
1Computational seismology - applications

Computational seismology: applications

Finite Differences
Cartesian grids

Fault zone waves
Los Angeles Basin Earthquake scenarios (Olsen)

Spherical grids
Global SH and P-SV wave propagation
Spherical sections – waves in subduction zones

Spectral Element Method
Regular grids

Time reversal (Finite source inversion)
Full waveform inversion on a continental scale

Irregular/unstructured grids
Soil-structure interaction
Earthquake scenarios

Global wave propagation (Komatitsch and Tromp)

Discontinuous Galerkin Methods: WHY?

With studies by Jahnke, Fohrmann, Cochard, Käser, Fichtner, Stuppazzini, Ripperger, Nissen- 
Meyer, Kremers, Brietzke, a.o., (all LMU) as well as Olsen, Komatitsch, Tromp a.o. 
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The Forward Problem 
… a glossary …

What method should I use for a specific problem?

Numerical Methods
low-order vs. high order methods; FD, FE, SE, FV, DG, BE; global vs. local 

time stepping

Geometrical complexity, computational grids
regular, unstructured, adaptive meshes; conforming vs. non-conforming 

meshes; tetrahedral vs. hexahedral grids (combinations)

Parallelization
mesh partitioning, load balancing, optimization, multi-platform implementations, 

parallel scaling

Large data volume handling
post-processing, visualization, transfer and storage
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Finite Differences

FD approximations in space and time
Simple to understand
Compact codes
Easy to parallelize
Hard to get boundary conditions (free surface, 
absorbing) accurate
„brute force“ approach
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FD Cartesian Grids
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FD – Fault zone wave propagation

Aftershock recordings
after the 1999 M7.4 
Izmit earthquake

From:
Ben-Zion, Peng, Okaya, 
Seeber, Armbruster, 
Michael, Ozer, 
SSA2002
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FZ trapped waves

Near fault

At distance (about 300m) from fault
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Observations across FZ
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Benchmarking

Comparison of analytical solution (Ben-Zion, 1990)
with staggered FD method

Comparison of analytical solution (Ben-Zion, 1990)
with staggered FD method

unfiltered filtered
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FZ discontinuities

Is FZ continuous at depth?Is FZ continuous at depth?

FZ continuousFZ continuous

FZ discontinuousFZ discontinuous
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Shallow fault zones

Considerable FZ 
trapped wave 
energy  generated. 

Considerable FZ 
trapped wave 
energy  generated.

Receivers
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Volume that generates FZ waves

Receiver

Fohrmann et al. 2002. 
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Earthquake scenarios based on FD

A number of stunning
visualizations of earthquake
scenarios can be found here
(code by Kim Olsen, SDSU):

http://visservices.sdsc.edu/projects/scec/t 
erashake/2.1/

http://visservices.sdsc.edu/projects/scec/terashake/2.1/
http://visservices.sdsc.edu/projects/scec/terashake/2.1/
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Earthquake scenarios Los Angeles
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FD Cartesian Grids
3-D with topography
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Volcanoes

What is the contribution of topography to scattering?
Can we simulate the seismic signatures of pyroclastic flows?

What is the contribution of topography to scattering?
Can we simulate the seismic signatures of pyroclastic flows?
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Blocky topography
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Particle Motions
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FD Spherical Grids
axisymmetric
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Waves in spherical coordinates

Equations of motion (velocity – stress)

(.) = 0 
Axisymmetric

Models
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Grids in spherical geometry

P-SV

SH
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SH wave propagation

Red and yellow 
denote positive 
and negative 
displacement

Wavefield for 
source at 600km 
depth. 

Symmetry axis

z.B. Igel und Weber, 1995
Chaljub und Tarantola, 1997
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Benchmarking

DSM: Direct solution method by Geller, Cummins, ...
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Towards 3-D global wave propagation

multi-domainmulti-domain unstructuredunstructured
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Global P-wave propagation

PKiKP

PK(P)

PcPP
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Waves through random mantle models
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SH - Wave effects
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Is the mantle faster than we think?

Jahnke, Thorne, Cochard, Igel, GJI, 2008
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FD Spherical Grids
3-D sections
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Spherical section – regular grid
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Waves in spherical sections
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Subduction zones
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Subduction zones
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Can we observe such effects?
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Spectral element method
Cartesian grids
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Synthethic experiment: source inversion
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True source
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Seismograms
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Time reversal – point source
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Time reversal: real network
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Time reversal: ideal network
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Real data: Tottori earthquake
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Reverse movie
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Focus time
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Projection on fault
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Spectral element method
spherical regular grids
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Simple example
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Ray coverage – initial model
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Sensitivity kernels

S velocity P velocity Density
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Final model
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Before - After
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Improvement
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Spectral element method
Unstructured grids
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Grenoble basin
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The bridge
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Soil – structure interaction
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Spectral element method
Global wave propagation
(Komatitsch and Tromp)
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Cubed Sphere
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Alaska, Denali, M 7.9, 2002
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Observations - Synthetics
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Observations - Synthetics
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Discontinuous Galerkin
Why (the hell) do we need another method?
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Waves on unstructured grids? 
tetrahedral
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Arbirtrarily high-orDER - Discontinuous Galerkin

Combination of a discontinuous Galerkin method
with ADER time integration

Piecewise polynomial approximation combined with
fluxes across elements (finite volumes)

Time integration as accurate as spatial
approximation, applicable also to strongly irregular
meshes (not so usually for FD, FE, SE)

Method developed in aero-acoustics and 
computational fluid dynamics

The scheme is entirely local, no large matrix inversion
-> efficient parallelization

Drawback: Algorithms on tetrahedral grids slower
than spectral element schemes on hexahedra

Combination of a discontinuous Galerkin method
with ADER time integration

Piecewise polynomial approximation combined with
fluxes across elements (finite volumes)

Time integration as accurate as spatial
approximation, applicable also to strongly irregular
meshes (not so usually for FD, FE, SE)

Method developed in aero-acoustics and 
computational fluid dynamics

The scheme is entirely local, no large matrix inversion
-> efficient parallelization

Drawback: Algorithms on tetrahedral grids slower
than spectral element schemes on hexahedra

Several articles in Geophys. J. Int., Geophysics, a.o. by Käser, Dumbser, de la Puente, and co-workers
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Use high precision (i.e., high-order 
polynomials) only where necessary

High precision where cells are 
large (high velocities)

Low precision where cells are 
small (because of structural 
heterogeneities)

Use high precision (i.e., high-order 
polynomials) only where necessary

High precision where cells are 
large (high velocities)

Low precision where cells are 
small (because of structural 
heterogeneities)

O4

O5

O6

O7

Käser et al. (2006)

Dumbser, Käser and Toro, GJI, 2007

P - adaptivity
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Same color 
means same 
processor 

Same color 
means same 
processor

Mesh Partitioning and Parallel Computing 
the problem of load blancing
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Topographic effects
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Topographic Effects
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Regional and Global Wave Propagation 
crust, crust, crust!
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Minimum occurring wave speed

Global wave propagation 
… keeping the number of points per wavelength constant …
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Benchmarking DG vs. SE
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The sound of volcanoes
Eruption, 15. Juni, 2006
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Reservoir applications
(Schlumberger Doll Rese

task: model also steel casing!
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Summary

Computational 3-D wave propagation finds is
now applications in almost all fields of Earth 
sciences
There is not ONE method that works best for all 
problems
Making codes work on large computers will be
more and more a challenge
The most promising methods for the coming
years seems FD (still), SE, and DG
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