

Seismometer

Stefanie Donner

Some history

Zhang Heng, China 132 AD

"instrument for measuring the seasonal winds and the movements of the Earth"

Some history

1755 – the Great Lisbon earthquake

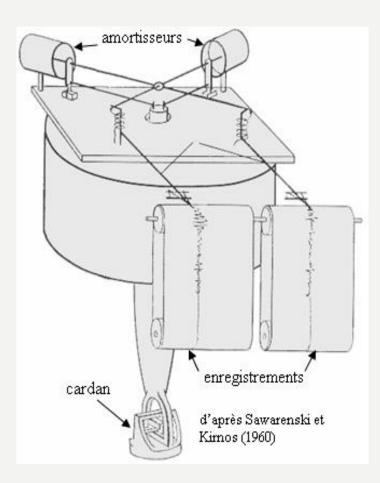
- Subsequent fires and a tsunami destroyed the city
- Probably Mw 8.5 to 9.0
- Between 10.000 and 100.000 death
- First systematic analysis of earthquake damages with questionaires

Some history

First "modern" seismograph (1880-1885)

Horizontal pendulum

Pioniers: John Milne, Sir James Alfred Ewing and Thomas Gray


John Milne with Boris Galitzin and his wife, 1914

https://www.e-education.psu.edu/earth520/node/1784/

Some history

Emil Wiechert (1861-1928)

- Converted or astatic pendulum
- 1st seismograph with viscous damping → useful recordings for the entire duration of ground motion
- Founder of the 1st global seismic network
- One of the co-founder of the Association Internationale de Seismologie; today: International Association of Seismology and Physics of the Earth's Interior (IASPEI)

mass 1.000g period 10s

Moxa

Quelle: http://musee-sismologie.unistra.fr/english/the-collection-seismology

Instruments

We want to measure ...

Ground motion!

Caused by ...

+ Earthquakes

Surface waves

Body waves

Free oscillations

Large & small

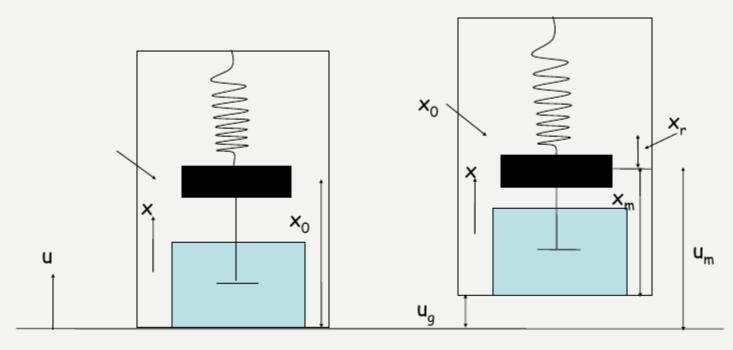
- + Cultural noise
- + Ocean noise
- + Tides
- + ...

We want to measure ...

"... the Earth motion at a point with respect to this same point undisturbed."

Problems:

- measurement is done in a moving reference frame
 - → displacement cannot be measured directly, can only observe the motion if it has an acceleration
- amplitude and frequency range of seismic signals is very large
 - → need several instruments to cover the full range in amplitudes and frequencies

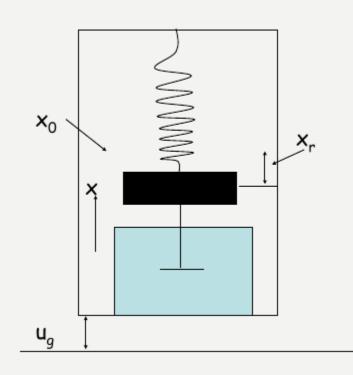

(Instrumentation in earthquake seismology, Havskov & Alguacil, 2002)

Seismometer the basic principle

A seismometer is a mechanical pendulum.

- u ground displacement
- x_r displacement of seismometer mass
- x₀ mass equilibrium position

Seismometer the basic principle


The motion of the seismometer mass as a function of the ground displacement is given through a differential equation resulting from the equilibrium of forces:

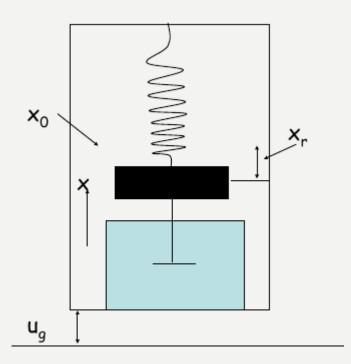
$$F_{spring} + F_{friction} + F_{gravity} = 0$$

$$F_{spring} = -k\dot{x}$$
 k – spring constant

$$F_{friction} = -D\ddot{x}$$
 D – friction coefficient

$$F_{gravity} = -mu$$
 m – seismometer mass

Seismometer the basic principle


The equation of motion for the mass is then:

$$\ddot{x}_r(t) + 2\epsilon \dot{x}_r(t) + \omega_0^2 x_r(t) = -\ddot{u}_g(t)$$

$$\epsilon = \frac{D}{2m} = h\omega_0$$
 damping constant

$$\omega_0^2 = \frac{k}{m}$$
 eigenfrequency

What do we learn from the equation?

Mechanical pendulum

$$\ddot{x}_r(t) + 2\epsilon \dot{x}_r(t) + \omega_0^2 x_r(t) = -\ddot{u}_g(t)$$

For slow movements (low frequency)

$$x_r(t) \gg \dot{x}_r(t), \ddot{x}_r(t)$$

$$\omega_0^2 x_r(t) \approx -\ddot{u}_g$$

movement of mass ~ ground acceleration

→ measure ground acceleration

Mechanical pendulum

$$\ddot{x}_r(t) + 2\epsilon \dot{x}_r(t) + \omega_0^2 x_r(t) = -\ddot{u}_g(t)$$

For fast movements (high frequency)

$$\ddot{x}_r(t) \gg \dot{x}_r(t), x_r(t)$$

$$\ddot{x}_r(t) \approx -\ddot{u}_g$$

movement of mass ~ ground displacement

→ measure ground displacment

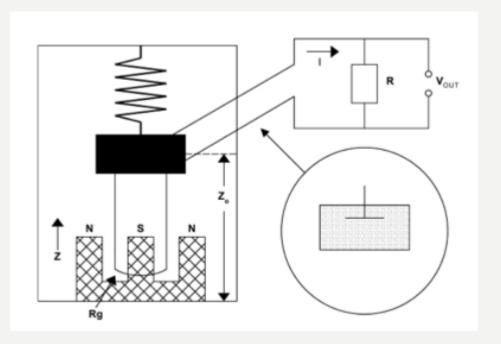
Mechanical pendulum

$$\ddot{x}_r(t) + 2\epsilon \dot{x}_r(t) + \omega_0^2 x_r(t) = -\ddot{u}_g(t)$$

Natural frequency

new push at exact the "right time", i.e. when mass is at extreme position

movement of mass >> ground displacement


→ amplitudes get larger and larger (gain > 1)

The electromagnetic seismometer

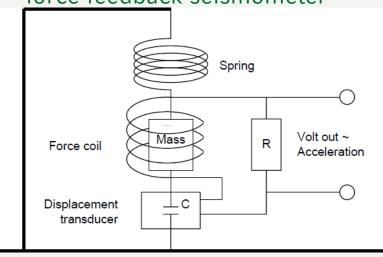
Modern, electromagnetic seismometers always measure ground velocity.

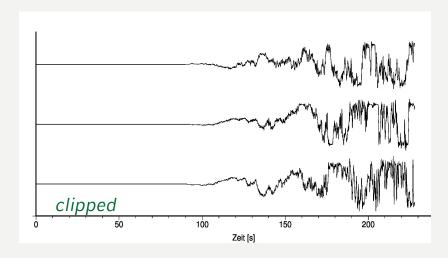
- Damping through a coil moving in a permanent magnetic field
- Movement induces voltage
- Voltage ~ velocity

seismometer by Boris B. Golizyn (1862-1916)

H: mass 7 kg, period 12 s

V: mass 10 kg, period 24 s

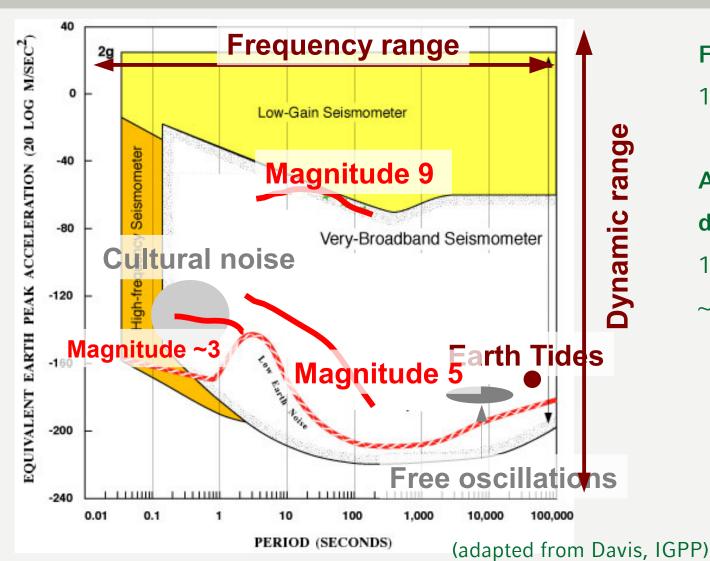

Problem: Nonlinearity



- Instruments are nonlinear when:
 - + mass moves out of measurement range (or coil)
 - + clipping
 - + spring changes/ages
 - + large spring extension

Solution:

force feedback seismometer



Don't let the mass move!

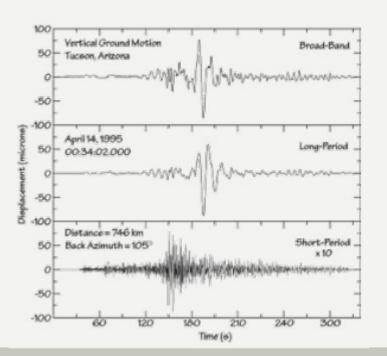
We want to measure ...

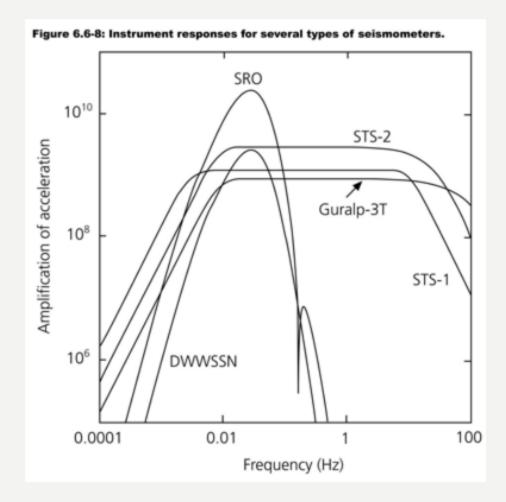
Frequency range:

10 - 10e-4 Hz

Amplitude or dynamic range:

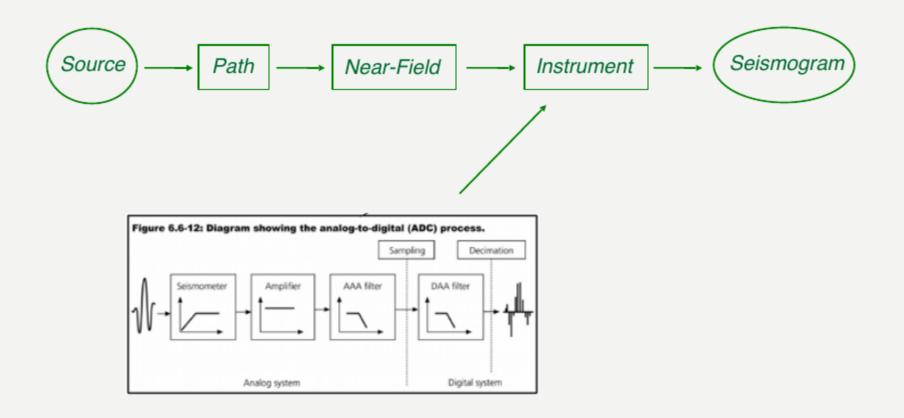
10e-1 – 10e-10 m ~ 180 dB




Seismometer bandwidth

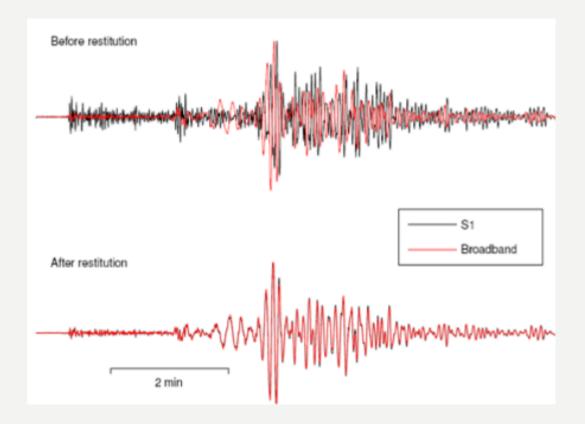
The type of construction defines which frequency range can be discovered

→ scientific question defines the choice of instrument



Recording seismic data

... several influencing factors alter the seismogram ...



Seismometer = Filter

Seismometers act as a filter on the recorded data.

Filter-effect needs to be corrected by restitution (removing instrument response)

