rate of relaxation tensor �.

7. Discussion

The first derivative of a physical observable with respect to the parameters determining its properties is of major
interest in all quantitative sciences. Large parameter spaces as those of modern Earth models usually render impossible
a direct approximation of that derivative by means of finite differencing. An elegant and efficient solution for this
problem is the adjoint method introduced into the field of seismology by Tarantola (1984, 1988). The adjoint method
allows us to compute the derivative of an objective function with respect to the model parameters by simply solving
the original problem and the adjoint problem only once.

In this paper we first analysed the adjoint problem for the two-dimensional scalar wave equation and the least squares
objective function. This simple example served to illustrate both the methodology and the physical meaning of the
adjoint wavefield. In principle, the adjoint method is a mathematical technique that allows us to eliminate the unknown
derivative of the observed wavefield from the derivative of the objective function by introducing a new variable ψ.

The two-dimensional scalar wave equation coincides with its adjoint equation. Also the boundary conditions translate
one-to-one from the original to the adjoint problem, whereas the initial conditions translate to terminal conditions. This
property of the adjoint problem forces us to solve it by stepping backwards in time. For the computation of the drivative
DpE, the forward wavefield and the adjoint wavefield have to be known at the same point in time. When the forward
problem is not dissipative, DpE can be computed very efficiently without storing the forward wavefield u. This is
because u can in principle be propagated backward in time, i.e., from t1 to t0, starting with its known final state u(x, t1).
The adjoint field ψ is then being computed simultaneously and also from t1 to t0. In the case of a dissipative forward
problem it becomes technically infeasible to propagate the forward field backward in time because lost information
can hardly be recovered. Thus, for at least a certain number of time steps, the forward field must be stored. In this
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context dissipation must be seen in a broader sense. It includes physical and numerical dissipation but also absorbing
boundary conditions implemented through damping regions (e.g. Cerjan et al., 1985).

The source term of the adjoint equation only depends on the objective function. It is in particular independent of
the sources of the forward wavefield. This offers the possibility to define the forward wavefield as a superposition of
wavefields corresponding to different sources acting at conveniently chosen points in time. In the case of the least
squares objective function the adjoint source is restricted to the receiver locations and its source time function is
determined by the time evolution of the linear residuals. In a simple numerical example we demonstrated that the
adjoint wavefield focusses at the location of a parameter perturbation. Such a perturbation may for example be a
difference between the true Earth model and the numerical model. When this focussing occurs the wavefront of the
original field also reaches the location of the parameter perturbation. This coincidence leads to a contribution to the
derivative DpE. An implication for any gradient-method based waveform inversion is that one has to account for the
anisotropic structure of the Earth. Neglecting anisotropy would lead to significant problems because the adjoint field
may focus in the wrong positions or it may not focus at all.

Using a condensed notation we found an elegant generalisation of the adjoint method. The employed terminology
is certainly not common in the geophysical literature; it is however modern mathematical standard and therefore also
widely used in theoretical physics. We saw that the adjoint method relies on the existence of transposes of the partial
derivatives of an operator. Since a derivative is by definition linear in the differentiation direction, the adjoint method
becomes applicable to non-linear equations such as the Navier–Stokes equations. In the presence of non-linearity the
adjoint field depends directly on the forward field. For example, the adjoint of the substantial derivative term involves
products of the forward velocity field and the adjoint field. Moreover, the resulting adjoint equation will not be similar
to the orginal equation involving the substantial derivative term. The numerical effort needed to solve the adjoint
problem is therefore significantly increased. Still, the non-linear adjoints may become important in future geodynamic
applications that go beyond the usual linearisations.

As our final application we considered the elastic wave equation with attenuation and anisotropy. This forward
problem is certainly too general for most seismological applications. However, it provides interesting insight into the
physics of the problem. Also, the resulting equations can easily be simplified. The wave equation operator loses its
symmetry due to the presence of anelasticity. Hence, the adjoint problem differs from the original problem.

8. Conclusions

The adjoint method is an elegant and efficient tool for the computation of the first derivative of an objective function
with respect to model parameters. Using modern mathematical terminology one finds that the adjoint method produces
exact derivatives and that it does not rely on the existence of Green’s functions or transposes of a differential operator.
Only the transposes of its partial derivatives are of interest. The method can be applied to non-linear operators such as
the one corresponding to the Navier–Stokes equations. In the case of the wave equation and the least squares objective
function the adjoint field focusses at the locations of parameter perturbations. The simultaneous passage of the original
wavefront and the adjoint field leads to a gradient contribution. This implies that gradient-based waveform inversion
procedures should account for anisotropy in order to ensure that the adjoint field focusses at the correct position.
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Appendix A. The adjoint equations for the anelastic wave equation with attenuation

A.1. Subsidiary conditions

Subsidiary conditions for the field DΦu(x, t)(�′) =: v2(x, t) can be found through a simple application
of the operator DΦ to Eqs. (54a)–(54e): v2(x, t)|t=t0 = 0, ∂2

t v2(x, t)|t=t0 = 0, v2(x, t)|t<t0 = 0, v2(x, t)|x∈Γ1 = 0
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and

n ·
[∫ ∞

−∞
�(x, t − τ) : ∇v2(x, τ) dτ +

∫ ∞

−∞
�′(x, t − τ) : ∇u(x, τ) dτ

]∣∣∣∣
x∈Γ2

= 0.

A.2. Displacement transpose

We already found

DΦL2(u;�, x, t)(�′) = ∂ΦL2(u;�, x, t)(�′) + ∂uL2(u;�, x, t)(v2), (A.1)

with

∂ΦL2(u;�, x, t)(�′) = −∇ ·
∫ t

−∞
�′(x, t − τ) : ∇u(x, τ) dτ (A.2)

and

∂uL2(u;�, x, t)(v2) = −∇ ·
∫ t

−∞
�(x, t − τ) : ∇v2(x, τ) dτ. (A.3)

First, we consider the difference

J1 = −
∫
G

∫ t1

t=t0
ψ(x, t) ·

[
∇ ·

∫ ∞

τ=−∞
�(x, t − τ) : ∇v2(x, τ) dτ

]
d3x dt

+
∫
G

∫ t1

t=t0
v2(x, t) ·

[
∇ ·

∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
d3x dt, (A.4)

for a sufficiently nice vector function ψ. An application of Gauss’ integral theorem directly yields J1 = J11 + J12,
with

J11 := −
∫
G

∫ t1

t=t0
∇ ·

[
ψ(x, t) ·

∫ ∞

τ=−∞
�(x, t − τ) : ∇v2(x, τ) dτ

]
d3x dt

+
∫
G

∫ t1

t=t0
∇ ·

[
v2(x, t) ·

∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
d3x dt

= −
∫
∂G

∫ t1

t=t0

[
ψ(x, t) ·

∫ ∞

τ=−∞
�(x, t − τ) : ∇v2(x, τ) dτ

]
· d� dt

+
∫
∂G

∫ t1

t=t0

[
v2(x, t) ·

∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
· d� dt (A.5)

and

J12 : =
∫
G

∫ t1

t=t0

[∇ψ(x, t)
]

:

[∫ ∞

τ=−∞
�(x, t − τ) : ∇v2(x, τ) dτ

]
d3x dt

−
∫
G

∫ t1

t=t0
[∇v2(x, t)] :

[∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
d3x dt. (A.6)

The causality property of �, i.e., the requirement that �(t) = 0 for t < 0, implies

J12 =
∫
G

∫ t1

t=t0

[∇ψ(x, t)
]

:

[(∫ t0

τ=−∞
+

∫ t1

τ=t0

)
�(x, t − τ) : ∇v2(x, τ) dτ

]
d3x dt

−
∫
G

∫ t1

t=t0
[∇v2(x, t)] :

[(∫ t1

τ=t0
+

∫ ∞

τ=t1

)
�(x, τ − t) : ∇ψ(x, τ) dτ

]
d3x dt

=
∫
G

∫ t1

t=t0

∫ t0

τ=−∞
[∇ψ(x, t)] : [�(x, t − τ) : ∇v2(x, τ)] d3x dτ dt
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−
∫
G

∫ t1

t=t0

∫ ∞

τ=t1
[∇v2(x, t)] : [�(x, τ − t) : ∇�(x, τ)] d3x dτ dt

+
∫
G

∫ t1

t=t0

∫ t1

τ=t0
[∇ψ(x, t)] : [�(x, t − τ) : ∇v2(x, τ)] d3x dτ dt

−
∫
G

∫ t1

t=t0

∫ t1

τ=t0
[∇v2(x, t)] :

[
�(x, τ − t) : ∇ψ(x, τ)

]
d3x dτ dt. (A.7)

Due to the symmetry of �, the last two summands of Eq. (A.7) cancel, and J1 reduces to

J1 = −
∫
∂G

∫ t1

t=t0

[
ψ(x, t) ·

∫ ∞

τ=−∞
�(x, t − τ) : ∇v2(x, τ) dτ

]
· d� dt

+
∫
∂G

∫ t1

t=t0

[
v2(x, t) ·

∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
· d� dt

+
∫
G

∫ t1

t=t0

∫ t0

τ=−∞
[∇ψ(x, t)] : [�(x, t − τ) : ∇v2(x, τ)] d3x dτ dt

−
∫
G

∫ t1

t=t0

∫ ∞

τ=t1
[∇v2(x, t)] :

[
�(x, τ − t) : ∇ψ(x, τ)

]
d3x dτ dt. (A.8)

A.3. Rate of relaxation transpose

We are now interested in transforming the expression

J2 + I2 = −
∫
G

∫ t1

t=t0
ψ(x, t) ·

[∫ ∞

τ=−∞
�′(x, t − τ) : ∇u(x, τ) dτ

]
dt d3x, (A.9)

with

J2 := −
∫
G

∫ t1

t=t0
∇ ·

[
ψ(x, t) ·

∫ ∞

τ=−∞
�′(x, t − τ) : ∇u(x, τ) dτ

]
dt d3x (A.10)

and

I2 :=
∫
G

∫ t1

t=t0
[∇ψ(x, t)] :

[∫ ∞

−∞
�′(x, t − τ) : ∇u(x, τ) dτ

]
dt d3x. (A.11)

The term J2 allows us the application of Gauss’ integral theorem.

J2 = −
∫
∂G

∫ t1

t=t0

[
ψ(x, t) ·

∫ ∞

τ=−∞
�′(x, t − τ) : ∇u(x, τ) dτ

]
· d� dt. (A.12)

Substituting t′ = t − τ in the inner integral of I2 results in

I2 =
∫
G

∫ t1

t=t0

[
∇ψ(x, t) :

∫ ∞

t′=−∞
�(x, t′) : ∇u(x, t − t′) dt′

]
dt d3x. (A.13)

Taking into account that �′ is causal and that u = 0 for t < t0, the temporal integration domain ΩT can be identified
as (see Fig. A.1)

ΩT = {(t, t′) ∈ R2; t0 ≤ t ≤ t1, 0 ≤ t′ ≤ t − t0} = {(t, t′) ∈ R2; 0 ≤ t′ ≤ t1 − t0, t′ + t0 ≤ t ≤ t1}.
(A.14)



102 A. Fichtner et al. / Physics of the Earth and Planetary Interiors 157 (2006) 86–104

Fig. A.1. The shaded area corresponds to the temporal integration domain ΩT .

This permits to interchange the temporal integrals as follows:

I2 =
∫
G

∫ t1−t0

t′=0

[∫ t1

t=t0+t′
∇ψ(x, t) : �′(x, t′) : ∇u(x, t − t′) dt

]
dt′ d3x

=
∫
G

∫ t1−t0

t=0
�′(x, t) ::

[∫ t1

τ=t0+t
∇ψ(x, τ) ⊗ ∇u(x, τ − t) dτ

]
dt d3x. (A.15)

In order to obtain the last identity, I simply set t′ → t and t → τ. Now, I2 may be identified with the bilinear form
〈�′, ∂ΦL∗

2(ψ)〉P2 , i. e.,

I2 = 〈�′, ∂ΦL∗
2(ψ)〉P2 . (A.16)

A.4. Assembling the terms

Finally, we arrive at

〈ψ, ∂uL2(v2)〉U + 〈ψ, ∂ΦL2(�′)〉U = 〈v2, ∂uL∗
2(ψ)〉U + 〈�′, ∂∗Φ(ψ)〉P2 + J1 + J2. (A.17)

Inserting the subsidiary conditions for v2, we find

J1 + J2 = −
∫
Γ1

∫ t1

t=t0
ψ(x, t) ·

∫ ∞

τ=−∞
[�′(x, t − τ) : ∇u(x, τ) −�(x, t − τ) : ∇v2(x, τ)] · d� dt

+
∫
Γ2

∫ t1

t=t0

[
v2(x, t) ·

∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
· d� dt

−
∫
G

∫ t1

t=t0

∫ ∞

τ=t1
[∇v2(x, t)] : [�(x, τ − t) : ∇ψ(x, τ)] d3x dτ dt. (A.18)

Obviously, we can force J1 + J2 to zero, if we require that the conditions

ψ(x, t)|t>t1 = 0 (quiescent future) (A.19)

ψ(x, t)|x∈Γ1 = 0 (Cauchy condition) (A.20)
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n ·
[∫ ∞

−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]∣∣∣∣
x∈Γ2

= 0 (Neumann condition) (A.21)

hold. This must be complemented by the already known terminal conditions

ψ(x, t)|t=t1 = 0 and
∂

∂t
ψ(x, t)

∣∣∣∣
t=t1

= 0. (A.22)

Collecting all terms, we arrive at

〈ψ, ∂ρL1(ρ′)〉U + 〈ψ, ∂uL1(v2)〉U + 〈ψ, ∂uL2(v2)〉U + 〈ψ, ∂ΦL2(�′)〉U
= 〈ρ′, ∂ρL∗

1(ψ)〉P1 + 〈v2, ∂uL∗
1(ψ)〉U + 〈v2, ∂uL∗

2(ψ)〉U + 〈�′, ∂∗ΦL2(ψ)〉P2

=
∫
G

∫ t1

t=t0
ρ′(x)ψ(x, t) · ∂

2

∂t2
u(x, t) dt d3x +

∫
G

∫ t1

t=t0
ρ(x)v2(x, t) · ∂

2

∂t2
ψ(x, t) dt d3x

−
∫
G

∫ t1

t=t0
v2(x, t) ·

[
∇ ·

∫ ∞

τ=−∞
�(x, τ − t) : ∇ψ(x, τ) dτ

]
d3x dt

∫
G

∫ t1−t0

t=0
�′(x, t) ::

[∫ t1

τ=t0+t
∇ψ(x, τ) ⊗ ∇u(x, τ − t) dτ

]
dt d3x. (A.23)

This proves the relations given in Section 6.
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