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SUMMARY
We present a new numerical method to solve the heterogeneouselastic anisotropic wave equa-
tion with arbitrary high order accuracy in space and time on unstructured tetrahedral meshes.
Using the most general Hooke’s tensor we derive the velocity-stress formulation leading to a
linear hyperbolic system which accounts for the variation of the material properties depend-
ing on direction. This approach allows for the modeling of triclinic anisotropy, the most gen-
eral cristalline symmetry class. The proposed method combines the Discontinuous Galerkin
method with the ADER time integration approach using arbitrary high order derivatives of the
piecewise polynomial representation of the unknown solution. In contrast to classical Finite
Element methods discontinuities of this piecewise polynomial approximation are allowed at
element interfaces, which allows for the application of thewell-established theory of Finite
Volumes and numerical fluxes across element interfaces obtained by the solution of derivative
Riemann problems. Due to the ADER time integration technique the scheme provides the same
approximation order in space and time automatically. Furthermore, through the projection of
the tetrahedral elements of the physical space onto a canonical reference tetrahedron an efficient
implementation is possible as many three-dimensional integral computations can be carried out
analytically beforehand. A numerical convergence study confirms that the new scheme provides
arbitrary high order accuracy even on unstructured tetrahedral meshes and shows that compu-
tational cost and storage space can be reduced by higher order schemes. Besides, we present
a new Godunov-type numerical flux for anisotropic material and compare its accuracy with a
computationally simpler Rusanov flux. Finally, we validatethe new scheme by comparing the
results of our simulations to an analytic solution as well asto Spectral Element computations.

Key words: anisotropy, Discontinuous Galerkin method, high order accuracy, tetrahedral
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1 INTRODUCTION

Anisotropic media are those whose material properties differ when measured in different directions. Exploration geophysics have for a long
time paid attention to the anisotropic behaviour of the seismic waves in the soil in order to resolve, for example, crack alignment (Crampin,
Chesnokov & Hipkin 1984; Helbig 1994) in hydrocarbon reservoirs. However, for many years anisotropy has been disdained as secondary
effect in earthquake seismology. Now, as imaging of the Earth’s deep structure is constantly improving, anisotropic material properties in-
fluencing seismic wave propagation have received more attention (Backus 1962; Cara 2002; Carcione 2002). In particular, it is essential to
include anisotropy in high order accurate seismic simulation methods. Furthermore, it has been shown that strong stress regimes can enhance
the anisotropy of materials (Sharma & Garg 2006) which requires the careful treatment of anisotropy in earthquake simulations and seismic
wave propagation modeling at all scales.
In addition, the improvements of our knowlegde of the geological and geophysical properties of subsurface models in seismologically inter-
esting regions often show highly complex geometries. This increasing complexity still presents a challenge for numerical methods based on
regular, structured gridding. On the other hand, numerical methods ongeometrically more flexible unstructured tetrahedral meshes until to-
day could not provide high order accuracy. Therefore, most approaches were forced to find a compromise between preserving the complexity
of the models and having highly accurate results.
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In the past, many approaches describing anisotropic wave propagationhave been developed. Early attempts aimed at the simplification of
anisotropic effects for some weakly anisotropic media (Thomsen 1986;Song, Every & Wright 2001). Analytical and quasi-analytical solu-
tions to simplified cases exist and ray theory can handle the problem to someextent (̌Cerveńy 1972). However, when heterogenous materials
and complex geometrical structures are involved only three-dimensional, full wave form simulations are able to provide satisfying results.
The most widely used method, the Finite Difference (FD) method, has successfully been extended from isotropic (Madariaga1976; Virieux
1984; Virieux 1986) to anisotropic problems using staggered (Mora 1989; Igel, Mora & Riollet 1995) or rotated staggered grids (Saenger &
Bohlen 2004). However, both approaches are forced to interpolate stress and strain off-diagonal values as they are not defined in the same
grid points. Pseudospectral (PS) methods (Carcione 1994; Tessmer& Kosloff 1994; Fornberg 1996; Igel 1999) have been extended to han-
dle anisotropic material in (Carcione, Kosloff & Kosloff 1988; Tessmer1995; Hung & Forsyth 1998). More recently, the Spectral Element
Method (SEM) has considerably gained in popularity due to its accuracy and efficiency on deformable hexahedral elements (Komatitsch
& Vilotte 1998; Komatitsch & Tromp 1999) and has also been further developed for anistropic problems in (Seriani, Priolo & Pregarz
1995; Komatitsch, Barnes & Tromp 2000) and successfully been applied to the case of global seismic wave propagation in (Komatitsch &
Tromp 2002). Recent attempts of incorporating anistropy in fully unstructured grids in (Gao & Zhang 2006) represent an alternative approach.

Combining anisotropy with viscoelasticity is non-trivial task. Initial straightforward attempts have centered themselves in using complex val-
ues for each of the 21 independent coefficients of the general Hooke’s tensor (Auld 1990). Alternative constitutive laws that solve the most
general case based on different constitutive relations were developed by (Carcione & Cavallini 1994), based in the concept of eigenstresses
and eigenstiffnesses, or (Carcione 1995) in which the concepts of mean and deviatoric stresses allow to build an attenuation implementation
based on memory variables, making it both accurate and easy to implement in time-domain numerical modelling.

In this paper, we extend the Discontinuous Galerking (DG) approach with atime integration approach using Arbitrary high order DERivatives
(ADER) presented in (K̈aser & Dumbser 2006; Dumbser & Käser 2006; K̈aser, Dumbser, de la Puente & Igel 2006) to the three-dimensional
anisotropic case for the most general triclinic cristalline symmetry class. The ADER-DG method provides arbitrary high order accuracy in
space and time on unstructured tetrahedral meshes, which makes it very attractive when complicated model geometries are involved. To
our knowledge the ADER-DG approach provides the first numerical scheme achieving high order polynomial approximation for anisotropic
seismic wave propagation on three-dimensional unstructured meshes.
The paper is structured as follows. In Section 2 we present the linear hyperbolic system of the anisotropic seismic wave equations in
velocity-stress formulation. In Section 3 we show the extension of the ADER-DG scheme to anisotropic material with particular focus on
a new Godunov-type numerical flux. The coupling of anisotropy and viscoelastic attenuation is derived in Section 4. A convergence study
is presented in Section5 in order to validate the high order accuracy of the new ADER-DG scheme for anisotropic material. Finally, in
Section 6 we demonstrate different application examples to confirm the performance of the proposed method by comparisons of our results
with analytical solutions and results of the Spectral Element Method. Section7 summarizes the work presented and provides concluding
remarks.

2 ANISOTROPIC SEISMIC WAVE EQUATIONS

The most general linear elastic stress-strain relation can be expressedthrough a tensorial constitutive law (Hooke’s Law), see e.g. (Stein &
Wysession 2003), of the form

σij = cijklεkl (1)

The entries of the fourth-order elasticity tensorcijkl can be reduced to21 independent real coefficients in the most general case due to
symmetry considerations. Using matrix notation, the stressesσij and strainsεkl are defined as vectors~σ = (σxx, σyy, σzz, σxy, σyz, σxz)

T

and~ε = (εxx, εyy, εzz, εxy, εyz, εxz)
T and we can rewrite (1) using an anisotropic elastic matrixMij as

~σi = Mij ~εj , (2)

which extended in more detail reads as
0
BBBBBBB@

σxx
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σxz

σxy

1
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=

0
BBBBBBB@
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1
CCCCCCCA

0
BBBBBBB@

εxx

εyy

εzz

εyz

εxz

εxy

1
CCCCCCCA

. (3)

Considering all21 independent coefficients inMij we can represent a triclinic material, which is the most general case of anisotropy
and includes as special cases all other cristalline symmetry classes, i.e.monoclinic, trigonal, tetragonal, orthorhomic, hexagonal, cubic
and isotropic, as shown in (Nye 1985; Okaya & McEvilly 2003). Therefore, isotropy can be understood as the particular case in which
c11 = c22 = c33 = λ + 2µ, c12 = c13 = c23 = λ, c44 = c55 = c66 = µ and all other coefficients equal to zero. In non-isotropic cases
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the actual values of the coefficients of the matrixMij in (3) depend on the orientation of the reference system we use. Certain anisotropic
symmetry classes exhibit symmetry axes. Therefore, appropriate reference systems can be chosen in a way that structured grids are aligned
to these symmetry axes. However, when modeling anisotropic wave propagation on unstructured meshes the reference coordinate system for
each interface between two neighbouring elements, where numerical fluxes have to be computed, generally has a different orientation from
the others and therefore a particular symmetry class can not be exploited. In fact, we generally have to treat a triclinic symmetry at each
element interface due to its arbitrary orientation within an unstructured tetrahedral mesh. In the following, however, we consider the elastic
properties of the anisotropic medium refering to the underlying physical coordinate system that also defines the orientation of stresses and
strains or the physical coordinates of mesh nodes.
Combining the constitutive relation in (3) with the equations of motion, see e.g.(LeVeque 2002), leads to a complete partial differential
equation system of the shape

∂Qp

∂t
+ Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0, (4)

whereQ is the vector of the unknown stresses and velocities, i.e.Q = (σxx, σyy, σzz, σxy, σyz, σxz, u, v, w)T . Note, that classical tensor
notation is used, which implies summation over each index that appears twice. The matricesApq = Apq(~x), Bpq = Bpq(~x), andCpq =

Cpq(~x) are the space dependent Jacobian matrices, withp, q = 1, ..., 9, and are given through

Apq =

0
BBBBBBBBBBBBBB@

0 0 0 0 0 0 −c11 −c16 −c15

0 0 0 0 0 0 −c12 −c26 −c25

0 0 0 0 0 0 −c13 −c36 −c35

0 0 0 0 0 0 −c16 −c66 −c56

0 0 0 0 0 0 −c14 −c46 −c45

0 0 0 0 0 0 −c15 −c56 −c55

− 1
ρ

0 0 0 0 0 0 0 0

0 0 0 − 1
ρ

0 0 0 0 0

0 0 0 0 0 − 1
ρ

0 0 0

1
CCCCCCCCCCCCCCA

, (5)

Bpq =

0
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0 0 0 0 0 0 −c36 −c23 −c34
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0 0 0 0 0 0 −c56 −c25 −c45

0 0 0 − 1
ρ

0 0 0 0 0

0 − 1
ρ
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ρ
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, (6)

Cpq =

0
BBBBBBBBBBBBBB@
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0 0 0 0 0 0 −c35 −c34 −c33

0 0 0 0 0 0 −c56 −c46 −c36

0 0 0 0 0 0 −c45 −c44 −c34

0 0 0 0 0 0 −c55 −c45 −c35

0 0 0 0 0 − 1
ρ

0 0 0

0 0 0 0 − 1
ρ

0 0 0 0

0 0 − 1
ρ

0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

, (7)

where the coefficientscij are those of the anisotropic elastic matrixMij of (2) or (3) andρ is the mass density of the material. We remark that
analytically determining the eigenstructure the Jacobian matrices defined in (5), (6) and (7) is much more difficult for the anisotropic case
than for the purely isotropic case as presented in the previous work (Dumbser & Käser 2006; K̈aser, Dumbser, de la Puente & Igel 2006). As
shown in the following Section 3 this leads to modifications in the formulation of theADER-DG scheme.

3 THE NUMERICAL SCHEME

The computational domainΩ ∈ R
3 is divided into conforming tetrahedral elementsT (m) being addressed by a unique index(m). Further-

more, we suppose the matricesApq, Bpq, andCpq to be piecewise constant inside an elementT (m). The numerical solutionQh of equa-
tion (4) is approximated as shown in (Dumbser & Käser 2006) inside each tetrahedronT (m) by a linear combination of space-dependent but
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time-independent polynomial basis functionsΦl(ξ, η, ζ) of degreeN with supportT (m) and with only time-dependent degrees of freedom
Q̂

(m)
pl (t), i.e.

“
Q

(m)
h

”

p
(ξ, η, ζ, t) = Q̂

(m)
pl (t)Φl(ξ, η, ζ) , (8)

whereξ, η andζ are the coordinates in a canonical reference elementTE . For a detailed definition of these coordinates together with the basis
functionsΦl see (Dumbser & K̈aser 2006; Dumbser, K̈aser & de la Puente 2006). Multiplying (4) by the test functionΦk and integrating
over a tetrahedral elementT (m) gives

Z

T (m)

Φk
∂Qp

∂t
dV +

Z

T (m)

Φk

„
Apq

∂Qq

∂x
+ Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z

«
dV = 0. (9)

By applying integration by parts to the last integral of (9) we obtain

Z

T (m)

Φk
∂Qp

∂t
dV +

Z

∂T (m)

ΦkF h
p dS −

Z

T (m)

„
∂Φk

∂x
ApqQq +

∂Φk

∂y
BpqQq +

∂Φk

∂z
CpqQq

«
dV = 0 , (10)

where a numerical fluxF h
p has been introduced in the surface integral sinceQh may be discontinuous at an element boundary. Here, two

major changes with respect to the isotropic case appear.
First, we need to introduce the matrixeA(m) which is similar to the matrixA of (5), however, with the entriescij rotated from the global
coordinate system to a local coordinate system of a tetrahedron’s face.This local coordinate system is defined by the normal vector~n =

(nx, ny, nz)
T and the two tangential vectors~s = (sx, sy, sz)

T and~t = (tx, ty, tz)
T , which lie in the plane determined by the face of the

tetrahedron and are orthogonal to each other and to the normal vector~n. Usually we define vector~s such that it points from the local face
node1 to the local face node2. The exact definitions of the vectors~n, ~s and~t as well as the local vertex numbering of a tetrahedral element
can be found in (Dumbser & K̈aser 2006). The rotation to this local coordinate system is done by applyingthe so-called Bond’s matrix
N (Bond 1976; Okaya & McEvilly 2003)

N =

0
BBBBBBB@

n2
x n2

y n2
z 2nzny 2nznx 2nynx

s2
x s2

y s2
z 2szsy 2szsx 2sysx

t2x t2y t2z 2tzty 2tztx 2tytx

sxtx syty sztz sytz + szty sxtz + sztx sytx + sxty

txnx tyny tznz nytz + nzty nxtz + nztx nytx + nxty

nxsx nysy nzsz nysz + szny nxsz + nzsx nysx + nxsy

1
CCCCCCCA

(11)

to the Hooke’s matrixC of the global reference system

C =

0
BBBBBBB@

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

1
CCCCCCCA

(12)

leading to the Hooke’s matrixeC in the local reference system of the tetrahedron’s boundary face

eC = N · C · N T . (13)

We remark that in the isotropic case matrixC is invariant under coordinate transformation, i.e.eCiso = Ciso. Therefore, this rotation could be
skipped for the isotropic case discussed in (Dumbser & Käser 2006; K̈aser, Dumbser, de la Puente & Igel 2006).
The second modification comes through the different approaches forthe numerical flux computation. The general definition of the our
numerical flux incorporating anisotropic material can be written as

F h
p =

1

2

“
Tpq

eA(m)
qr (Trs)

−1 + Θps

”
Q̂

(m)
sl φ

(m)
l +

1

2

“
Tpq

eA(m)
qr (Trs)

−1 − Θps

”
Q̂

(mj)

sl φ
(mj)

l , (14)

whereQ̂(m)φ(m) and Q̂(mj)φ(mj) are the boundary extrapolated values of the numerical solution from element T (m) and itsj-th side
neighbourT (mj), respectively. To simplify notation, in the following, we drop the indexj indicating thej-th face of the tetrahedronT (m).
The eA(m)

qr is the Jacobian matrixApq defined in (5) but with the rotated coefficientscij from the Hooke’s matrixeC as computed in (13). The
rotation matrixTpq that transforms all variables ofQp from (4) into the reference system associated to the tetrahedron’sj-th face has the
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same expression as in the isotropic case in (Dumbser & Käser 2006) and reads as

Tpq =

0
BBBBBBBBBBBBBB@

n2
x s2

x t2x 2nxsx 2sxtx 2nxtx 0 0 0

n2
y s2

y t2y 2nysy 2syty 2nyty 0 0 0

n2
z s2

z t2z 2nzsz 2sztz 2nztz 0 0 0

nynx sysx tytx nysx + nxsy sytx + sxty nytx + nxty 0 0 0

nzny szsy tzty nzsy + nysz szty + sytz nzty + nytz 0 0 0

nznx szsx tztx nzsx + nxsz sztx + sxtz nztx + nxtz 0 0 0

0 0 0 0 0 0 nx sx tx

0 0 0 0 0 0 ny sy ty

0 0 0 0 0 0 nz sz tz

1
CCCCCCCCCCCCCCA

. (15)

The matrixΘps is a numerical viscosity term whose particular form determines the flux typewe wish to use and depends on the orientation
of the interface with thej-th side neighbour. In the following, we introduce the Godunov flux and theRusanov flux which have a numerical
viscosity matrix of the form

(Θps)Rusanov = αmaxIps , (16)

(Θps)Godunov = Tpq

˛̨
˛ eAqr

˛̨
˛Trs , (17)

whereIps is the identity matrix. The computation of the Godunov flux requires knowledge of the eigenstructure of the Jacobian matrixeAqr.

This, for the anisotropic case, is a non-trivial issue as it requires the computation of
˛̨
˛ eAqr

˛̨
˛, which in turn usually requires the knowledge of the

left and right eigenvectors ofeAqr. A new method to obtain the Godunov flux in (17) for anisotropic material is presented in the Appendix A.
Alternatively, the Rusanov flux (LeVeque 2002) requires only the knowledge of the maximum eigenvalue ofeAqr. This value isαmax =

max(αi), whereαi are the roots of the following polynomial ofα

XY Z − Xc2
56 − Y c2

15 − Zc2
16 + 2c15c16c56 = 0 , (18)

where the coefficientscij are the entries of the Hooke’s matrixeC of (13) rotated into the local reference system of thej-th side of the tetra-
hedral element. Furthermore, we used the substitutionsX = c11 − α2ρ, Y = c66 − α2ρ andZ = c55 − α2ρ. As can be seen from (18) we
are searching the maximum value of the possibly6 roots of polynomial of degree6. However, the substitutions usingX, Y andZ tell us,
that there are only three different values to search for, as (18) represents a cubic polynomial ofα2. We can exclude the possibility of having
complex eigenvalues, i.e.α2 < 0, as this would imply the loss of hyperbolicity of the PDE system in (4). The physical interpretation of the
eigenvalues is that they represent the speed at which the different wave types are propagating in normal direction through thej-th element
face. This is a known result for the anisotropic phase wave speeds (Crampin 1981) which appears here naturally from the eigendecompo-
sition of the jacobians of our scheme (5). In general the resulting wavesare calledquasi-wavesqP , qS1 andqS2; ordered in decreasing
magnitude of their velocities (Crampin 1981). For the isotropic case we would get the positive and negative P-wave velocity and two positive
and negative S-wave velocity of the same absolute value. These values correspond to the two differently and perpendicularly to each other
polarized S-waves.

Once the maximum eigenvalueαmax is determined, the Rusanov flux is given via (16). As the full derivation of the numerical scheme
would go beyond the scope of this work we refer the reader to previous work (Käser & Dumbser 2006; Dumbser & Käser 2006) for the
mathematical details. Instead we give the final form of the fully discrete ADER-DG scheme, which after transformation into the canonical
reference elementTE and time integration over one time step∆t from time leveln to the following time leveln + 1 reads as

»“
Q̂

(m)
pl

”n+1

−
“
Q̂

(m)
pl

”n
–
|J |Mkl +

+ 1
2

4P
j=1

“
T j

pq
eA(m)

qr (T j
rs)

−1 + Θj
ps

”
|Sj |F−,j

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

+

+ 1
2

4P
j=1

“
T j

pq
eA(m)

qr (T j
rs)

−1 − Θj
ps

”
|Sj |F+,j,i,h

kl · Iqlmn(∆t)
“
Q̂

(mj)
mn

”n

−

− A∗
pq |J |Kξ

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

− B∗
pq |J |Kη

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

− C∗
pq |J |Kζ

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

= 0 ,

(19)

whereIplqm(∆t) represents the high order ADER time integration operator that is applied to thedegrees of freedom
“
Q̂

(m)
mn

”n

at time level

n. The matricesMkl, F−,j
kl andKkl are the mass matrix, flux and stiffness matrices, respectively, include space integrations of our basis

functions and can be computed beforehand as shown in more detail in (Dumbser & K̈aser 2006). The resulting ADER-DG scheme provides
automatically high order approximation in space and time and allows us to update the values of our unknown variables from a timesteptn to
a following tn+1 without store any intermediate values as typically necessary for classicalmulti-stage Runge-Kutta time stepping schemes.
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Furthermore, the scheme has a very local character, as the evolution of the variables in time within the elementT (m) depends only on the
variables associated to the elementT (m) itself and its direct neigboursT (mj), with j = 1, ..., 4.

4 COUPLING OF ANISOTROPY AND VISCOELASTICITY

Anisotropy and viscoelastic attenuation play an important role as secondary effects in sesimic wave propagation modeling. The incorporation
of anisotropy into the ADER-DG framework has been discussed in the previous Sections 2 and 3. Viscoelastic attenuation, however, was
introduced in (K̈aser, Dumbser, de la Puente & Igel 2006). In order to accurately couple both effects we use the concepts of mean and
deviatoric stresses first presented in (Carcione 1995) and adapt themto the rheological model of the Generalized Maxwell Body (GMB)
as suggested in (Emmerich & Korn 1987). At first we define the underlying physical theory of viscoelastic anisotropy. Then we present in
detail how viscoelasticity changes the anisotropic PDE system as given in (4). Finally, we explain how the ADER-DG scheme presented in
Section 3 has to be modified in order to couple anisotropy and viscoelasticity.

4.1 Viscoelastic Anisotropic Wave Propagation

The mean stressσ and mean strainε, as well as the deviatoric stress~σD and deviatoric strain~εD are defined as

σ ≡ 1

3
(σxx + σyy + σzz) , (20)

ε ≡ 1

3
(εxx + εyy + εzz) , (21)

~σD ≡ ~σ − σ , (22)

~εD ≡ ~ε − ε , (23)

where we remark that the mean stress and strain are invariant under coordinte transformation. As shown in (Carcione 2002) we need a total of
four attenuation moduli to model viscoelastic attenuation in an anisotropic medium. One purely dilatational modulus and three shear moduli.
In this case, the mean stressσ depends only on the dilatational modulus while the deviatoric stress~σD only depends on the shear moduli.
The stress-strain relation in the general case can be expressed in the frequency domain or in the time domain, e.g. see (Moczo, Kristek &
Halada 2004) for the isotropic case, which reads in the anisotropic case (Carcione 1995) as

~σi(ω) = Mij(ω)~εj(ω) , (24)

~σi(t) =
∂

∂t

“
Ψij(t)

”
∗ ~εj(t) = Mij(t) ∗ ~εj(t) , (25)

where the so-calledrelaxation matrixΨij(t) is given by

Ψij(t) =

0
BBBBBBB@

Ψ11(t) Ψ12(t) Ψ13(t) 2c14 2c15 2c16

Ψ12(t) Ψ22(t) Ψ23(t) 2c24 2c25 2c26

Ψ13(t) Ψ23(t) Ψ33(t) 2c34 2c35 2c36

c14 c24 c34 2Ψ44(t) 2c45 2c46

c15 c25 c35 2c45 2Ψ55(t) 2c56

c16 c26 c36 2c46 2c56 2Ψ66(t)

1
CCCCCCCA

· H(t) . (26)

Here,H(t) is the Heaviside step function and the componentsΨij(t) can be expressed as

Ψij(t) =
4X

k=0

g
(k)
ij χ(k)(t) with g

(k)
ij ∈ R , (27)

whereg
(k)
ij are real numbers, combinations of thecij entries of the elastic Hooke’s tensor and theχ(k), calledrelaxation functions, contain

the time functionality of the relaxation matrix’s entries, normalized such thatχ(k) = 1 for t = 0 and by defining the mode’s complex
modulus asM (k)(ω) = d(χ(k)(t)H(t))/dt, this modulus behaves asM (k)(ω) → 1 for ω → ∞.
In (Moczo, Kristek & Halada 2004) we can find a formulation of the GMB relaxation mechanisms that, once normalized, can be used to
express theχ(k)(t) as

χ(k)(t) = 1 −
nP

ℓ=1

Y
(k)

ℓ

`
1 − e−ωℓt

´
, for k = 1, 2, 3, 4

χ(k)(t) = 1, for k = 0
(28)

wheren is the number of attenuating mechanisms used. These GMB relaxation functions fulfill the conditions discussed above. Thek = 0

case is shown for completion but doesn’t represent a relaxation function but, more accurately, a lack of it. As we have a constantχ(0) value we
obtain an instantaneous response, so that we are talking about an elastic mode. We remark that in the elastic case allg

(k)
ij = 0, if k 6= 0, thus

having exclusively that instantaneous response and, as a consequence, no energy losses. In the viscoelastic isotropic case we haveg
(k)
ij = 0,
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except fork = 0, k = 1 (dilatational mode) andk = 2 (first shear mode).
Finally we can find the coefficientsg(k)

ij that ensure the separation of the dilatational and shear modes of the attenuation (Carcione 2002)
giving us the entries of (27) by

Ψii(t) = cii −
`
λ + 2µ

´
+
`
λ + 4

3
µ
´
χ(1)(t) +

`
2
3
µ
´
χ(2)(t) , for i ≤ 3

Ψij(t) = cij − λ +
`
λ + 2

3
µ
´
χ(1)(t) − 2

3
µχ(2)(t) , for i, j ≤ 3 and i 6= j

Ψ44(t) = c44χ
(2)(t)

Ψ55(t) = c55χ
(3)(t)

Ψ66(t) = c66χ
(4)(t)

(29)

with the definitionsµ ≡ 1
3

(c44 + c55 + c66) andλ ≡ 1
3

(c11 + c22 + c33) − 2µ. We can also redefine the anelastic coefficients such as

λY λ
ℓ =

`
λ + 2

3
µ
´
Y

(1)
ℓ − 2

3
µY

(2)
ℓ , Y µ1

ℓ = Y
(2)

ℓ , Y µ2
ℓ = Y

(3)
ℓ andY µ3

ℓ = Y
(4)

ℓ .
Now, making use of the last identity in (25) we derivate in time the componentsof the tensorΨij(t) that are given in (29) to obtain the
anisotropic viscoelastic stress-strain relation

0
BBBBBBB@

σxx

σyy

σzz

σyz

σxz

σxy

1
CCCCCCCA

=

0
BBBBBBB@

c11 c12 c13 2c14 2c15 2c16

c12 c22 c23 2c24 2c25 2c26

c13 c23 c33 2c34 2c35 2c36

c14 c24 c34 2c44 2c45 2c46

c15 c25 c35 2c45 2c55 2c56

c16 c26 c36 2c46 2c56 2c66

1
CCCCCCCA

0
BBBBBBB@

εxx

εyy

εzz

εyz

εxz

εxy

1
CCCCCCCA

−

−
nX

ℓ=1

0
BBBBBBB@

λY λ
ℓ + 2µY µ1

ℓ λY λ
ℓ λY λ

ℓ 0 0 0

λY λ
ℓ λY λ

ℓ + 2µY µ1
ℓ λY λ

ℓ 0 0 0

λY λ
ℓ λY λ

ℓ λY λ
ℓ + 2µY µ1

ℓ 0 0 0

0 0 0 2c44Y
µ1

ℓ 0 0

0 0 0 0 2c55Y
µ2

ℓ 0

0 0 0 0 0 2c66Y
µ3

ℓ

1
CCCCCCCA

0
BBBBBBB@

ϑℓ
xx

ϑℓ
yy

ϑℓ
zz

ϑℓ
yz

ϑℓ
xz

ϑℓ
xy

1
CCCCCCCA

. (30)

Here, the the anelastic functions~ϑℓ = (ϑℓ
xx, ϑℓ

yy, ϑℓ
zz, ϑℓ

yz, ϑℓ
xz, ϑℓ

xy)T are defined by

ϑℓ
j(t) = ωℓ

∂

∂t

„Z t

−∞

εj(τ)e−ωℓ(t−τ) dτ

«
, (31)

as shown in (Moczo, Kristek & Halada 2004). The anelastic coefficients have to be fitted to the particularQ-law over a desired frequency
range by using a number of relaxation frequeciesωℓ as outlined in more detail in (K̈aser, Dumbser, de la Puente & Igel 2006).
Notice here that this formulation even admits anisotropic attenuation, meaningthat we can have differentQ values for each of the3 shear
attenuating modes. However, our knowledge of the quality factorsQ inside the earth is often poor and rarely would allows us to consider
any dependence on direction of the values of theQ-factors. Therefore, in the following we limit ourselves to the case in whichattenua-
tion is considered as an isotropic effect, even if the medium is anisotropic. This means, thatQµ1 = Qµ2 = Qµ3 and therefore we can
defineY µ

ℓ ≡ Y µ1
ℓ = Y µ2

ℓ = Y µ1
ℓ . Note, that the stress-strain relation in (30) provides the general case from which we can infer the

anisotropic elastic case by definingY λ
ℓ = 0 andY µi

ℓ = 0, thus recovering (3). The viscoelastic isotropic case is obtained by defining
c11 = c22 = c33 = λ + 2µ, c12 = c13 = c23 = λ andc44 = c55 = c66 = µ with all other coefficientscij equal to zero. This way, we also
obtainλ = λ andµ = µ as a consequence.

The use of the anelastic functionsϑj requires the storage of6 new variables per attenuation mechanism in each tetrahedral element thathave
to be updated at every time step, as already shown in (Käser, Dumbser, de la Puente & Igel 2006) for the anelastic case. This isdone by
solving an additional set of6n linear partial differential equations given by

∂

∂t
ϑℓ

j(t) + ωℓϑ
ℓ
j(t) = ωℓ

∂

∂t
εj(t) , (32)

whereℓ = 1, ..., n is the index of the attenuation mechanism. The total number of attenuation mechanisms isn andj = 1, ..., 6 for the6

stress components in (30). A detailed description of the resulting coupled linear system of equations is given in the following Section 4.2.
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4.2 The Coupled Equation System

As shown in (K̈aser, Dumbser, de la Puente & Igel 2006), the new enlarged system ofnv = 9 + 6n partial differential equations including9
elastic and6n anelastic variables can be written in the compact form

∂Qp

∂t
+ Ǎpq

∂Qq

∂x
+ B̌pq

∂Qq

∂y
+ Čpq

∂Qq

∂z
= ĚpqQq , (33)

whereE denotes the so-calledreaction termand takes into account the energy losses introduced by the viscoelastic medium. Note that the
dimensions of the variable vectorQ, the Jacobian matricešA, B̌, Č and the source matrix̌E now depend on the numbern of attenuation
mechanisms. To keep the notation as simple as possible and without loss of generality, in the following we assume that the order of the equa-
tions in (33) is such, thatp, q ∈ [1, ..., 9] denote the elastic part andp, q ∈ [10, ..., nv], denote the anelastic part of the system, represented
by the variables in (31) and the corresponding equations in (32).

As the Jacobian matricešA, B̌ andČ as well as the source matrix̌E are sparse and show some particular symmetry pattern and as their
dimensions may become impractical for notation, we will use the block-matrix syntax.
Therefore, we decompose the Jacobian matrices as follows:

Ǎ =

"
A 0

Aa 0

#
∈ R

nv×nv , B̌ =

"
B 0

Ba 0

#
∈ R

nv×nv , Č =

"
C 0

Ca 0

#
∈ R

nv×nv , (34)

whereA, B, C ∈ R
9×9 are the Jacobians of the purely anisotropic elastic part as given in (5)- (7). The matricesAa, Ba, Ca include the

anelastic part and exhibit themselves a block structure of the form:

Aa =

2
664

A1

...
An

3
775 ∈ R

6n×9, Ba =

2
664

B1

...
Bn

3
775 ∈ R

6n×9, Ca =

2
664

C1

...
Cn

3
775 ∈ R

6n×9, (35)

where each sub-matrixAℓ, Bℓ, Cℓ ∈ R
6×9, with ℓ = 1, ..., n, contains the relaxation frequencyωℓ of theℓ-th attenuation mechanism in the

form:

Aℓ = ωℓ ·

0
BBBBBBB@

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 − 1
2

1
CCCCCCCA

, (36)

Bℓ = ωℓ ·

0
BBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 − 1
2

0 0

0 0 0 0 0 0 0 0 − 1
2

0 0 0 0 0 0 0 0 0

1
CCCCCCCA

, (37)

Cℓ = ωℓ ·

0
BBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
2

0

0 0 0 0 0 0 − 1
2

0 0

1
CCCCCCCA

. (38)

The matrixĚ in (4) representing the reactive source term that couples the anelastic functions to the original elastic system can be decomposed
as

Ě =

"
0 E

0 E′

#
∈ R

nv×nv , (39)

with E exhibiting the block structure

E = [E1, . . . , En] ∈ R
9×6n . (40)
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Here, each matrixEℓ ∈ R
9×6, with ℓ = 1, ..., n, contains the anelastic coefficientsY λ

ℓ andY µ
ℓ of theℓ-th mechanism in the form:

Eℓ =

0
BBBBBBBBBBBBBB@

λY λ
ℓ + 2µY µ

ℓ λY λ
ℓ λY λ

ℓ 0 0 0

λY λ
ℓ λY λ

ℓ + 2µY µ
ℓ λY λ

ℓ 0 0 0

λY λ
ℓ λY λ

ℓ λY λ
ℓ + 2µY µ

ℓ 0 0 0

0 0 0 2c66Y
µ

ℓ 0 0

0 0 0 0 2c44Y
µ

ℓ 0

0 0 0 0 0 2c55Y
µ

ℓ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCCCCCCCCCA

, (41)

where we should notice the different ordering of the entries with respectto what we introduced in (30) as a consequence of the different order
of the anelastic variables inside the variable vectorQ. The matrixE′ in (39) is a diagonal matrix and has the structure

E′ =

2
664

E′
1 0

. . .

0 E′
n

3
775 ∈ R

6n×6n , (42)

where each matrixE′
ℓ ∈ R

6×6, with ℓ = 1, ..., n, is itself a diagonal matrix containing only the relaxation frequencyωℓ of theℓ-th mechanism
on its diagonal, i.e.E′

ℓ = −ωℓ · I with I ∈ R
6×6 denoting the identity matrix.

As shown in the following Section 4.3, we can formulate the fully discrete ADER-DG scheme with conceptually only minor changes in order
to obtain a high order numerical scheme for solving this new enlarged system of equations, that includes viscoelatic attenuation as well as
the most general triclinic anisotropy.

4.3 The Coupled Numerical Scheme

As shown in more detail in (K̈aser, Dumbser, de la Puente & Igel 2006) the numerical scheme including viscoelastic attenuation changes due
to the enlargement of the PDE system and the addition of the reaction termE. Therefore, the discrete formulation of the ADER-DG scheme
for anisotropic elastic media as given in (19) is now written as

»“
Q̂

(m)
pl

”n+1

−
“
Q̂

(m)
pl

”n
–
|J |Mkl +

+ 1
2

4P
j=1

„
Ť j

pr
ěA

(m)

rs (Ť j
sq)

−1 + Θ
j,(m)
pq

«
|Sj |F−,j

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

+

+ 1
2

4P
j=1

„
Ť j

pr
ěA

(m)

rs (Ť j
sq)

−1 − Θ
j,(m)
pq

«
|Sj |F+,j,i,h

kl · Iqlmn(∆t)
“
Q̂

(mj)
mn

”n

−

− Ǎ∗
pq |J |Kξ

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

− B̌∗
pq |J |Kη

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

− Č∗
pq |J |Kζ

kl · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

=

= |J | Ěpq · Iqlmn(∆t)
“
Q̂

(m)
mn

”n

Mkl ,

(43)

whereΘps is specified by the particular numerical flux in (16) or (17). The matrixěA
(m)

rs now represents the enlargened matrix in (34) with
the entries of (5) which are rotated through the Bond’s transformation (13) as discussed in Section 3. We remark thatαmax remains the same
in the viscoelastic case, as the enlargement of the Jacobian matrices introduces only new eigenvalues equal to zero. Further details on the
calculation of the Godunov flux in (17) for the anelastic part of the coupledsystem can be found in the Appendix A.
Besides, the rotation matrix̌Tpq becomes larger and for the case of anelasticity in (43) has the form

Ť =

2
64

T t 0 0

0 T v 0

0 0 Ta

3
75 ∈ R

nv×nv , (44)

whereT t ∈ R
6×6 is the rotation matrix responsible for the stress tensor rotation as in the purelyelastic part and is given as

T t =

0
BBBBBBB@

n2
x s2

x t2x 2nxsx 2sxtx 2nxtx

n2
y s2

y t2y 2nysy 2syty 2nyty

n2
z s2

z t2z 2nzsz 2sztz 2nztz

nynx sysx tytx nysx + nxsy sytx + sxty nytx + nxty

nzny szsy tzty nzsy + nysz szty + sytz nzty + nytz

nznx szsx tztx nzsx + nxsz sztx + sxtz nztx + nxtz

1
CCCCCCCA

. (45)
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Table 1. Coefficients for the anisotropic, orthorhombic material given in [N · m−2] as used in the convergence study. All other coefficients are zero. The
material densityρ is given inkg · m−3.

ρ c11 c12 c13 c22 c23 c33 c44 c55 c66

1 192 66 60 160 56 272 60 62 49

The matrixT v ∈ R
3×3 is the rotation matrix responsible for the velocity vector rotation as in the purelyelastic part and is given as

T v =

0
B@

nx sx tx

ny sy ty

nz sz tz

1
CA . (46)

The matrixTa in (44) is a block diagonal matrix and has the structure

Ta =

2
664

T t 0

. . .

0 T t

3
775 ∈ R

6n×6n , (47)

where each of then sub-matricesT t is the tensor rotation matrix given in (45). A more detailed description of an efficient implementation
of the ADER-DG method for the anelastic case the reader is referred to (Käser, Dumbser, de la Puente & Igel 2006).

5 CONVERGENCE STUDY

In this section we present a numerical convergence study of the proposed ADER-DG approach on tetrahedral meshes, in order to demonstrate
its arbitrarily high order of convergence in the presence of anisotropic material. We show results from second to seventh order ADER-DG
schemes denoted by ADER-DGO2 to ADER-DGO7 respectively. We remark that the same order for space and time accuracy is obtained
automatically.
Similar to previous work (K̈aser & Dumbser 2006; Dumbser & Käser 2006; K̈aser, Dumbser, de la Puente & Igel 2006) we determine the
convergence orders by solving the three-dimensional, anisotropic, seismic wave equations on the unit-cube as sketched in Figure 1, i.e. on a
computational domainΩ = [−1, 1] × [−1, 1] × [−1, 1] ∈ R

3 with periodic boundary conditions.
The homogeneous anisotropic material parameters are given in Table 1and represent an orthorhombic material, similar to olivine as given
in (Browaeys & Chevrot 2004). The analytic solution to this problem can beformulated as

Qp(x, y, z, t) = Q0
p · ei·(ωt−kxx−kyy−kzz), p = 1, ..., 9 (48)

whereQ0
p is the initial amplitude vector of the9 components,ω are the wave frequencies to determine andkx, ky andkz are the wave numbers

in x, y andz-direction, respectively. To confirm that anisotropy is treated correctly, we superimpose three plane wavesQ
(l)
p , l = 1, ..., 3, of

the form given in (48) travelling perpendicular to each other along the coordinate axes, i.e. we have the three wave number vectors

~k(1) = (k(1)
x , k(1)

y , k(1)
z )T = (π, 0, 0)T , (49)

~k(2) = (k(2)
x , k(2)

y , k(2)
z )T = (0, π, 0)T , (50)

~k(3) = (k(3)
x , k(3)

y , k(3)
z )T = (0, 0, π)T . (51)

leading to a periodic, sinusoidal waves in the unit-cube.
In the following, we briefly line out, how we determine the wave frequenciesω. With the assumption, that equation (48) is the analytic
solution of the governing equation (4), we calculate the first time and spacederivatives of equation (48) analytically and plug them into
equation (4). From there, we can derive the eigenproblem

(Ǎpqkx + B̌pqky + Čpqkz) · Q0
q = ω · Q0

q, p, q = 1, ..., 9. (52)

Solving the three eigenproblem (52) for each wavel gives us the matrixR(l)
pq of right eigenvectorsR(l)

p1 , ..., R
(l)
p9 and the eigenvaluesω(l)

p for
each wave.
Recalling, e.g. from (Toro 1999), that each solution of the linear hyperbolic system (4) is given by a linear combination of the right eigenvec-
tors, i.e.Qp = Rpqνq, we can compute the coefficients asνp = R−1

pq Q0
q via the initial amplitude vector. Applying this procedure for each of

the three waves, we can synthesize the exact solution in the form

Qp(x, y, z, t) =

3X

l=1

R(l)
pq ν(l)

q · ei·(ω
(l)
q t−k

(l)
x x−k

(l)
y y−k

(l)
z z) . (53)
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In the convergence test, we use the superposition of three plane P-waves travelling perpendicular to each other. However, the symmetry axes
of the anisotropic, orthorhombic material is tilted with respect to the coordinate system, i.e. the symmetry axes point into the directions
(1, 1, 1),(−1, 1, 0) and (−1,−1, 2), respectively. The initial condition att = 0 is given by (53) using the combination of three right
eigenvectorsR(1)

p1 , R
(2)
p1 andR

(3)
p1 with the coefficientsν(1)

1 = ν
(2)
1 = ν

(3)
1 = 100 and zero otherwise.

The total simulation timeT is set toT = 0.02s. The CFL number is set in all computations to50% of the stability limit 1
2N+1

of Runge-
Kutta DG schemes. For a thorough investigation of the linear stability properties of the ADER-DG schemes via a von Neumann analysis
see (Dumbser 2005).
The numerical analysis to determine the convergence orders is performed on a sequence of tetrahedral meshes as shown in Figure 1. The mesh
sequence is obtained by dividing the computational domainΩ into a number of subcubes, which are then subdivided into five tetrahedrons
as shown in Figure 1. This way, the refinement is controlled by changing the number of subcubes in each dimension.
We can arbitrarily pick one of the variables of the system of the seismic waveequations (4) to numerically determine the convergence order
of the used ADER-DG schemes. In Tables 2 and 3 we show the errors for the vertical velocity componentw. The errors of the numerical
solutionQh with respect to the exact solutionQe is measured in theL∞-norm and the continuousL2-norm

‖Qh − Qe‖L2(Ω) =
“Z

Ω

|Qh − Qe|2 dV
” 1

2
, (54)

where the integration is approximated by Gaussian integration which is exactfor a polynomial degree twice that of the basis functions of the
numerical scheme. TheL∞-norm is approximated by the maximum error arising at any of these Gaussian integration points. The first column
in both Tables 2 and 3 shows the mesh spacingh, represented by the maximum diameter of the circumscribed spheres ofthe tetrahedrons. The
following four columns show theL∞ andL2 errors with the corresponding convergence ordersOL∞ andOL2 determined by successively
refined meshes. Furthermore, we present the total numberNd of degrees of freedom, which is a measure of required storage space during
run-time and is given through the product of the number of total mesh elements and the numberNe of degrees of freedom per element.Ne

depends on the order of the scheme, i.e. the degreeN of the polynomial basis functions viaNe(N) = 1
6
(N +1)(N +2)(N +3). In the last

two columns we give the numberI of iterations and the CPU times in seconds needed to reach the simulation timeT = 0.02s on a Pentium
Xeon3.6 GHz processor with4GB of RAM.
In our convergence study, we compare two different numerical fluxes, i.e. the Rusanov flux as introduced in section 3 (see e.g. in (Toro
1999)) and a Godunov flux as given in detail in Appendix A. Figure 2 visualizes the convergence results of Tables 2 and 3 to demonstrate
the dependence of theL∞ error with respect to (a) mesh widthh, (b) number of degrees of freedomNd and (c) CPU time. With mesh
refinement, for both choices of the numerical flux the higher order schemes converge faster as shown in Figure 2(a). Furthermore, Figure2(b)
demonstrates that higher order schemes reach a desired accuracy requiring a lower number of total degrees of freedom. The total number
of degrees of freedom is the product of the number of mesh elements and the degrees of freedom per element. Therefore, obviously the
increasing number of degrees of freedom of higher order schemesis over-compensated by the dramatic decrease of the number of required
mesh elements to reach a certain error level. Also the CPU time comparisonsin Figure 2(c) show that the higher order methods reach a
desired error level in less computational time. We remark that in all three plots of Figure 2 we clearly show, that for very high accuracy, the
higher order schemes with both, the Rusanov or Godunov fluxes, pay off due to their superior convergence properties.
Furthermore, we see in all plots that the Godunov flux is slightly more accurate than the Rusanov flux, which is due to well-known dissipative
property of the Rusanov flux. Additionally, we want to remark, that with increasing order of the scheme the choice of the numerical flux
seems to become less important. However, the Godunov flux always provides the more accurate results in less CPU time.

6 APPLICATION EXAMPLES

6.1 Heterogeneous Anisotropic Material

To validate the proposed ADER-DG scheme for anisotropic material in two space dimensions we show results of a heterogeneous anisotropic
test case proposed by Carcione (1988) and Komatitschet al. (2000). The computational domainΩ = [−32.5; 32.5]cm × [−32.5; 32.5]cm

is discretized by37944 triangles with an average edge length of0.5cm, equal to the edge length of the square shaped elements used by
Komatitschet al. (2000). Along the boundary ofΩ we use absorbing boundary conditions. The domainΩ contains two materials seperated
by a straigth line atx = 0. On the one side (x < 0) we have an anisotropic (transversely isotropic) zinc crystal with the symmetry axis in
y-direction, whereas on the other side (x > 0cm) we use an isotropic material. The corresponding material properties are given in Table 4.
The source represents a point force at locations = (−2cm, 0cm), i.e.2cm from the material interface inside the anisotropic material and
is acting iny-direction. The source time function is given by a Ricker wavelet with dominant frequencyf0 = 170kHz and delayt0 = 6µs

and acts on the vertical velocity componentv with a maximum amplitude of1 · 1013. Seismograms are calculated at four different locations
ri = (xi, yi), i = 1, ..., 4, with x1 = −10.5cm, x2 = −3.5cm, x3 = −1.0cm, x4 = 10.5cm andyi = −8cm for all i = 1, ..., 4 in
order to compare our results with those of Komatitschet al. (2000). The simulation is carried out using a ADER-DGO6 scheme, i.e. with
polynomial basis functions of degreeN = 5, and the Rusanov flux presented in Section 5. The time step size was20.58ns such that the final
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Figure 1. Sequence of discretizations of the computational domainΩ via regularly refined tetrahedral meshes, which are used for the numerical convergence
analysis.

Table 2. Convergence rates of the vertical velocity componentw of the ADER-DGO2 up to ADER-DGO7 schemes on tetrahedral meshes with anisotropic
material and Rusanov flux.

h L∞ OL∞ L2 OL2 Nd I CPU [s]

1.44 · 10−1 1.3726 · 10−1 − 7.1719 · 10−2 − 34560 28 20.4
1.08 · 10−1 7.9448 · 10−2 1.9 4.0897 · 10−2 2.0 81920 37 62.7
8.66 · 10−2 5.1013 · 10−2 2.0 2.6304 · 10−2 2.0 160000 46 150.4

7.21 · 10−2 3.5739 · 10−2 2.0 1.8280 · 10−2 2.0 276480 55 309.9

1.44 · 10−1 9.6109 · 10−3 − 3.0957 · 10−3 − 86400 46 44.8
1.08 · 10−1 4.2996 · 10−3 2.8 1.3268 · 10−3 2.9 204800 61 140.0
8.66 · 10−2 2.0774 · 10−3 3.3 6.8331 · 10−4 3.0 400000 76 334.7

7.21 · 10−2 1.2533 · 10−3 2.8 3.7909 · 10−4 3.2 691200 92 709.4

2.16 · 10−1 2.4197 · 10−3 − 6.0996 · 10−4 − 51200 43 21.5
1.44 · 10−1 5.6764 · 10−4 3.6 1.1436 · 10−4 4.1 172800 64 104.5
1.08 · 10−1 1.6407 · 10−4 4.3 3.8141 · 10−5 3.8 409600 85 322.6

7.21 · 10−2 3.4818 · 10−5 3.8 7.4515 · 10−6 4.0 1382400 128 1623.5

4.33 · 10−1 4.3718 · 10−3 − 8.3266 · 10−4 − 11200 28 3.4
2.16 · 10−1 1.3161 · 10−4 5.0 2.2487 · 10−5 5.2 89600 55 50.0
1.44 · 10−1 1.7960 · 10−5 4.9 2.9100 · 10−6 5.0 302400 82 248.7
1.08 · 10−1 4.2391 · 10−6 5.0 7.1098 · 10−7 4.9 716800 110 801.3

8.66 · 10−1 1.7247 · 10−2 − 3.0907 · 10−3 − 2240 17 0.5

4.33 · 10−1 3.6214 · 10−4 5.6 5.2490 · 10−5 5.9 17920 34 7.8
2.16 · 10−1 6.1905 · 10−6 5.9 7.8147 · 10−7 6.0 143360 67 118.8
1.44 · 10−1 5.4051 · 10−7 6.0 6.5986 · 10−8 6.1 483840 101 611.0

8.66 · 10−1 2.5263 · 10−3 − 4.0569 · 10−4 − 3360 20 1.2

4.33 · 10−1 2.5296 · 10−5 6.6 2.8757 · 10−6 7.1 26880 40 18.3
2.88 · 10−1 1.5502 · 10−6 6.9 1.6396 · 10−7 7.0 90720 60 91.8
2.16 · 10−1 1.9551 · 10−7 7.2 2.1993 · 10−8 7.0 215040 79 285.1
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Table 3. Convergence rates of the vertical velocity componentw of the ADER-DGO2 up to ADER-DGO7 schemes on tetrahedral meshes with anisotropic
material and Godunov flux.

h L∞ OL∞ L2 OL2 Nd I CPU [s]

1.44 · 10−1 1.0041 · 10−1 − 5.4423 · 10−2 − 34560 28 20.3

1.08 · 10−1 5.8267 · 10−2 1.9 3.0369 · 10−2 2.0 81920 37 63.3
8.66 · 10−2 3.7871 · 10−2 1.9 1.9512 · 10−2 2.0 160000 46 151.0
7.21 · 10−2 2.5901 · 10−2 2.1 1.3477 · 10−2 2.0 276480 55 310.2

1.44 · 10−1 8.8110 · 10−3 − 2.7851 · 10−3 − 86400 46 45.2

1.08 · 10−1 3.9071 · 10−3 2.8 1.1894 · 10−3 3.0 204800 61 138.6
8.66 · 10−2 1.8371 · 10−3 3.4 6.1510 · 10−4 3.0 400000 76 341.2
7.21 · 10−2 1.1421 · 10−3 2.6 3.3983 · 10−4 3.3 691200 92 703.3

2.16 · 10−1 2.1082 · 10−3 − 5.3961 · 10−4 − 51200 43 21.5
1.44 · 10−1 4.8616 · 10−4 3.6 9.8006 · 10−5 4.2 172800 64 107.7

1.08 · 10−1 1.4123 · 10−4 4.3 3.3024 · 10−5 3.8 409600 85 326.0
7.21 · 10−2 3.0079 · 10−5 3.8 6.3742 · 10−6 4.1 1382400 128 1620.8

4.33 · 10−1 3.8588 · 10−3 − 7.3824 · 10−4 − 11200 28 3.4
2.16 · 10−1 1.1900 · 10−4 5.0 2.0750 · 10−5 5.2 89600 55 51.0

1.44 · 10−1 1.6555 · 10−5 4.9 2.6735 · 10−6 5.0 302400 82 248.1
1.08 · 10−1 3.8443 · 10−6 5.1 6.5261 · 10−7 4.9 716800 110 799.5

8.66 · 10−1 1.6633 · 10−2 − 2.9909 · 10−3 − 2240 17 0.5
4.33 · 10−1 3.2571 · 10−4 5.7 4.7736 · 10−5 6.0 17920 34 7.8

2.16 · 10−1 5.4583 · 10−6 5.9 7.0059 · 10−7 6.1 143360 67 123.0
1.44 · 10−1 4.7499 · 10−7 6.0 5.8732 · 10−8 6.1 483840 101 606.7

8.66 · 10−1 2.0000 · 10−3 − 3.4171 · 10−4 − 3360 20 1.2
4.33 · 10−1 2.2341 · 10−5 6.5 2.6403 · 10−6 7.0 26880 40 18.1
2.88 · 10−1 1.4003 · 10−6 6.8 1.5055 · 10−7 7.1 90720 60 90.2

2.16 · 10−1 1.7634 · 10−7 7.2 2.0326 · 10−8 7.0 215040 79 281.4
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Figure 2. Visualization of the convergence results of the vertical velocity componentw for the Rusanov flux (dashed) of Table 2 and the Godunov flux (solid)
of Table 3. TheL∞ error is plotted versus (a) the mesh spacingh, (b) the number of degrees of freedomNd and (c) the CPU time.

Table 4. Coefficients for the heterogeneous anisotropic model given in [1010N · m−2] for the anisotropic and isotropic materials. All other coefficients are
zero. The material densityρ is given in[kg · m−3].

ρ c11 c12 c22 c66

isotropic 7100 16.5 8.58 16.5 3.96

anisotropic 7100 16.5 5.00 6.2 3.96
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Figure 3. (a) Vertical velocityv and computational mesh in the zoomed region[−0.18; 0.1625]×[−0.1625; 0.1625] at30µs. The source location is indicated
by a full (black) circle, the four receiver locations are indicated by empty (white) circles. (b) Vertical velocityv at60µs with the whole computational domain.
A variety of different phases can be identified. The source location is indicated by a full (black) circle, the four receiver locations are indicated by empty
(white) circles.

simulation timeT = 100µs was reached after4860 iterations.

Similar to (Komatitsch, Barnes & Tromp 2000) we illustrate two snapshots of the evolving wave field for a qualitative comparison. In Fig. 3(a)
we show the vertical velocity componentv after30µs in a zoomed region together with the simulation mesh. Note, that the triangular elements
are aligned with the material interface atx = 0. The locations of the source and the four receivers are also indicated by a full and empty
circles, respectively. Fig. 3(b) illustrates the wave field of the velocityv after 60µs in the entire computational domainΩ together with
the source and receiver locations. This visual comparison to the resultsof Komatitschet al. (2000) shows, that the ADER-DGO6 scheme
resolves the same wave phases as described in detail in (Komatitsch, Barnes & Tromp 2000). The typical cuspidal triangular wave structures
and the refraced waves at the interface are clearly visible.

The seismograms calculated with the ADER-DGO6 scheme at the four receiver locationsri, i = 1, ..., 4, are plotted in Fig. 4 (solid line).
The results obtained by Komatitschet al.(2000) with the SEM of spatial order6 are superimposed (dashed line). We remark, that these SEM
seismograms are obtained by digitizing the seismograms presented by Komatitschet al.(2000) and then scaling them, such that the maximum
amplitude in each plot is identical since no information about the source amplitude was given by Komatitschet al. (2000). The agreement
is excellent, in particular for the first phases. However, very small time shifts can be observed at the last phase. Komatitschet al. (2000)
already recognized this phase shift in their seismograms compared to a FD fine grid reference solution and interpreted the differences as an
effect of the staggered grid of the FD scheme. We mention, that the time shifts could also be due to their time stepping scheme, which is only
second order accurate, whereas the ADER-DGO6 scheme converges with order6 in spaceandtime, as confirmed in Table 2. We admit, that
possible errors might have been introduced also due to the digitization of theSEM seismograms.

6.2 Transversely Isotropic Material with Tilted Symmetry Axis

To verify the accuracy of the proposed scheme for a fully three-dimensional problem we perform a computation of the test case proposed
in (Komatitsch, Barnes & Tromp 2000) for a 3D trasversely isotropic medium with tilted symmetry axis. We study a homogeneous material,
in this case Mesaverde Clay shale, by applying a point source aligned with the material’s symmetry axis. In the mentioned publication, the
whole setup is tilted30o in order to add complexity to the Hooke’s tensor which in a cartesian system will now have a major number of
non-zero entries. In our case, as the fluxes are performed in coordinate systems aligned with the face of the each tetrahedron, this added
complexity is already present. However, to keep as close to the original work as possible, we also reproduce the tilted axis in our simulation.
The source is a Ricker wavelet withν0 = 16Hz andt0 = 0.07s. The computational domain is a cube of dimensions 2500m x 2500m x
2500m discretized with 48 x 48 x 48 cubes, each subdivided in 5 tetrahedra, for a total of 552 960 elements. We choose to use an ADER-
DG O6 scheme, meaning that the variables are resolved with polynomials of degreeN = 5 in space and time inside each element. Fluxes
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Figure 4. Seismograms.

Table 5. Coefficients for the transversely isotropic material (Mesaverde clay shale) given in[109N ·m−2]. All other coefficients are zero. The material density
ρ is given in[kg · m−3].

ρ c11 c12 c13 c22 c23 c33 c44 c55 c66

2590 66.6 19.7 39.4 66.6 39.4 39.9 10.9 10.9 23.45

used are of Godunov’s type. The actual material parameters, in the symmetry axis aligned reference system, can be found in table 5. Notice
that for a trasversely isotropic materialc22 = c11, c23 = c13 andc55 = c44.
The source is placed at(x, y, z) = (1250, 1562.5, 937.5) m and the receiver at(x, y, z) = (1250, 1198.05, 1568.75) m. Afterwards the
whole mesh is traslated along the vector(x, y, z) = (10, 10, 10) m so that both source and receiver are inside elements and not at points.It
is an important fact that in the ADER-DG formulation there is no need to makecoincide sources and receivers to grid points. The time step
size was197.29µs such that the final simulation timeT = 0.7s was reached after3548 iterations.
The results and comparisons with the analytical solution first derived in (Carcione, Kosloff, Behle & Seriani 1992) are shown in figure 6. We
can see the excellent agreement between analytical and numerical solutions, where we can observe both the earlyqP wave followed by the
strongerqSV wave. We also found, as in (Komatitsch, Barnes & Tromp 2000), a slightdiscrepance in the amplitudes. Note also that we use
absorbing boundaries in the outer faces of the cube, so that we don’t get any reflected wave. For the computation of the numerical solution
we needed approximately 11 hours of CPU time on 64 Intel Itanium2 64-bit1.6-GHz processors with shared-memory.
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Figure 5. (a) Snapshot of the normal stressσxx at t = 0.25s in theyz-plane atx = 1250m (top). The source and receiver positions are indicated by the
empty and full circles, respectively. The zoom region for Figure 5(b) is indicated by the box. (b) Vector field of the particle velocity att = 0.25s in the zoom
region.
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Figure 6. Numerical (solid) and analytical (dotted) displacements along the symmetry axis recorded at 728.9m from the source. The numerical solution is
computed with an ADER-DGO6 scheme and shows excellent agreement with the analytical solution

7 CONCLUSION

We have presented a high-order scheme for solving problems of seismic wave propagation for the anisotropic case on unstructured tetrahedral
meshes. The ADER-DG method has proven to be very well suited for achieving highly accurate results in arbitrarily anisotropic materials.
Two possible flux choices have been introduced and compared. Additionally a way to couple both anisotropic and viscoelastic effects has
been developed together with the changes that this coupling has in the scheme’s explicit expression. The theoretical accuracy orders have
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been achieved in convergence tests and a two medium-scale applications involving qP , qS1 andqS2 wave propagation in both homogenous
and heterogeneous media have shown a very good agreement with results obtained with other methods for wave propagation and known
analytical solutions.
We conclude that the ADER-DG method offers an excellent balance between flexibility and accuracy and in the future many applications
could be performed involving more realistic setups, particularly in areas where a clear distinction between geometry- and anisotropy-caused
phase splitting can be crucial, as is in cracked sedimentary layers or in studies of the upper mantle or oceanic crust. Future work will aim at
exploring such complex cases, as well as comparisons between the performance of other known methods for anisotropic wave propagation
and the method presented here.
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APPENDIX A: GODUNOV FLUX FOR ANISOTROPIC MATERIAL

The flux formulation we use requires the use of numerical viscosity to stabilize the scheme. This term can have different structure depending
on the flux type. The Godunov’s (also referred as Roe’s) method ensures the theoretical minimum viscosity by the use of the matrix|A| as
a stabilizing factor. This matrix in practice decomposes the characteristic waves at an interface into purely outgoing and purely incoming. It
has formally the expression

|A| = R |Λ|R−1 , (A1)

where|Λ| is a diagonal matrix containing the absolute values of the eigenvectors of thejacobianA, expressed at the interface and oriented to
the normal of it, andR is the matrix of right eigenvectors ofA. BothR andΛ are assumed to have the same ordering, meaning that the first
column ofR corresponds to the first eigenvalue ofA appearing inΛ, the second column ofR corresponds to the second diagonal element in
Λ and so on. The non-zero eigenvalues ofA, for both elastic and viscoelastic cases, can be found by solving the cubicequation system (18).
In the following we will always assume an strictly descending ordering of the eigenvalues that composeΛ andR.

A1 Computation of the elastic part of |A|

If we assume a general shape of the right eigenvectors~Ri =
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of which 3 are dependant on the rest and the other six can be expressed in compact form as the following homogeneous linear system
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with X = c11 −α2
i ρ, Y = c66 −α2

i ρ andZ = c55 −α2
i ρ, beingαi the eigenvalues. Note that this is exactly the Kelvin-Christoffel equation

for anisotropic media which can be obtaied from plane-wave analysis (Carcione 2002). However this equation appears here naturally from an
eigendecomposition of the jacobians of our scheme (5). The solution of the linear system (A2) for thei = 1, . . . , 9 values completely defines
the 9 right eigenvectors. The fact that the matrix of system (A3) has always zero determinant (equation (18) assures this) makes certain that
we will always have non-trivial solutions. Knowing the values ofr7

i , r8
i andr9

i we can use (A2) to obtain the rest of~Ri. Finally we would
obtain the right eigenvector matrix
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where the eigenvectors 4 to 6 are a choice. For the left eigenvectors, defined ~Li =
`
l1i , l2i , l3i , l4i , l5i , l6i , l7i , l8i , l9i

´
, there exists the eigende-

composition~LiA = αi
~Li for which we can explicitly write a series of equations which are

c11l
1
i + c16l

4
i + c15l

6
i = αil

7
i c16l

1
i + c66l

4
i + c56l

6
i = αil

8
i c15l

1
i + c56l

4
i + c55l

6
i = αil

9
i

l2i = 0 l3i = 0 l5i = 0
l7i
ρ

= αil
1
i

l8i
ρ

= αil
4
i

l9i
ρ

= αil
6
i

(A5)

which similarly as in theR case, can be expressed compactly by the homogeneous system

0
B@

X c16 c15

c16 Y c56

c15 c56 Z

1
CA

0
B@

l1i
l4i
l6i

1
CA =

0
B@

0

0

0

1
CA , (A6)
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where we can observe the symmetries between the left and right eigenvectors, which arer1
i = l7i , r4

i = l8i , r6
i = l9i , r7

i = l1i , r8
i = l4i and

r9
i = l6i . This allows us to find left eigenvectors ofA, but to avoid scaling problems, we want that left eigenvectors such thatL = R−1 holds.

To this goal we set up the normalization

 
~Li

2αiSi

!
~Ri = 1 , (A7)

of which we can conclude thatSi = ρ
h`

r7
i

´2
+
`
r8

i

´2
+
`
r9

i

´2i
. Now we can finally write down theL matrix of left eigenvectors as a

function exclusively of the right eigenvectors’ components with the following expression

L = R−1 =

0
BBBBBBBBBBBBBBBBB@

r7
1

2α1S1
0 0

r8
1

2α1S1
0

r9
1

2α1S1

r1
1

2α1S1

r4
1

2α1S1

r6
1

2α1S1
r7
2

2α2S2
0 0

r8
2

2α2S2
0

r9
2

2α2S2

r1
2

2α2S2

r4
2

2α2S2

r6
2

2α2S2
r7
3

2α3S3
0 0

r8
3

2α3S3
0

r9
3

2α3S3

r1
3

2α3S3

r4
3

2α3S3

r6
3

2α3S3

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

− r7
3

2α3S3
0 0 − r8

3
2α3S3

0 − r9
3

2α3S3

r1
3

2α3S3

r4
3

2α3S3

r6
3

2α3S3

− r7
2

2α2S2
0 0 − r8

2
2α2S2

0 − r9
2

2α2S2

r1
2

2α2S2

r4
2

2α2S2

r6
2

2α2S2

− r7
1

2α1S1
0 0 − r8

1
2α1S1

0 − r9
1

2α1S1

r1
1

2α1S1

r4
1

2α1S1

r6
1

2α1S1

1
CCCCCCCCCCCCCCCCCA

, (A8)

where the eigenvectors 4 to 6 are a choice. We can now finally apply the equation (A1) and, without loss of generality, definer̄i
j =

ri
j√
Si

to

get the expression of|A| as

|A| =

3X

i=1

0
BBBBBBBBBBBBBB@

r̄1
i r̄7

i 0 0 r̄1
i r̄8

i 0 r̄1
i r̄9

i 0 0 0

r̄2
i r̄7

i 0 0 r̄2
i r̄8

i 0 r̄2
i r̄9

i 0 0 0

r̄3
i r̄7

i 0 0 r̄3
i r̄8

i 0 r̄3
i r̄9

i 0 0 0

r̄4
i r̄7

i 0 0 r̄4
i r̄8

i 0 r̄4
i r̄9

i 0 0 0

r̄5
i r̄7

i 0 0 r̄5
i r̄8

i 0 r̄5
i r̄9

i 0 0 0

r̄6
i r̄7

i 0 0 r̄6
i r̄8

i 0 r̄6
i r̄9

i 0 0 0

0 0 0 0 0 0 r̄1
i r̄7

i r̄1
i r̄8

i r̄1
i r̄9

i

0 0 0 0 0 0 r̄4
i r̄7

i r̄4
i r̄8

i r̄4
i r̄9

i

0 0 0 0 0 0 r̄6
i r̄7

i r̄6
i r̄8

i r̄6
i r̄9

i

1
CCCCCCCCCCCCCCA

. (A9)

Notice that for obtaining the numerical value of the entries of (A9) we only need to know the 3 positive eigenvalues and their corresponding 3
solutions of the system in (A3). The remainingrj

i values are obtained explicitly from using the expressions in (A2). Notice that only material
values are involved in the whole|A| computation, so that the values we compute don’t change with time.

A2 Computation of the anelastic part of |A|

The anelastic part of|A| can be also found by a similar procedure. Let’s consider the general case in which we haven attenuating mechanisms.
For each attenuating mechanism we introduce 6 new eigenvectors and eigenvalues. However the new eigenvalues have value zero so that,
following our decreasing ordering, the eigenvalues areα1 = −α9+6n, α2 = −α8+6n, α3 = −α7+6n andαi = 0 for i = 4, . . . , 6 + 6n.
The right and left eigenvectors will now have the shape

~Ri =
“
r̄1

i , r̄2
i , r̄3

i , r̄4
i , r̄5

i , r̄6
i , r̄7

i , r̄8
i , r̄9

i ,
ω1r̄7

i

αi
, 0, 0,

ω1r̄8
i

2αi
, 0,

ω1r̄9
i

2αi
, . . . ,

ωnr̄7
i

αi
, 0, 0,

ωnr̄8
i

2αi
, 0,

ωnr̄9
i

2αi

”T

,

~Li =
`
r̄7

i , 0, 0, r̄8
i , 0, r̄9

i , r̄1
i , r̄4

i , r̄6
i , 0, 0, 0, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0

´
,

(A10)

which brings us the possibility of building up the blocks for theℓ-th mechanism, analogous to that of equation (36) for theA case, which are

A
||
ℓ = ωℓ

3X

i=1

0
BBBBBBBBB@

r̄7
i

r̄7
i

αi
0 0

r̄7
i
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r̄9
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αi
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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i
r̄8

i

2αi
0 0

r̄8
i

r̄8
i

2αi
0

r̄8
i

r̄9
i

2αi
0 0 0

0 0 0 0 0 0 0 0 0
r̄7

i
r̄9

i

2αi
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r̄8
i

r̄9
i

2αi
0

r̄9
i

r̄9
i

2αi
0 0 0

1
CCCCCCCCCA

, (A11)
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from which we can recover the isotropic case by setting
`
r7
1, r8

1, r9
1

´
= (1, 0, 0),

`
r7
2, r8

2, r9
2

´
= (0, 1, 0) and

`
r7
3, r8

3, r9
3

´
= (0, 0, 1).


