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Consistency, Convergence
Stability
Numerical Dispersion
Computational grids and numerical anisotropy

The
 

goal
 

of this
 

lecture
 

is
 

to understand
 

how
 

to find suitable
 parameters

 
(i.e., grid

 
spacing

 
dx

 
and time increment

 
dt) for

 
a 

numerical
 

simulation
 

and knowing
 

what
 

can
 

go
 

wrong.
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A simple example: Newtonian
 

Cooling

Numerical solution to first order ordinary differential equation

),( tTf
dt
dT

=

We can not simply integrate this equation. We have to solve it 
numerically! First we need to discretise

 
time:

jdttt j += 0

and for Temperature T

)( jj tTT =
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A finite-difference
 

approximation

Let us try a forward difference:

)(1 dtO
dt

TT
dt
dT jj

tt j

+
−

= +

=

... which leads to the following explicit scheme :

),(dt1 jjjj tTfTT +≈+

This allows us to calculate the Temperature T as a function of
time and the forcing inhomogeneity

 
f(T,t). Note that there will

be an error O(dt) which will accumulate over time. 
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Coffee?

Let’s try to apply this to the Newtonian cooling problem:

TAir TCappucino

How does the temperature of the liquid evolve as a
function of time and temperature difference to the air?
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Newtonian
 

Cooling

The rate of cooling (dT/dt) will depend on the temperature 
difference (Tcap

 

-Tair

 

) and some constant (thermal conductivity).
This is called Newtonian Cooling.

With  T= Tcap

 

-Tair

 

being the temperature difference and τ
 

the 
time scale of cooling then f(T,t)=-T/ τ

 
and the differential equation 

describing the system is

τ/T
dt
dT

−=

with initial condition T=Ti at t=0 and τ>0. 
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Analytical
 

solution

This equation has a simple analytical solution:

How good is our finite-difference appoximation?
For what choices of dt

 
will we obtain a stable solution?

)/exp()( τtTtT i −=

Our FD approximation is:

)1(1 ττ
dtTTdtTT jjjj −=−=+

)1(1 τ
dtTT jj −=+
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FD Algorithm

)1(1 τ
dtTT jj −=+

1. Does this equation approximation converge for dt
 

-> 0?
2. Does it behave like the analytical solution?

With the initial condition T=T0

 

at t=0:

)1(01 τ
dtTT −=

)1)(1()1( 012 τττ
dtdtTdtTT −−=−=

leading to :
j

j
dtTT )1(0 τ

−=
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Understanding
 

the
 

numerical
 

approximation

j
j

dtTT )1(0 τ
−=

Let us use dt=tj
 

/j
 

where tj
 

is the total time up to time step j:
j
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This can be expanded using the binomial theorem
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we are interested in the case that dt-> 0 which is equivalent to j->∞
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substituted into the series for Tj

 

we obtain:
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... which is the Taylor expansion for 
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So we conclude:

For the Newtonian Cooling problem, the numerical 
solution converges to the exact solution when the 
time step dt

 
gets smaller.

How does the numerical solution behave?

)1(1 τ
dtTT jj −=+)/exp(0 τtTTj −=

The analytical solution
decays monotonically!

What are the conditions
so that Tj+1

 

<Tj

 

?
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Convergence

Convergence
 

means
 

that
 

if
 

we
 

decrease
 time and/or

 
space

 
increment

 
in our

 numerical
 

algorithm
 

we
 

get
 

closer
 

to the
 

true
 solution.
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Stability

)1(1 τ
dtTT jj −=+

Tj+1

 

<Tj

 

requires

110 <−≤
τ
dt

or

τ<≤ dt0

The numerical solution decays only montonically
 

for 
a limited range of values for dt! Again we seem to have 
a conditional stability.
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)1(1 τ
dtTT jj −=+

if ττ 2<< dt 0)1( <−
τ
dt

then

the solution oscillates but converges as |1-dt/τ|<1

if τ2>dt then 2/ >τdt

1-dt/τ<-1 and the solution oscillates and diverges  

... now let us see how the solution looks like ....
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Matlab
 

solution

% Matlab Program - Newtonian Cooling

% initialise values
nt=10;
t0=1.
tau=.7;
dt=1.

% initial condition
T=t0;

% time extrapolation
for i=1:nt,
T(i+1)=T(i)-dt/tau*T(i);
end

% plotting
plot(T)



Courant and all that

Example
 

1

Blue – numerical
Red - analytical
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Example
 

2

Blue – numerical
Red - analytical
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Example
 

3

Blue – numerical
Red - analytical
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Example
 

4

Blue – numerical
Red - analytical
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Stability

Stability
 

of a numerical
 

algorithm
 

means
 

that
 

the
 

numerical
 

solution
 does

 
not

 
tend

 
to  infinite (or

 
zero) while

 
the

 
true

 
solution

 
is

 
finite. 

In many
 

case
 

we
 

obtain
 

algoriths
 

with
 

conditional
 

stability. That
 means

 
that

 
the

 
solution

 
is

 
stable

 
for

 
values

 
in well-defined

 
intervals. 
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Grid anisotropy

In which
 

direction
 

is
 the

 
solution

 
most

 accurate
 

and why?
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Grid anisotropy
 

with
 

ac2d.m

 FD  FD 



Courant and all that

… and more
 

… a Green‘s
 

function
 

…
 FD 
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Grids

Cubed
 

sphere
Hexahedral

 
grid

Spectral
 

element
 

implementation

Tetrahedral
 

grid
Discontinuous

 
Galerkin

 method
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Grid anisotropy
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Grid anisotropy

Grid anisotropy
 

is
 

the
 

directional
 

dependence
 

of the
 

accuracy
 

of 
your

 
numerical

 
solution

 
if

 
you

 
do not

 
use

 
enough

 
points

 
per 

wavelength.

Grid anisotropy
 

depends
 

on the
 

actual
 

grid
 

you
 

are
 

using. Cubic
 grids

 
display

 
anisotropy, hexagonal grids

 
in 2D do not. In 3D there

 are
 

no grid
 

with
 

isotropic
 

properties!

Numerical
 

solutions
 

on unstructured
 

grids
 

usually
 

do not
 

have
 

this
 problem

 
because

 
of averaging

 
effects, but

 
they

 
need

 
more

 
points

 per wavelength!
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Real problems

36 km36 km

30 km30 km

Alluvial BasinAlluvial Basin 
VVSS = 300m/s= 300m/s 

ffmaxmax = 3Hz= 3Hz 

λλminmin = V= VSS //ffmaxmax = 100m= 100m

BedrockBedrock 
VVSS = 3200m/s= 3200m/s 

ffmaxmax = 3Hz= 3Hz 

λλminmin = V= VSS //ffmaxmax = 1066.7m= 1066.7m
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Hexahedral
 

Grid Generation
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Courant …

ε≤⎟
⎠
⎞

⎜
⎝
⎛

dx
dtvP

Largest
 

velocity Smallest
 

grid
 

size

Time step

Pv
dxdt ε≤
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Courant and all that … - Summary

Any numerical solution has to  be checked if it converges to 
the correct solution (as we have seen there are different 
options when using FD and not all do converge!)

The number of grid points per wavelength is a central concept 
to all numerical solutions to wave like problems. This desired 
frequency for a simulation imposes the necessary space 
increment.

The Courant criterion, the smallest grid increment and the 
largest velocity determine the (global or local) time step of the 
simulation

Examples on the exercise sheet. 
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