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SUMMARY

We present a new numerical method to solve the heterogeméamstic anisotropic wave equa-
tion with arbitrary high order accuracy in space and time pstwctured tetrahedral meshes.
Using the most general Hooke’s tensor we derive the veletigss formulation leading to a
linear hyperbolic system which accounts for the variatibthe material properties depend-
ing on direction. This approach allows for the modeling @dlimic anisotropy, the most gen-
eral cristalline symmetry class. The proposed method coesbthe Discontinuous Galerkin
method with the ADER time integration approach using aajthigh order derivatives of the
piecewise polynomial representation of the unknown sofutin contrast to classical Finite
Element methods discontinuities of this piecewise polyiabmpproximation are allowed at
element interfaces, which allows for the application of tal-established theory of Finite
Volumes and numerical fluxes across element interfacesngotéy the solution of derivative
Riemann problems. Due to the ADER time integration techmitpe scheme provides the same
approximation order in space and time automatically. Furttore, through the projection of
the tetrahedral elements of the physical space onto a czaloaference tetrahedron an efficient
implementation is possible as many three-dimensionajiateomputations can be carried out
analytically beforehand. A numerical convergence studifioms that the new scheme provides
arbitrary high order accuracy even on unstructured tethatheneshes and shows that compu-
tational cost and storage space can be reduced by highersmtiemes. Besides, we present
a new Godunov-type numerical flux for anisotropic materiad aompare its accuracy with a
computationally simpler Rusanov flux. Finally, we valid#te new scheme by comparing the
results of our simulations to an analytic solution as weliceSpectral Element computations.

Key words. anisotropy, Discontinuous Galerkin method, high orderueacy, tetrahedral
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1 INTRODUCTION

Anisotropic media are those whose material properties differ whenurezas different directions. Exploration geophysics have for a long
time paid attention to the anisotropic behaviour of the seismic waves in the soilén to resolve, for example, crack alignment (Crampin,
Chesnokov & Hipkin 1984; Helbig 1994) in hydrocarbon reservoimweler, for many years anisotropy has been disdained as segondar
effect in earthquake seismology. Now, as imaging of the Earth’s deagtwre is constantly improving, anisotropic material properties in-
fluencing seismic wave propagation have received more attention §Ba&62; Cara 2002; Carcione 2002). In particular, it is essential to
include anisotropy in high order accurate seismic simulation methods efomne, it has been shown that strong stress regimes can enhance
the anisotropy of materials (Sharma & Garg 2006) which requires tlefutareatment of anisotropy in earthquake simulations and seismic
wave propagation modeling at all scales.

In addition, the improvements of our knowlegde of the geological anglgesical properties of subsurface models in seismologically inter-
esting regions often show highly complex geometries. This increasingleaity still presents a challenge for numerical methods based on
regular, structured gridding. On the other hand, numerical methodeametrically more flexible unstructured tetrahedral meshes until to-
day could not provide high order accuracy. Therefore, mostogues were forced to find a compromise between preserving thdediyp

of the models and having highly accurate results.
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In the past, many approaches describing anisotropic wave propadatierbeen developed. Early attempts aimed at the simplification of
anisotropic effects for some weakly anisotropic media (Thomsen 19&&g, Every & Wright 2001). Analytical and quasi-analytical solu-
tions to simplified cases exist and ray theory can handle the problem toesaems Cerver;’/ 1972). However, when heterogenous materials
and complex geometrical structures are involved only three-dimensfaitavave form simulations are able to provide satisfying results.
The most widely used method, the Finite Difference (FD) method, hasssfully been extended from isotropic (Madariagal976; Virieux
1984; Virieux 1986) to anisotropic problems using staggered (Mor8;18@l, Mora & Riollet 1995) or rotated staggered grids (Saenger &
Bohlen 2004). However, both approaches are forced to interpolassind strain off-diagonal values as they are not defined in the same
grid points. Pseudospectral (PS) methods (Carcione 1994; Te8sKesloff 1994; Fornberg 1996; Igel 1999) have been extendedito h
dle anisotropic material in (Carcione, Kosloff & Kosloff 1988; Tessh@95; Hung & Forsyth 1998). More recently, the Spectral Element
Method (SEM) has considerably gained in popularity due to its accuratyefficiency on deformable hexahedral elements (Komatitsch
& Vilotte 1998; Komatitsch & Tromp 1999) and has also been further d@esldor anistropic problems in (Seriani, Priolo & Pregarz
1995; Komatitsch, Barnes & Tromp 2000) and successfully been apolithe case of global seismic wave propagation in (Komatitsch &
Tromp 2002). Recent attempts of incorporating anistropy in fully ungirad grids in (Gao & Zhang 2006) represent an alternative approach

Combining anisotropy with viscoelasticity is non-trivial task. Initial straightfard attempts have centered themselves in using complex val-
ues for each of the 21 independent coefficients of the general Famkesor (Auld 1990). Alternative constitutive laws that solve the most

general case based on different constitutive relations were deddbyp@arcione & Cavallini 1994), based in the concept of eigenssesse

and eigenstiffnesses, or (Carcione 1995) in which the concepts of amebdeviatoric stresses allow to build an attenuation implementation
based on memory variables, making it both accurate and easy to implentieme-domain numerical modelling.

In this paper, we extend the Discontinuous Galerking (DG) approach wiitiedantegration approach using Arbitrary high order DERivatives
(ADER) presented in (Eser & Dumbser 2006; Dumbser &lser 2006; Kser, Dumbser, de la Puente & Igel 2006) to the three-dimensional
anisotropic case for the most general triclinic cristalline symmetry cldss ADER-DG method provides arbitrary high order accuracy in
space and time on unstructured tetrahedral meshes, which makeyg #ttractive when complicated model geometries are involved. To
our knowledge the ADER-DG approach provides the first numerid¢arse achieving high order polynomial approximation for anisotropic
seismic wave propagation on three-dimensional unstructured meshes.

The paper is structured as follows. In Section 2 we present the linearbhglic system of the anisotropic seismic wave equations in
velocity-stress formulation. In Section 3 we show the extension of the ADBRscheme to anisotropic material with particular focus on
a new Godunov-type numerical flux. The coupling of anisotropy ancbeigstic attenuation is derived in Section 4. A convergence study
is presented in Section5 in order to validate the high order accuracy ofethéADER-DG scheme for anisotropic material. Finally, in
Section 6 we demonstrate different application examples to confirm tfarpance of the proposed method by comparisons of our results
with analytical solutions and results of the Spectral Element Method. Settummarizes the work presented and provides concluding
remarks.

2 ANISOTROPIC SEISMIC WAVE EQUATIONS

The most general linear elastic stress-strain relation can be exptassegh a tensorial constitutive law (Hooke'’s Law), see e.g. (Stein &
Wysession 2003), of the form
Oij = Cijkl€kl (1)

The entries of the fourth-order elasticity tensggy,; can be reduced t@1 independent real coefficients in the most general case due to
symmetry considerations. Using matrix notation, the stressesnd straing; are defined as vecto®= (0., 0yy, 02z, Oy, Oyzy Oaz) "
andé = (Exz, Eyy, €22, €y, Eyzs Exz) - and we can rewrite (1) using an anisotropic elastic malfix as

i = Mj;e5, @
which extended in more detail reads as

Ozx c11 c12 c13  2c14  2c15  2ci16 Exx

Oyy Ccl12 Ca2 €23 2c24 2c25 2c26 Eyy

0zz | | ci3 ces ¢33 2c3a 2c35  2c36 €2z 3)

Oyz C14 Coa €314 2c4a 2c45 2c46 Eyz

Oz c15 C25 C35 2C45 2C55 2C56 Exz

Oy C16 C26 €36 2C46 2Cs56 2Ce6 Ezy

Considering all21 independent coefficients iff;; we can represent a triclinic material, which is the most general caseisuitaopy

and includes as special cases all other cristalline symmetry classasoneclinic, trigonal, tetragonal, orthorhomic, hexagonal, cubic
and isotropic, as shown in (Nye 1985; Okaya & McEvilly 2003). Themfdsotropy can be understood as the particular case in which
c11 = 22 = €33 = A+ 2u, c12 = c13 = c23 = A, caa = ¢55 = ce6 = w1 and all other coefficients equal to zero. In non-isotropic cases
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the actual values of the coefficients of the matkif; in (3) depend on the orientation of the reference system we use. Ceantadirapic
symmetry classes exhibit symmetry axes. Therefore, appropriarenee systems can be chosen in a way that structured grids aredaligne
to these symmetry axes. However, when modeling anisotropic wavagetpn on unstructured meshes the reference coordinate system for
each interface between two neighbouring elements, where numerices thave to be computed, generally has a different orientation from
the others and therefore a particular symmetry class can not be exploitidtt, we generally have to treat a triclinic symmetry at each
element interface due to its arbitrary orientation within an unstructured éstrahmesh. In the following, however, we consider the elastic
properties of the anisotropic medium refering to the underlying physa@idinate system that also defines the orientation of stresses and
strains or the physical coordinates of mesh nodes.

Combining the constitutive relation in (3) with the equations of motion, see(leeyeque 2002), leads to a complete partial differential
equation system of the shape

OQp oQ oQ

A q q
ot T, y
whereQ is the vector of the unknown stresses and velocities(J.es (0.x, Oyy, Tz, Ouy, Oy, 0z, u, v, w) " . Note, that classical tensor

notation is used, which implies summation over each index that appears Wieenatricesd,; = Apq(Z), Bpg = Bpq(Z), andCpq =
Cpq(Z) are the space dependent Jacobian matricespyith= 1, ..., 9, and are given through

0
4 Cpy i‘l =0, 4

+ Bpq

0 0 0 0 0 0 —C11  —Cig —Ci5
0 0 0 0 0 O —C12 —C26 —C25
0 0 0 0 0 O —C13 —C36 —C35
0 0 O 0 0 0 —C16 —Cg6 —C56
Apg = 0 00 0 0 0 —cia —ca6 —Ca5 , )
0 0 0 0 0 0 —C15 —Cs56 —Cs5
—% 00 0 0 O 0 0 0
0 0 0 f% 0 0 0 0 0
0 00 0 O —% 0 0 0
0 0 0 0 0 0 —cig —cCi2 —cCia
0 0 0 0 0 0 —cog —C22 —cCo2a
0 0 0 0 0 0 —C36 —C23 —C34
0 0 0 O 0 0 —ces —Cas —Cas
Byy=0 0 0 0 0 0 —ca6 —cC24 —Caa , (6)
0 0 0 0 0 0 —C56 —C25 —C45
0 0 0 —% 0 0 0 0 0
0 f% 0 0 0 0 0 0 0
0 0 0 0 —% 0 0 0 0
0 0 0 0 0 0 —C15 —C14 —C13
0 0 0 0 0 0 —Ca5 —C24 —C23
0 0 0 0 0 0 —C35 —C34 —C33
0 0 0 0 0 0 —C56 —C46 —C36
Cpq = 00 0O 0 O 0 —C45 —C44 —C34 , (7
0 0 0 0 0 0 —Cs5 —C45 —C35
0o o o o -1 0 0 0
00 0 O —% 0 0 0 0
00 -1 0 o 0 0 0 0

»
where the coefficients;; are those of the anisotropic elastic matkif; of (2) or (3) andp is the mass density of the material. We remark that
analytically determining the eigenstructure the Jacobian matrices definBj %) and (7) is much more difficult for the anisotropic case
than for the purely isotropic case as presented in the previous workl{Eem& Kaser 2006; lser, Dumbser, de la Puente & Igel 2006). As
shown in the following Section 3 this leads to modifications in the formulation cADER-DG scheme.

3 THE NUMERICAL SCHEME

The computational domaift € R? is divided into conforming tetrahedral elemef§™ being addressed by a unique index). Further-
more, we suppose the matricéls,, B,,, andC,, to be piecewise constant inside an elem&ft’. The numerical solutio;, of equa-
tion (4) is approximated as shown in (Dumbser &g€ér 2006) inside each tetrahedfbi™ by a linear combination of space-dependent but
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time-independent polynomial basis functichg¢, 1, ¢) of degreeN with supportZ ™ and with only time-dependent degrees of freedom
QU (1), i.e.

( g’”))p (5’ 7, C, t) = QALTZVL) (t)(I)l (57 7, C) ) (8)

where¢, n and(¢ are the coordinates in a canonical reference eleMgnEor a detailed definition of these coordinates together with the basis
functions®; see (Dumbser & Eser 2006; Dumbser,dser & de la Puente 2006). Multiplying (4) by the test functionand integrating
over a tetrahedral elemeft™ gives

b B B )
/ o, aQtpdV+ / o, (qu%+3pq aqu+cpq ;iq)dvzo. )
T(m) 7 (m)

By applying integration by parts to the last integral of (9) we obtain

0 0P oP 0o
/ o éQtpdV + / @kF;];dS - / (T;Aqu + T;quQq + Tzkcquq) av =0, (10)

7(m) a7 (m) 7 (m)

where a numerical quFﬁ has been introduced in the surface integral sifgemay be discontinuous at an element boundary. Here, two
major changes with respect to the isotropic case appear.

First, we need to introduce the matei™ which is similar to the matrix4 of (5), however, with the entries; rotated from the global
coordinate system to a local coordinate system of a tetrahedron’sThiselocal coordinate system is defined by the normal vegGtes
(nz,ny,n.)" and the two tangential vectols= (s, sy,5-)" andt = (t.,t,,t.)”, which lie in the plane determined by the face of the
tetrahedron and are orthogonal to each other and to the normal vedtsually we define vecta¥ such that it points from the local face
nodel to the local face nod®. The exact definitions of the vectofis 5 and? as well as the local vertex numbering of a tetrahedral element
can be found in (Dumbser & &er 2006). The rotation to this local coordinate system is done by apphgngo-called Bond’s matrix
N (Bond 1976; Okaya & McEvilly 2003)

2 2 2

n; ny n; 2n.ny 2N.Na 2nyng
si sg sg 25,8y 28,84 25y5:
t2 t2 t2 2t .t 2t .ty Qyts
N = Y Y Y (12)

Szt Syly Syt Sylz + Szty Szty + Sty Syle + Saty
taNe  tyNy  T2ne Nyt +nzty Nl + N2ty Nyte + gty
NgSz  MNySy MNzSz MNySz + SNy  MNzSz +NzSz  NySz + Nz Sy

to the Hooke’s matrix of the global reference system

C11 €12 C13 Ci4 Ci5 Ci6
Ci12 C22 C23 C24 C25 C26
€13 C23 €33 C34 C35 C36 (12)
Cla C24 C34 C44 C45 C46
C15 C25 €35 C45 C55 Cs56
Ci6 C26 C36 C46 Cs56 Ce66

leading to the Hooke’s matrig in the local reference system of the tetrahedron’s boundary face
C=N-C-N". (13)

We remark that in the isotropic case matfixs invariant under coordinate transformation, feso = C;s0. Therefore, this rotation could be
skipped for the isotropic case discussed in (Dumbsera&e€ 2006; lser, Dumbser, de la Puente & Igel 2006).

The second modification comes through the different approachebdonumerical flux computation. The general definition of the our
numerical flux incorporating anisotropic material can be written as

1 ~(m - A(m) (m) |, 1 ~(m - A(my)  (my)
B = 5 (T AT (1) 7 40,0 ) Q6™ + 5 (Toa AG (1) = 0,0) QU 0™, (14)
where Q™ ¢(™ and Q™) (™) are the boundary extrapolated values of the numerical solution fromeatsfi™ and its j-th side
neighbourZ (™), respectively. To simplify notation, in the following, we drop the inderdicating thej-th face of the tetrahedrgi (™.
TheA§T> is the Jacobian matrid,,, defined in (5) but with the rotated coefficierts from the Hooke’s matrixC as computed in (13). The

rotation matrix7},, that transforms all variables @}, from (4) into the reference system associated to the tetrahedrah’é&ace has the
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same expression as in the isotropic case in (Dumbse&ageK2006) and reads as

ni si ti 2Nz Sz 28zts 2Nty 0 0 0
ng 52 te 2Ny 5y 25yty 21ty 0 0 O
nz sﬁ ti 2N, S, 28,1, 2n.t. 0 0 0
NyNe  SySz  tylz NySe +NzSy  Syle + Saty Nyte +naty 0 0 0
Tpq = | many  s.8y taty MaSy+nys. Sty +Syt: naty+ngt. 0 0 0 (15)
NNy SzSz  lztz MzSg + NSz Szly + Szt nztz +ngt: 0O 0 O
0 0 0 0 0 0 Ng Sz la
0 0 0 0 0 0 Ny Sy 1y
0 0 0 0 0 0 n, S, ¢t

The matrix©,; is a numerical viscosity term whose particular form determines the fluxwygpeish to use and depends on the orientation
of the interface with thg-th side neighbour. In the following, we introduce the Godunov flux andRtiganov flux which have a numerical
viscosity matrix of the form

(@PS)Rusanov = amuz]ps ) (16)
Agr| Trs (17)

(GPS)Godunov = qu

wherel, is the identity matrix. The computation of the Godunov flux requires knovdeddhe eigenstructure of the Jacobian maﬁi%.

This, for the anisotropic case, is a hon-trivial issue as it requires theattion of‘ Eqr , which in turn usually requires the knowledge of the

left and right eigenvectors quT. A new method to obtain the Godunov flux in (17) for anisotropic materialdsgnted in the Appendix A.
Alternatively, the Rusanov flux (LeVeque 2002) requires only the kedge of the maximum eigenvalue df;.. This value isapmaer =
maz(a;), wherea; are the roots of the following polynomial of

XYZ — XCEG — YC?S — ZC%G + 2015016056 = 0, (18)

where the coefficients;; are the entries of the Hooke’s matiixof (13) rotated into the local reference system of kb side of the tetra-
hedral element. Furthermore, we used the substitufons c;1 — a?p, Y = ¢ — a®p andZ = c55 — o p. As can be seen from (18) we
are searching the maximum value of the possiblpots of polynomial of degreé. However, the substitutions using, Y and Z tell us,

that there are only three different values to search for, as (18septs a cubic polynomial of. We can exclude the possibility of having
complex eigenvalues, i.e> < 0, as this would imply the loss of hyperbolicity of the PDE system in (4). Thesigayinterpretation of the
eigenvalues is that they represent the speed at which the differenatty@as are propagating in normal direction throughjtile element
face. This is a known result for the anisotropic phase wave speedmffit 1981) which appears here naturally from the eigendecompo-
sition of the jacobians of our scheme (5). In general the resulting waneesalledquasiwavesqP, ¢S;1 andgS2; ordered in decreasing
magnitude of their velocities (Crampin 1981). For the isotropic case wédvgmt the positive and negative P-wave velocity and two positive
and negative S-wave velocity of the same absolute value. These valuespond to the two differently and perpendicularly to each other
polarized S-waves.

Once the maximum eigenvalug,,., is determined, the Rusanov flux is given via (16). As the full derivatibthe numerical scheme
would go beyond the scope of this work we refer the reader to previouk (Kaser & Dumbser 2006; Dumbser &aser 2006) for the
mathematical details. Instead we give the final form of the fully discretERIDG scheme, which after transformation into the canonical
reference elemerifz and time integration over one time st&g from time leveln to the following time leveh + 1 reads as

Alm n+1 Alm)\ ™
{(Q;z )) - (Q;z )) } |J| M+
4 . . A\ 7
+ 33 (TR AT (L) + 03 ) 1S5 i« Lumn (1) (QU)) " +
Jj=1
(19)
4 n
. ~(m . _ . ,’,Z’, A(m)
* %]E:l (Trquér>(Tﬂ5) ! _925) |SJ'|F}:Z] " ’Iqlmn(At)( ma ) -
— A IS Lo (A (QE3)) = Big 1T KT Lt (A0) (QU5)) " = Cg 11K, - T (A0) (Q5) " = 0,

wherel,;4m (At) represents the high order ADER time integration operator that is applied tte¢iees of freedoré@%’lf) ! at time level

n. The matricesMy;, kal’j and K; are the mass matrix, flux and stiffness matrices, respectively, inchatesntegrations of our basis
functions and can be computed beforehand as shown in more detailinb@&r & Kaser 2006). The resulting ADER-DG scheme provides
automatically high order approximation in space and time and allows us téeugavalues of our unknown variables from a timeste

a following t™** without store any intermediate values as typically necessary for classittistage Runge-Kutta time stepping schemes.
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Furthermore, the scheme has a very local character, as the evolfitte@riables in time within the elemeft™ depends only on the
variables associated to the elem@Ht™ itself and its direct neigbourg (™), with j = 1, ..., 4.

4 COUPLING OF ANISOTROPY AND VISCOELASTICITY

Anisotropy and viscoelastic attenuation play an important role as segoeifiacts in sesimic wave propagation modeling. The incorporation
of anisotropy into the ADER-DG framework has been discussed in thégms Sections 2 and 3. Viscoelastic attenuation, however, was
introduced in (Kaser, Dumbser, de la Puente & Igel 2006). In order to accuratelgledaoth effects we use the concepts of mean and
deviatoric stresses first presented in (Carcione 1995) and adaptadhigym rheological model of the Generalized Maxwell Body (GMB)
as suggested in (Emmerich & Korn 1987). At first we define the uniherlphysical theory of viscoelastic anisotropy. Then we present in
detail how viscoelasticity changes the anisotropic PDE system as giveh Firfdlly, we explain how the ADER-DG scheme presented in
Section 3 has to be modified in order to couple anisotropy and viscoelasticity.

4.1 Viscoelastic Anisotropic Wave Propagation

The mean stress and mean straig, as well as the deviatoric streg8 and deviatoric straig” are defined as

1
o = g(”mJFUnyFUZZ)a (20)
1
g = 3(5m+€yy+szz), (21)
7’ = 7-7, (22)
e = z-¢, (23)

where we remark that the mean stress and strain are invariant urmdinte transformation. As shown in (Carcione 2002) we need a total of
four attenuation moduli to model viscoelastic attenuation in an anisotropimme®ne purely dilatational modulus and three shear moduli.
In this case, the mean stresslepends only on the dilatational modulus while the deviatoric s&#&senly depends on the shear moduli.
The stress-strain relation in the general case can be expressed iagterfcy domain or in the time domain, e.g. see (Moczo, Kristek &
Halada 2004) for the isotropic case, which reads in the anisotropic Caseigne 1995) as

gi(w) = Mi(w)j(w), (24)
- 0 - -
Git) = 5 (Tu®) 50 =My x50, (25)
where the so-callerklaxation matrix®;; (t) is given by
Uii(t) Wia(t) Wis(t) 2c14 2c15 2c16
Wia(t) Wao(t) Was(t)  2c24 2¢25 2¢26
Uig(t) Wos(t) Wss(t) 2c34 2c35 2c36
W,;(t) = -H(t). 26
i) Cl4 C24 C34 2W 44 (1) 2¢45 2c46 ®) (26)
C15 C25 35 2ca5  2Wss(t)  2cs6
c16 C26 C36 2c46 2c56 2Wes(t)

Here, H (t) is the Heaviside step function and the compondntgt) can be expressed as
Z aix® with  gi¥ eR, (27)

wherey,ﬁf’ are real numbers, combinations of the entries of the elastic Hooke’s tensor and &, calledrelaxation functionscontain

the time functionality of the relaxation matrix’s entries, normalized such &t = 1 for ¢ = 0 and by defining the mode’s complex
modulus as\/*® (w) = d(x® (t)H (t))/dt, this modulus behaves ag® (w) — 1 for w — oo.

In (Moczo, Kristek & Halada 2004) we can find a formulation of the GMExation mechanisms that, once normalized, can be used to

express tha*) (¢) as
X)) =1-2v® (1—e ), for k=1,2,34
(=1 (28)
X () =1, for k=0

wheren is the number of attenuating mechanisms used. These GMB relaxatidioAsfulfill the conditions discussed above. The= 0
case is shown for completion but doesn't represent a relaxatiotidartaut, more accurately, a lack of it. As we have a constétitvalue we
obtain an instantaneous response, so that we are talking about an etzdgicWe remark that in the elastic casegéﬁ) =0, if k # 0, thus

having exclusively that instantaneous response and, as a consegoerenergy losses. In the viscoelastic isotropic case Weglﬁj’é\/& 0,
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except fork = 0, k = 1 (dilatational mode) ané& = 2 (first shear mode).
Finally we can find the coeﬁicien@f) that ensure the separation of the dilatational and shear modes of theatiirr{Carcione 2002)
giving us the entries of (27) by

Uiu(t) = (X +2m) + A+ 2m) XV ) + Gr) xP (),  for i<3
Tiit) = cii— A+ A+ 2m) xV@) - 2axP (), for i,5<3 and i#j
Vaa(t) = caaxP (1) (29)
Uss(t) = essxP (D)
Wes(t) = coox' (D)
with the definitionsz = % (caa + 55 + ce6) aNdX = % (c11 + c22 + c33) — 2. We can also redefine the anelastic coefficients such as

XY _ (A + S'LL) Y£<1 % Y52>’ }/’é/ll _ YZ<2 'YZMZ _ YZ(S) andYZN% _ Yg(4)-
Now, making use of the last identity in (25) we derivate in time the comporwritse tensor®;;(¢) that are given in (29) to obtain the
anisotropic viscoelastic stress-strain relation

Oz c11 ci2 c13 2c14 2c15  2c16 Exx
Oyy €12 C22 C23  2C24  2c25  2c26 Eyy
Ozz _ c13 €23 €33 2c3a 2035 2C36 €2z
Oyz - Cl4 C24 C34 2C4a 2ca5 2cC46 Eyz
Oxz c15 C25 €35 2C45 2055 2056 €z
Oxy Cle C26 C36 2C46 2C56 2Ce6 Eay
AY) + 2yt AY) AV 0 0 0 Ve,
PNZA AV + 2py AYR 0 0 0 9,
B - Y N7 AY) + 2mY )t 0 0 0 Ve, (30)
p 0 0 0 2ca4 Y 0 0 0y
0 0 0 0 2e55Y)"? 0 9,
0 0 0 0 0 2c66 Y ey
Here, the the anelastic function = (9, 9", 9%., 9", 9%.,9%,)" are defined by
3 =il ([ o (ryewet=—)
() = wem 51 (/ e;j(T)e dr) , (31)

as shown in (Moczo, Kristek & Halada 2004). The anelastic coefficieate ko be fitted to the particula-law over a desired frequency
range by using a number of relaxation frequeciess outlined in more detail in &ser, Dumbser, de la Puente & Igel 2006).

Notice here that this formulation even admits anisotropic attenuation, metir@nge can have differer® values for each of thg shear
attenuating modes. However, our knowledge of the quality fag®isside the earth is often poor and rarely would allows us to consider
any dependence on direction of the values of @actors. Therefore, in the following we limit ourselves to the case in whiténua-
tion is considered as an isotropic effect, even if the medium is anisotropis.means, tha@”' = Q"2 = Q*3 and therefore we can
defineY/} = Y/ = Y/ = Y/}''. Note, that the stress-strain relation in (30) provides the general masevhich we can infer the
anisotropic elastic case by defining® = 0 and Y/ = 0, thus recovering (3). The viscoelastic isotropic case is obtained byirdgfin
c11 = €22 = €33 = A+ 2, c12 = c13 = c23 = A andcas = ¢55 = ce6 = p With all other coefficients;; equal to zero. This way, we also
obtain\ = X andz = 1 as a consequence.

The use of the anelastic functiotig requires the storage 6fnew variables per attenuation mechanism in each tetrahedral elemdmvbkat
to be updated at every time step, as already shown &s€Kk Dumbser, de la Puente & Igel 2006) for the anelastic case. Tahismésby
solving an additional set @fr. linear partial differential equations given by

S50 (1) = wegres (), @)

wherel = 1, ..., n is the index of the attenuation mechanism. The total number of attenuatidranmsms is» andj = 1, ..., 6 for the6
stress components in (30). A detailed description of the resulting coupkst kystem of equations is given in the following Section 4.2.
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4.2 The Coupled Equation System

As shown in (Kaser, Dumbser, de la Puente & Igel 2006), the new enlarged system-6f) + 6n partial differential equations includiry
elastic andin anelastic variables can be written in the compact form

0Qu , 5 9Qu 5 0Qu , o 0Q
ot P ox dy 7 0z

whereE denotes the so-callegaction termand takes into account the energy losses introduced by the viscoeladtimmélote that the
dimensions of the variable vect@}, the Jacobian matrices, B, C and the source matri% now depend on the numberof attenuation
mechanisms. To keep the notation as simple as possible and without |asseoélity, in the following we assume that the order of the equa-
tions in (33) is such, that, ¢ € [1, ..., 9] denote the elastic part andq € [10, ..., n,], denote the anelastic part of the system, represented
by the variables in (31) and the corresponding equations in (32).

+ qu + ép = quQq s (33)

As the Jacobian matrice$, B andC' as well as the source matri¥ are sparse and show some particular symmetry pattern and as their
dimensions may become impractical for notation, we will use the blockixrsntax.
Therefore, we decompose the Jacobian matrices as follows:

A 0
Aa O

B 0
B, 0

c 0
Ca O

eanXnv7 B:

GR””XTL”, C:

€ R™X"Y (34)

where A, B, C € R*? are the Jacobians of the purely anisotropic elastic part as given in7(5)Fife matricesd,, Ba, C, include the
anelastic part and exhibit themselves a block structure of the form:
A1 B1 C1
Aa _ c R6TL><97 Ba _ c RGnX97 Ca _ c RGnX97 (35)
An B, Chn

where each sub-matrit,, B, C;, € R®*?, with ¢ = 1, ..., n, contains the relaxation frequency of the ¢-th attenuation mechanism in the
form:

000O0O0OGO-1 0 0
000O0O0OO O 0 0
000O0O0OO 0O 0 O
Ag=w- 36
T o o0o0000 0 -1 o | 36)
000O0O0OO 0 0 O
0000O0O0 O 0 -3
000O0O0OOD O 0 0
000O0O0OOD 0 -1 0
000O0O0OO O 0 O
By=uw; - 37
T 1o o0o0000 -t 0o o |’ S
0oo0oo000©O0O GO0 0 -1
000O0O0OO O 0 O
000O0OO 0 0 ©0
000O0O0OO 0 0 0
000O0O0OO 0 0 -1
G=wl g 00000 0 0 o0 (38)
0000O0OO 0 -1 0
0000O0O0O-2 0 0

The matrixE in (4) representing the reactive source term that couples the anelastiiphs to the original elastic system can be decomposed
as

0 F
0 FE

€ R™WX™, (39)

with E exhibiting the block structure

E=|[Ei,...,E,) € RO, (40)



High Order DG Method for Seismic Waves in Anisotropic Medi®

Here, each matri, € R%*®, with ¢ = 1, ..., n, contains the anelastic coefficieris andY}* of the ¢-th mechanism in the form:

AV + 2y AY) AY) 0 0 0
Y AY) + 2y} AYR 0 0 0
YY) YY) AY) + 2py) 0 0 0
0 0 0 266 Yy 0 0
E, = 0 0 0 0 2c44 Y} 0 , (41)
0 0 0 0 0 2¢s5 Y}
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

where we should notice the different ordering of the entries with re$p&dtat we introduced in (30) as a consequence of the different order
of the anelastic variables inside the variable ve@Qofhe matrixE’ in (39) is a diagonal matrix and has the structure

£} 0
E/ — c Rﬁnx(jn , (42)

0 E!

where each matrig, € R®*6 with ¢ = 1, ..., n, is itself a diagonal matrix containing only the relaxation frequencgf the/-th mechanism
on its diagonal, i.eE, = —w, - I with T € R°*® denoting the identity matrix.
As shown in the following Section 4.3, we can formulate the fully discrete REIES scheme with conceptually only minor changes in order

to obtain a high order numerical scheme for solving this new enlargedmysf equations, that includes viscoelatic attenuation as well as
the most general triclinic anisotropy.

4.3 The Coupled Numerical Scheme

As shown in more detail in (§ser, Dumbser, de la Puente & Igel 2006) the numerical scheme iimglvidcoelastic attenuation changes due
to the enlargement of the PDE system and the addition of the reactiorfietimerefore, the discrete formulation of the ADER-DG scheme
for anisotropic elastic media as given in (19) is now written as

{(Q&n))n“ - (ngn))n} |J| M1 +

xm) o » R
b b (A @) 40U ) 151 (80 (@) +

<.
Il M»
i

.. ~(m)

4
7 y— . (m A(m)\™ 43
+ 32X (TgrAm (T2,)" - O >) IS5 F 7" Lomn (A1) (QE5) " = (43)
=

n

Ao |IVKE, - Tatmn (80) (QU5) " = Big 11K, - L (A0) (Q51) " = Gy LIV Ky Lamn (A2) (QS1)

1 By - Tatman (1) (Q20) " M,

where®,; is specified by the particular numerical flux in (16) or (17). The ma&g;) now represents the enlargened matrix in (34) with
the entries of (5) which are rotated through the Bond’s transformat®yad discussed in Section 3. We remark that,. remains the same

in the viscoelastic case, as the enlargement of the Jacobian matricesi@esazhly new eigenvalues equal to zero. Further details on the
calculation of the Godunov flux in (17) for the anelastic part of the cougystem can be found in the Appendix A.

Besides, the rotation matrik,, becomes larger and for the case of anelasticity in (43) has the form

T 0 0
T=1| 0 T 0 |eR"*, (44)
0 0 T,

whereT* € R%*¢ is the rotation matrix responsible for the stress tensor rotation as in the plastic part and is given as

ni si tﬁ 2Ny Sa 28zt 2Nty
2 2 2

ny sy ty 21y Sy 2syty 2nyty
2 2 2

n; S, ts 2N, 5, 2s.t, 2n,t,

(45)
NyNz  SySz  lytz MNySz +MNaSy  Sytz + Szty  Nyle + Naty

N2My 828y  lzly MN2Sy +NyS:  Sxlty + Syl Nty +nyls
NzNg SzSx t.te NSy + Nz Sz Szte + Satz Nyty + Nty
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Table 1. Coefficients for the anisotropic, orthorhombic material give [V - m~2] as used in the convergence study. All other coefficients are. Zhe
material density is given inkg - m 3.

1 192 66 60 160 56 272 60 62 49

The matrixT™ € R3*3 is the rotation matrix responsible for the velocity vector rotation as in the patadfic part and is given as

Ny Sz 1z
T =1 ny sy ty . (46)

n, S, t,

The matrixT, in (44) is a block diagonal matrix and has the structure
Tt 0

T, = c ROP*6n ’ 47)
0 T?

where each of the sub-matriceqg™ is the tensor rotation matrix given in (45). A more detailed description offfisiemt implementation
of the ADER-DG method for the anelastic case the reader is referrecige(KDumbser, de la Puente & Igel 2006).

5 CONVERGENCE STUDY

In this section we present a numerical convergence study of theggdpDER-DG approach on tetrahedral meshes, in order to denm@enstra
its arbitrarily high order of convergence in the presence of anisotroptenial. We show results from second to seventh order ADER-DG
schemes denoted by ADER-DG2 to ADER-DG O7 respectively. We remark that the same order for space and timesaydarobtained
automatically.

Similar to previous work (l&ser & Dumbser 2006; Dumbser &aer 2006; Kser, Dumbser, de la Puente & Igel 2006) we determine the
convergence orders by solving the three-dimensional, anisotromisavave equations on the unit-cube as sketched in Figure 1, i.e. on a
computational domaife = [—1,1] x [-1,1] x [-1,1] € R® with periodic boundary conditions.

The homogeneous anisotropic material parameters are given in Tahle represent an orthorhombic material, similar to olivine as given
in (Browaeys & Chevrot 2004). The analytic solution to this problem cafotraulated as

Qp(l', Y, Zat) = Qg : ei'(wt7k117kyyikzz>7 p= 17 sy 9 (48)

whereQ}) is the initial amplitude vector of th&components, are the wave frequencies to determine apgk,, andk. are the wave numbers
in z, y andz-direction, respectively. To confirm that anisotropy is treated corresysuperimpose three plane wa@g), l=1,..,3,of
the form given in (48) travelling perpendicular to each other along thedauate axes, i.e. we have the three wave number vectors

FO = 6D kD KON (x,0,0)7 (49)
2 = 6 kP E)T = (0,m,0)7, 9
B = x®, kl(js)’ kYT = (0,0,7)7 . (51)

leading to a periodic, sinusoidal waves in the unit-cube.

In the following, we briefly line out, how we determine the wave frequengie®Vith the assumption, that equation (48) is the analytic
solution of the governing equation (4), we calculate the first time and sperdeatives of equation (48) analytically and plug them into
equation (4). From there, we can derive the eigenproblem

(Apgks + Bpgky + Cpgk:) - Q) =w-Qq,  p,g=1,...,9. (52)

)

(1, ..., Ry and the eigenvalues’ for

Solving the three eigenproblem (52) for each wagéeves us the matrix%ﬁfq) of right eigenvectors®?
each wave.

Recalling, e.g. from (Toro 1999), that each solution of the linear thglersystem (4) is given by a linear combination of the right eigenvec-
tors, i.e.Q, = Rpqvq, We can compute the coefficientsigs= R;qug via the initial amplitude vector. Applying this procedure for each of

the three waves, we can synthesize the exact solution in the form

3
o Wy O () (D)
Qp(z,y,2,t) = ZR;(f;Vél) et (wa t—ky a—ky y—kz) )
=1



High Order DG Method for Seismic Waves in Anisotropic Medid 1

In the convergence test, we use the superposition of three plane B-treling perpendicular to each other. However, the symmetry axes
of the anisotropic, orthorhombic material is tilted with respect to the coaelisigstem, i.e. the symmetry axes point into the directions
(1,1,1),(-1,1,0) and (—1, —1, 2), respectively. The initial condition at = 0 is given by (53) using the combination of three right
eigenvectors?, R\Y and R} with the coefficients/{" = v{* = »{*) = 100 and zero otherwise.

The total simulation tim&” is set toT" = 0.02s. The CFL number is set in all computationssti% of the stability IimitW{rl of Runge-
Kutta DG schemes. For a thorough investigation of the linear stability propertithe ADER-DG schemes via a von Neumann analysis
see (Dumbser 2005).

The numerical analysis to determine the convergence orders isipedan a sequence of tetrahedral meshes as shown in Figure 1. 3he me
sequence is obtained by dividing the computational dorflainto a number of subcubes, which are then subdivided into five tetrahedr
as shown in Figure 1. This way, the refinement is controlled by changaguinber of subcubes in each dimension.

We can arbitrarily pick one of the variables of the system of the seismic egwations (4) to numerically determine the convergence order
of the used ADER-DG schemes. In Tables 2 and 3 we show the ermtisefaertical velocity component. The errors of the numerical
solution@;, with respect to the exact soluti@. is measured in th&>°-norm and the continuous?-norm

1@~ @ullzey = ([ 100 - @ av)*, (54)

where the integration is approximated by Gaussian integration which isfexacpolynomial degree twice that of the basis functions of the
numerical scheme. ThE>-norm is approximated by the maximum error arising at any of theses@awisitegration points. The first column

in both Tables 2 and 3 shows the mesh spatimgpresented by the maximum diameter of the circumscribed sphetestefrahedrons. The
following four columns show thé&>> and L? errors with the corresponding convergence ord2rs- and®; - determined by successively
refined meshes. Furthermore, we present the total nuiipaf degrees of freedom, which is a measure of required storage siaing
run-time and is given through the product of the number of total meshegits and the numbeéyY. of degrees of freedom per element.
depends on the order of the scheme, i.e. the del§jrethe polynomial basis functions Vil (N) = (N + 1)(N +2)(N + 3). In the last

two columns we give the numbérof iterations and the CPU times in seconds needed to reach the simulatidhi tsn@02s on a Pentium
Xeon3.6 GHz processor witAGB of RAM.

In our convergence study, we compare two different numericaéfiuke. the Rusanov flux as introduced in section 3 (see e.g. in (Toro
1999)) and a Godunov flux as given in detail in Appendix A. Figure 2aligas the convergence results of Tables 2 and 3 to demonstrate
the dependence of the> error with respect to (a) mesh widfh (b) number of degrees of freedoM; and (c) CPU time. With mesh
refinement, for both choices of the numerical flux the higher ordesraels converge faster as shown in Figure 2(a). Furthermore, Rihjre
demonstrates that higher order schemes reach a desired acagagyng a lower number of total degrees of freedom. The total number
of degrees of freedom is the product of the number of mesh elemedttha degrees of freedom per element. Therefore, obviously the
increasing number of degrees of freedom of higher order schisnoser-compensated by the dramatic decrease of the number ofe@quir
mesh elements to reach a certain error level. Also the CPU time compaimsbigure 2(c) show that the higher order methods reach a
desired error level in less computational time. We remark that in all tHote @f Figure 2 we clearly show, that for very high accuracy, the
higher order schemes with both, the Rusanov or Godunov fluxes,fpdyeoto their superior convergence properties.

Furthermore, we see in all plots that the Godunov flux is slightly more atetitan the Rusanov flux, which is due to well-known dissipative
property of the Rusanov flux. Additionally, we want to remark, that wittréasing order of the scheme the choice of the numerical flux
seems to become less important. However, the Godunov flux alwayisipsdhe more accurate results in less CPU time.

6 APPLICATION EXAMPLES

6.1 Heterogeneous Anisotropic Material

To validate the proposed ADER-DG scheme for anisotropic material inpracesdimensions we show results of a heterogeneous anisotropic
test case proposed by Carcione (1988) and Komatgsel (2000). The computational domaih = [—32.5; 32.5]em x [—32.5; 32.5]em

is discretized by37944 triangles with an average edge lengthOofcm, equal to the edge length of the square shaped elements used by
Komatitschet al. (2000). Along the boundary @& we use absorbing boundary conditions. The donfatontains two materials seperated

by a straigth line at: = 0. On the one sidey < 0) we have an anisotropic (transversely isotropic) zinc crystal with thersstny axis in
y-direction, whereas on the other side ¥ 0cm) we use an isotropic material. The corresponding material properéeggivaan in Table 4.

The source represents a point force at locatica (—2cm, Ocm), i.e. 2em from the material interface inside the anisotropic material and
is acting iny-direction. The source time function is given by a Ricker wavelet with damtifrequencyfo = 170k H z and delayto) = 6us

and acts on the vertical velocity componenwith a maximum amplitude of - 10'3. Seismograms are calculated at four different locations
ri = (xiyyi), ¢ = 1,..,4, with xz;y = —10.5¢m, 2 = —3.5¢m, z3 = —1.0cm, 4 = 10.5cm andy; = —8cm foralli = 1,...,4in

order to compare our results with those of Komatitetlal. (2000). The simulation is carried out using a ADER-I% scheme, i.e. with
polynomial basis functions of degréé = 5, and the Rusanov flux presented in Section 5. The time step siz20wWis:s such that the final
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Figure 1. Sequence of discretizations of the computational dorfauia regularly refined tetrahedral meshes, which are usedh&ntimerical convergence
analysis.

Table 2. Convergence rates of the vertical velocity componemtf the ADER-DGO2 up to ADER-DGO7 schemes on tetrahedral meshes with anisotropic
material and Rusanov flux.

h L Opeo L? Or2 Ny I CPU[s]
1.44.10~1  1.3726-1071 - 7.1719 - 102 — 34560 28 20.4
1.08-10~1  7.9448 -10—2 1.9 4.0897-10"2 2.0 81920 37 62.7

8.66-10"2 5.1013-102 2.0 2.6304-1072 2.0 160000 46 150.4
7.21-1072 3.5739-10"2 2.0 1.8280-1072 2.0 276480 55 309.9

1.44-1071  9.6109-10—3 - 3.0957 - 10~3 - 86400 46 44.8
1.08-10~1  4.2996-10—3 2.8 1.3268-1073 2.9 204800 61 140.0
8.66-10"2 2.0774-103 3.3 6.8331-10"% 3.0 400000 76 334.7
7.21-1072  1.2533.1073 2.8  3.7909-10~% 3.2 691200 92 709.4

2.16-10"1  2.4197.1073 - 6.0996 - 104 - 51200 43 21.5
1.44-10~1 5.6764-10~% 3.6 1.1436 -10~% 4.1 172800 64 104.5
1.08-10~1  1.6407-10"% 4.3 3.8141-107% 3.8 409600 85 322.6
7.21-10"2 3.4818-10"° 3.8 7.4515-10"% 4.0 1382400 128  1623.5

4.33-1071  4.3718-1073 - 8.3266 - 104 - 11200 28 3.4
2.16-10~1  1.3161-10~% 5.0 2.2487-10° 5.2 89600 55 50.0
1.44-10~1  1.7960-10~° 4.9 2.9100-107% 5.0 302400 82 248.7
1.08-10~1 4.2391-10-9¢ 5.0 7.1098 -10~7 4.9 716800 110 801.3

8.66-10"1 1.7247.102 - 3.0907 - 10—3 - 2240 17 0.5
4.33-107!  3.6214-10"4 5.6 5.2490-1075 5.9 17920 34 7.8
2.16-10"1  6.1905-10"6 5.9 7.8147-107 6.0 143360 67 118.8
1.44-10~1  5.4051-10=7 6.0 6.5986-10~8 6.1 483840 101 611.0

8.66-10"1 2.5263.10"3 - 4.0569 - 104 - 3360 20 1.2
4.33-1071  2.5296-10~° 6.6 2.8757-1076 7.1 26880 40 18.3
2.88-10"1 1.5502-106 6.9 1.6396-10~7 7.0 90720 60 91.8

2.16-10"1  1.9551-10"7 7.2 2.1993 - 108 7.0 215040 79 285.1
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Table 3. Convergence rates of the vertical velocity componemtf the ADER-DGO2 up to ADER-DGO7 schemes on tetrahedral meshes with anisotropic
material and Godunov flux.

h L>® O L? Op2 Ny I CPUJs]
1.44-10~1  1.0041-10"1 — 5.4423 - 102 — 34560 28 20.3
1.08-10~1 5.8267-10"2 1.9 3.0369 -1072 2.0 81920 37 63.3

8.66-10"2  3.7871-102 1.9 1.9512-1072 2.0 160000 46 151.0
7.21-102  2.5901-10—2 2.1 1.3477-1072 2.0 276480 55 310.2

1.44-10-1 8.8110-1073 — 2.7851-10—3 — 86400 46 45.2
1.08-10—' 3.9071-10"3 2.8 1.1894-1073 3.0 204800 61 138.6
8.66-10"2 1.8371-103 3.4 6.1510-10~% 3.0 400000 76 341.2
7.21-102 1.1421-10"3 2.6 3.3983-10~% 3.3 691200 92 703.3

2.16-10"1  2.1082-1073 — 5.3961 - 10—4 — 51200 43 21.5
1.44-1071  4.8616-10~% 3.6 9.8006-10~% 4.2 172800 64 107.7
1.08-10"1 1.4123-10"% 4.3 3.3024-1075 3.8 409600 85 326.0
7.21-1072  3.0079-10° 3.8 6.3742-10=6 4.1 1382400 128  1620.8

4.33-1071  3.8588-10"3 - 7.3824 - 104 — 11200 28 34
2.16-10"1  1.1900-10% 5.0 2.0750-1075 5.2 89600 55 51.0
1.44-10~1  1.6555-10~° 4.9 2.6735-1076 5.0 302400 82 248.1
1.08-10"1 3.8443-10°6 5.1 6.5261-10~7 4.9 716800 110 799.5

8.66-10"1 1.6633.102 - 2.9909 - 103 - 2240 17 0.5
4.33-10"1  3.2571-10~% 5.7 4.7736-107% 6.0 17920 34 7.8
2.16-10"1  5.4583.106 5.9 7.0059-10~7 6.1 143360 67 123.0
1.44-10~1  4.7499.10"7 6.0 5.8732-10% 6.1 483840 101 606.7

8.66-10~1  2.0000- 103 - 3.4171-10~4 - 3360 20 1.2
4.33-10"1  2.2341-.10~5 6.5 2.6403 - 10— 7.0 26880 40 18.1
2.88-10-1  1.4003-106 6.8 1.5055-10~7 7.1 90720 60 90.2

2.16-10"1  1.7634-10"7 7.2 2.0326 - 108 7.0 215040 79 281.4

Mesh Spacing Degrees of Freedom
T

Computing Time
T T

=~ PLelements
_6[| -2~ P2 elements
4 10 "H - P3 elements
-7~ P elements
O P5 clements
Lo~ P6 elements o pee
i 10 i . i ~, elements
0 0 10 10 10 10 10 T o

1h Ny o CPU [s] °
(@) (b) (©

Figure 2. Visualization of the convergence results of the verticieity componento for the Rusanov flux (dashed) of Table 2 and the Godunov fluidjso
of Table 3. TheL°° error is plotted versus (a) the mesh spadingb) the number of degrees of freeddvy and (c) the CPU time.

- Pl clements
= 6| | - P2 clements
10 "H - P3elements

v~ Pé clements
—-0- P5 elements

- P1elements
_s[| - P2 clements
10 "5 o~ P3elements
- Pa elements
—-O- P5 elements
0 PG eloments

2 3 «

Table 4. Coefficients for the heterogeneous anisotropic model ginéhG'® N - m 2] for the anisotropic and isotropic materials. All other caréints are
zero. The material densiyis given in[kg - m—3].

14 C11 C12 €22 €66

isotropic 7100 16.5 8.58 16.5 3.96

anisotropic 7100 16.5 5.00 6.2  3.96
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Figure3. (a) Vertical velocityv and computational mesh in the zoomed redief.18; 0.1625] x [—0.1625; 0.1625] at30us. The source location is indicated
by a full (black) circle, the four receiver locations areitated by empty (white) circles. (b) Vertical velocityat 60..s with the whole computational domain.
A variety of different phases can be identified. The sourcation is indicated by a full (black) circle, the four reamiocations are indicated by empty
(white) circles.

simulation timeT" = 100us was reached aftef860 iterations.

Similar to (Komatitsch, Barnes & Tromp 2000) we illustrate two snapshotsahiblving wave field for a qualitative comparison. In Fig. 3(a)
we show the vertical velocity componeanafter30u.s in a zoomed region together with the simulation mesh. Note, that the trian¢giaeets

are aligned with the material interfacesat= 0. The locations of the source and the four receivers are also indicatadul and empty
circles, respectively. Fig. 3(b) illustrates the wave field of the velocigfter 60 in the entire computational domain together with

the source and receiver locations. This visual comparison to the re§itsmatitschet al. (2000) shows, that the ADER-DG®6 scheme
resolves the same wave phases as described in detail in (KomatitsobsBafromp 2000). The typical cuspidal triangular wave structures
and the refraced waves at the interface are clearly visible.

The seismograms calculated with the ADER-I06 scheme at the four receiver locations: = 1, ..., 4, are plotted in Fig. 4 (solid line).
The results obtained by Komatitsehal. (2000) with the SEM of spatial ordérare superimposed (dashed line). We remark, that these SEM
seismograms are obtained by digitizing the seismograms presented latitsotret al. (2000) and then scaling them, such that the maximum
amplitude in each plot is identical since no information about the sourcéitadgwas given by Komatitscét al. (2000). The agreement

is excellent, in particular for the first phases. However, very small tiniftsscan be observed at the last phase. Komatietcd. (2000)
already recognized this phase shift in their seismograms comparedidiag—grid reference solution and interpreted the differences as an
effect of the staggered grid of the FD scheme. We mention, that the tifiesbuld also be due to their time stepping scheme, which is only
second order accurate, whereas the ADER@@&scheme converges with ordeéin spaceandtime, as confirmed in Table 2. We admit, that
possible errors might have been introduced also due to the digitization 88keseismograms.

6.2 Transversely Isotropic Material with Tilted Symmetry Axis

To verify the accuracy of the proposed scheme for a fully three-dsinaal problem we perform a computation of the test case proposed
in (Komatitsch, Barnes & Tromp 2000) for a 3D trasversely isotropiciomadvith tilted symmetry axis. We study a homogeneous material,
in this case Mesaverde Clay shale, by applying a point source aligned withaterial's symmetry axis. In the mentioned publication, the
whole setup is tilted0° in order to add complexity to the Hooke’s tensor which in a cartesian sysi#momw have a major number of
non-zero entries. In our case, as the fluxes are performed ininatedsystems aligned with the face of the each tetrahedron, this added
complexity is already present. However, to keep as close to the origimalaggossible, we also reproduce the tilted axis in our simulation.
The source is a Ricker wavelet with = 16Hz andt, = 0.07s. The computational domain is a cube of dimensions 2500m x 2500m x
2500m discretized with 48 x 48 x 48 cubes, each subdivided in 5 tet@hfedra total of 552 960 elements. We choose to use an ADER-
DG O6 scheme, meaning that the variables are resolved with polynomials afel®¥ge= 5 in space and time inside each element. Fluxes
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Figure 4. Seismograms.

Table 5. Coefficients for the transversely isotropic material (Mesde clay shale) given ii10° N -m~2]. All other coefficients are zero. The material density
pis givenin[kg - m~3].

P C11 C12 €13 €22 €23 €33 Ca4 €55 C66

2590 66.6 19.7 394 66.6 394 399 109 109 2345

used are of Godunov's type. The actual material parameters, in tn@styy axis aligned reference system, can be found in table 5. Notice
that for a trasversely isotropic materiah = ci11, c23 = c¢13 andess = caa.

The source is placed &t,y, z) = (1250,1562.5,937.5) m and the receiver dtr, y, z) = (1250, 1198.05, 1568.75) m. Afterwards the
whole mesh is traslated along the vedtery, z) = (10, 10, 10) m so that both source and receiver are inside elements and not at itoints.
is an important fact that in the ADER-DG formulation there is no need to rnakeide sources and receivers to grid points. The time step
size wasl 97.29us such that the final simulation tinie = 0.7s was reached aft&¥548 iterations.

The results and comparisons with the analytical solution first derivedarci{@e, Kosloff, Behle & Seriani 1992) are shown in figure 6. We
can see the excellent agreement between analytical and numeridarslwhere we can observe both the eagilyywave followed by the
strongergSV wave. We also found, as in (Komatitsch, Barnes & Tromp 2000), a dfightepance in the amplitudes. Note also that we use
absorbing boundaries in the outer faces of the cube, so that we darahyg reflected wave. For the computation of the numerical solution
we needed approximately 11 hours of CPU time on 64 Intel Itanium2 68®iGHz processors with shared-memory.
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Figure 5. (a) Snapshot of the normal stresg,, at¢ = 0.25s in the yz-plane atr = 1250m (top). The source and receiver positions are indicated &y th

empty and full circles, respectively. The zoom region fordfeg5(b) is indicated by the box. (b) Vector field of the paetieelocity att = 0.25s in the zoom
region.

T T
— — analytic solution (elastic)
—— ADER-DG 06 anisotropic (elastic)
— - ADER-DG 06 anisotropic (viscoelastic)

displacement

-4 ! !

! !

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time [s]

Figure 6. Numerical (solid) and analytical (dotted) displacementsiglthe symmetry axis recorded at 728.9m from the source. Theneahsolution is
computed with an ADER-D@&6 scheme and shows excellent agreement with the analyticai@olu

7 CONCLUSION

We have presented a high-order scheme for solving problems ofiseisve propagation for the anisotropic case on unstructured tetrdhedra
meshes. The ADER-DG method has proven to be very well suited fae\ang highly accurate results in arbitrarily anisotropic materials.

Two possible flux choices have been introduced and compared. Additianway to couple both anisotropic and viscoelastic effects has
been developed together with the changes that this coupling has in theesslsagiicit expression. The theoretical accuracy orders have
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been achieved in convergence tests and a two medium-scale applicatimagimg P, ¢S1 andqS> wave propagation in both homogenous
and heterogeneous media have shown a very good agreement wits mstained with other methods for wave propagation and known
analytical solutions.

We conclude that the ADER-DG method offers an excellent balance batfiexibility and accuracy and in the future many applications
could be performed involving more realistic setups, particularly in ard@seva clear distinction between geometry- and anisotropy-caused
phase splitting can be crucial, as is in cracked sedimentary layers or iastfdhe upper mantle or oceanic crust. Future work will aim at
exploring such complex cases, as well as comparisons between foeerce of other known methods for anisotropic wave propagation
and the method presented here.
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APPENDIX A: GODUNOV FLUX FOR ANISOTROPIC MATERIAL

The flux formulation we use requires the use of numerical viscosity tdiggathe scheme. This term can have different structure depending
on the flux type. The Godunov’s (also referred as Roe’s) methagresishe theoretical minimum viscosity by the use of the mattixas

a stabilizing factor. This matrix in practice decomposes the characteristi&sved an interface into purely outgoing and purely incoming. It
has formally the expression

|A] = RIA| R, (A1)

where|A| is a diagonal matrix containing the absolute values of the eigenvectorsjattitganA, expressed at the interface and oriented to
the normal of it, andR is the matrix of right eigenvectors of. Both R andA are assumed to have the same ordering, meaning that the first
column of R corresponds to the first eigenvaluedfippearing im\, the second column a® corresponds to the second diagonal element in
A and so on. The non-zero eigenvaluesiofor both elastic and viscoelastic cases, can be found by solving theegilétion system (18).

In the following we will always assume an strictly descending ordering@®gigenvalues that compodeand R.

Al Computation of the elastic part of | A|

. . - T . . . g
If we assume a general shape of the right eigenvedtors: (r},r7,r?,ri, r?,rf,r{,ri,r})", the eigendecomposition equatidn?; =

i R; leads us to the explicit 9 equations

7 8 9 1 7 8 9 2 7 8 9 3
117 + cieT; + CisT; = QT Ci2Ti + C26T; + CasTp = QT €137 + €367 + C35T; = QT
7 8 9 4 7 8 9 5 7 8 9 6
c167; + Ce6Ty + Cs6Ty = iy C14T; + Ca6T; + Cas5T; = QT;  C157; + Cs6T; + 575 = QT (A2)
rk 7 rd 8 ré 9
-+ = o,r; -+ = oyr; -+ = o,r;

P P P
of which 3 are dependant on the rest and the other six can be exgphiessEnpact form as the following homogeneous linear system

X cs ci5 ry 0
cie Y cs6 ol=101], (A3)
c1s cse 2 9 0

with X = ¢11 —a2p, Y = ¢ —aZpandZ = cs5 — o p, beinga; the eigenvalues. Note that this is exactly the Kelvin-Christoffel equation
for anisotropic media which can be obtaied from plane-wave analysisi@@a 2002). However this equation appears here naturally from an
eigendecomposition of the jacobians of our scheme (5). The solutior bhear system (A2) for the= 1,...,9 values completely defines

the 9 right eigenvectors. The fact that the matrix of system (A3) haayalwero determinant (equation (18) assures this) makes certain that
we will always have non-trivial solutions. Knowing the values-pfr® andr? we can use (A2) to obtain the rest B&f. Finally we would
obtain the right eigenvector matrix

1 1 1

ri rp, r3 0 0 0 —rz3 —ry —ry
P r2 2 1 0 0 —r3 —r: —r}
T? 7‘% r% 0 1 0 —r§ —r% —r‘;’
ril r% r§ 0 0 O 77*31 77"3 71"‘11
R = oS 5 00 1 —r§ —r3 —rf , (A4)
rtf rg rg 0 0 O —rg —rg —7“(13
riors s 0 0 0 i ry ri
s 5 0 0 0 rs r$
r‘f rg 7’2 0 0 O rg rg r?

where the eigenvectors 4 to 6 are a choice. For the left eigenvectfiredis; = (1},12,13,1},17,19,17,1%,17), there exists the eigende-
compositionEiA = o, L; for which we can explicitly write a series of equations which are

crll + cieli +c1slf = ail]  cisli + cooli + cself = aul?  casli + eseli + cssly = ol

2=0 B=0 =0 (A5)
13
o
which similarly as in theR case, can be expressed compactly by the homogeneous system

l

s.\,
NSy

= azlll = Oézl;l = alllﬁ

|

X cs ci5 1} 0
cie Y cse =101, (AB)
C15 C56 Z l,LG 0
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where we can observe the symmetries between the left and right edgersyavhich are:} = 17, 7} =18, +0 =12, r] =1}, v =1} and
r? = 1%. This allows us to find left eigenvectors df but to avoid scaling problems, we want that left eigenvectors suctitkai?~* holds.
To this goal we set up the normalization

o\ -
R; = A7
<20¢151> (A7)
of which we can conclude that; = p [(rZ)Q + ()% + (r)*|. Now we can finally write down thé matrix of left eigenvectors as a
function exclusively of the right eigenvectors’ components with the fatlovexpression

T1 1 "1 "1 1 "1
2a]751 0 0 2a1851 0 20151 2a1151 20151 20151
T2 0 0 T2 0 T2 T2 T2 T2
2(1;732 20;,?852 20;%)5'2 20;215'2 20;25'2 2047265'2
3 0 O 3 0 3 3 3 3
2a3S3 2a3S3 2a3S53 2a353 2a353 2a353
0 10 0 0 0 0 0 0
L=R'= 0 0 1 0 0 0 0 0 0 , (A8)
0 0 O 0 1 0 0 0 0
] ) g vl rd S
- 204375’3 0 0 - 2&3853 2a3S3 2a31$3 2a3S3 2a3S3
__T 0 0 —-"2 0 —_"2 T2 T2 T2
2a2752 2@2852 20(%52 2a2152 2aa So 2aa So
T1 0 0 T1 0 "1 "1 "1 "1
2151 2151 20151 20151 2c01 51 2ce1 51
where the eigenvectors 4 to 6 are a choice. We can now finally apply tlgi@y@Al) and, without loss of generality, defiﬁ}é: \;;» to
get the expression ¢fi| as
L0 0 FIFES 0 TS0 0 0
FEl0 0 mEFE 0 FmEy 0 0 0
FPE0 0 mre o0 mE 0 0 0
s | #Fo0 0 o0 0 0 0
A=Y "1 @7 0 o & 0 FF 0 0 0 (A9)
=1 | 777 0 0 o0 A 0 0 0
0 0 0 0 0 0 Fr Fre 7
0 0 0 0 0 0 77 7l e
0 00 0 0 0 7F S /P

Notice that for obtaining the numerical value of the entries of (A9) we oaldto know the 3 positive eigenvalues and their corresponding 3
solutions of the system in (A3). The remainingvalues are obtained explicitly from using the expressions in (A2). Notid¢ettig material
values are involved in the whol|el| computation, so that the values we compute don’t change with time.

A2 Computation of the anelastic part of | A

The anelastic part df4| can be also found by a similar procedure. Let’s consider the gerssiic which we have attenuating mechanisms.
For each attenuating mechanism we introduce 6 new eigenvectors andadigs. However the new eigenvalues have value zero so that,
following our decreasing ordering, the eigenvaluesa@are= —ag16n, @2 = —Qs46n, @3 = —Qr46n aNda; = 0fori =4,...,6 4 6n.

The right and left eigenvectors will now have the shape

- -9 o\ T
_ 1 =2 =3 -4 =5 -6 =7 =8 -9 wlr W17‘ wiTy Wn"‘ Wn'f Wn Ty
Ri_(T'Lv/rzarzar7,7r177123rzar7,7r17 - 005 20 07 Qala" 007 2a; 703 2(11'7) ’

Li = (7‘;‘-7,0,0,7"1',0,7"1,7‘1,?74,7"1,0 0 O 0 0 O 07010707070) I
which brings us the possibility of building up the blocks for théa mechanism, analogous to that of equation (36) forAlmse, which are

(A10)

7y
TiT

kg
5

3,

]

7,8
ili

L0 0 o0 M o0 000
0 0 0 0 0 0 0 0 O
3 0 0 0 0 0 0 0 0 O
Al = we Z rTrd 788 80 ) (ALD)
= | e 00 550 0 550 0000
0 0 0 0 0 0 0 0 O
7‘_7 7‘_9 7'_8 7‘_9 7'_9 7‘_9
i 0 Lo LA o0 000

N

o

V)
8

V)

Q
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from which we can recover the isotropic case by setfing r{, r?) = (1,0,0), (r3,75,75) = (0,1,0) and(r3, r3,73) = (0,0, 1).



