Seismic Tomography

Data, Modeling, Uncertainties

Heiner Igel, LMU Munich

Seismic tomography global and continental scales

SZORTS

Fichtner et al., 2009

Science

- Fact or fiction?
 Significant geodynamic feature?
- Amplitude correct?
- Spatial scale correct?
- Depth correct?

What went so horribly wrong?

Christchurch, February 2011

Tohoku-Oki, March 2011

Outline

- Introduction: earthquakes, seismic observations, the seismo-tomographic problem
- "Classic" tomography using seismic rays
- Full waveform inversion using 3-D simulation technology adjoint approach
- Summary and Outlook

Sources of seismic energy

Epicenters 1963 - 1998 358,214 Events

Observational networks

US Array

... new classes of **continental scale** tomographic models are around the corner ...

What is the nature of observations and their

sensitivities to Earth's structure in

seismology?

... on a seismically quiet day ...

March 11, 2011, seismometer located in Germany

... that turns catastrophic ...

Temporal scales (vertical ground motion)

cost

computational

Increasing

The (noise free) seismic observation is a convolution of the source signal with a Green's function ...

The problem is **linear** w.r.t.sources (see talk by M. Mai)

Let's briefly summarize ...

- > Seismograms are affected by structure **and** source
- The seismic tomography problem requires (in principle) the source to be known (or assumed to be known)
- There are two strategies to solve the inverse problem

Classic seismic tomography

- Reduce information drastically (travel times)
- Reduce physics to a high-frequency approximation (ray theory)
- Identify specific signals in seismic data (P and S wave arrivals, reflections, etc.)
- Use linear inverse theory to solve for 3-D velocity structure

Full waveform inversion (FWI)

- Use (low-passed) full waveforms as data
- Solve complete forward problem (3-D elastic wave propagation)
- Apply adjoint techniques to relate data perturbation to Earth model perturbation
- Iteratively minimize overall misfit between data and synthetics

Seismic tomography

using rays

We ignore surface wave inversion and inversion of free oscillation spectra as the mathematical structure is similar

Seismic ray theory

... is a non linear problem as the ray path depends on the seismic velocity model ... after linearization ...

What is a travel time perturbation?

"Picking the onset is at best ambiguous or inaccurate, sometimes impossible." (Nolet)

Operator that relates the model (perturbation) to the observable (travel time perturbation). In general it is an **integral** over the ray path (volume in case of finite frequencies)

$$T = \int_{raypath} \frac{ds}{v}$$

The ij entries to **G** correspond to the i-th ray path affected by the jth slowness value (pixel or basis function).

The choice of the basis functions strongly affects the density of **G**

G - sensitivities

We can describe the effect of model perturbations on an observable (e.g., travel time dT) by a sensitivity kernel K_X for Earth model parameters seismic velocities (V_P , V_S) and density

$$\delta T = \int \left[K_P \frac{\delta V_P}{V_P} + K_S \frac{\delta V_S}{V_S} + K_\rho \frac{\delta V_\rho}{V_\rho} \right] d^3 r$$

Issues:

- Trade offs
- Amplitude information
- Little sensitivity on density
- Low velocity anomalies

Ray-based tomographic problems have (only) P and/or S velocities as unknowns (not density, impedance, etc).

Possible parametrizations: blocks, complex volumes, splines, spherical harmonics, irregular tetrahedra, etc.

Blocks

Splines

Solution to the Inverse Problem

Basic least squares (LS) solution of the linear (-ized) inverse problem with **D** containing the cumulative effects of the regularization (smoothing) constraints (e.g., Tikhonov regularization)

$\Delta \mathbf{m}_{\mathrm{LS}} = (\mathbf{G}^{\mathrm{T}}\mathbf{G} + \mathbf{D})^{-1}\mathbf{G}^{\mathrm{T}}\Delta \mathbf{d}$

Solution of this equation with conjugate gradient, LSQR, or other.

Typical dimensions:

$\Delta d \rightarrow 10^7$ travel time perturbations $\Delta m \rightarrow 10^{5-} 10^6$ unknowns

Example

Regularization and smoothing

Decreasing misfit

Increasing model complexity

Increasing number of degrees of freedom

Courtesy: L. Boschi

Examples

Rows of R for a well resolved pixel at 700 km depth

Exploring null spaces using SVD misfit remains the same (< ϵ)

Ray-based tomography – future directions ... from infinite to finite frequencies ...

- Extracting travel times at different frequencies facilitates the solution of the system and adds information on the model (?)
- Finite-frequency tomography using complete kernels calculated with 3-D wave propagation tools
- Using Monte Carlo type techniques to quantify resolution (see talk by R. Zhang) in a Bayesian framework
- Calculating resolution matrix R for really big systems (not done yet)

The *real* thing:

Full waveform inversion

Forward problem

wave field @ 100 km depth

Forward problem

Seismology (waves and rupture) has a good **benchmarking** culture!

Three stages of FWI

Estimate uncertainties?

Misfit calculation

- easy and fast to implement
- uses the complete waveform

not robust

- very nonlinearly related to long-
- wavelength structure
- over-emphasises large-amplitde waves

Time – frequency misfits

Gradient-based inversion

1. Start from initial Earth model \mathbf{m}_0

Multi-scale approach

The gradient (adjoint based)

1. Solve the forward problem

- 2. Evaluate the misfit χ
- 3. Solve the adjoint problem
 - also a wave equation
 - · runs backwards in time away from the receiver
 - source determined by the misfit

The sensitivity kernel

The interaction of the regular and the adjoint fields generates a primary influence zone.

First-order scattering from within the primary influence zone affects the measurement.

An example of full waveform inversion on a continental scale

FWI sensitivity kernels

Gradient is calculated by back propagating adjoint sources (differences between theory and observations at receivers) separately for each of the approx. 40 earthquakes

Preconditioning

Corrections for geometric spreading effects and reduces the sensitivity with respects to structures near source and receiver

Misfit improvement

Global misfit improvement

Reconstructed Earth model

Checkerboard test – Resolution?

So what?

strategies to quantify resolution

Why so difficult for FWI?

- > Non linear dependence of data on model parameters
- Sensitivity matrix can not be computed explicitly (as in linear problems for moderately large problems)
- Forward problem too expensive to allow fully probabilistic approaches or neural networks (except for lower-dimensional problems, see poster by Käufl et al.)

Point spread functions

Compare with **R** in previous slides (Boschi, 2003)!

Resolution length

High resolution NS direction

High resolution EW direction

Image distortion

- Point-perturbations displaced by imaging
- Distortion = [position of point perturbation] [centre of mass of its blurred image]

What you see may be somewhere else!

Tomography using Monte Carlo methods

The use of MC methods is restricted to systems with limited degrees of freedom (dozens for generally nonlinear problems)

What we really should be doing ...

Open issues with the probabilistic approach

- How can we properly describe prior information?
- How should we describe data uncertainties, errors (if not Gaussian)?
- How should we describe defficiencies in our theory?
- What are optimal parametrization schemes of the Earth model and the model space search

Summary and Outlook

- Model space is huge
- Source and receivers unevenly distributed (no fix in sight!)
- Source parameters uncertain (depth, mechanism)
- Forward model inadequate (general anisotropy, Q)
- Trade-offs between Earth properties
- Near surface (crustal) structure inadequately known
- Topography of internal interfaces may be important

Summary and Outlook (cont'd)

- Errors in the measurements (instrument orientation, instrument response, flipped polarity, timing errors)
- Modelling deficiencies (e.g., numerical dispersion, topography)
- Scattering (effects of small scale structures -> mantle is actually faster!)
- Noise statistics unknown

Summary: final comments

- Quantifying uncertainties is a research question and not a standardized procedure
- Many of our SCIENCE stories are told without sufficient uncertainty quantification
- Even if we can calculate uncertainties ... how do we convey that information (visually, acoustically)?
- Will Exascale really help??

Strategies to estimate resolution

$$\Delta \mathbf{m}_{out} = (\mathbf{G}^{\mathrm{T}}\mathbf{G} + \mathbf{D})^{-1}\mathbf{G}^{\mathrm{T}}\Delta \mathbf{d}$$
$$\Delta \mathbf{m}_{out} = (\mathbf{G}^{\mathrm{T}}\mathbf{G} + \mathbf{D})^{-1}\mathbf{G}^{\mathrm{T}}\mathbf{G}\Delta \mathbf{m}_{\mathrm{in}}$$
Synthetic data for a test model

$\mathbf{R} = (\mathbf{G}^{\mathrm{T}}\mathbf{G} + \mathbf{D})^{-1}\mathbf{G}^{\mathrm{T}}\mathbf{G} \approx \mathbf{I} \qquad ??$

Resolution matrix R

Hessian and covariance

Earth model m(x) and misfit functional

$$\mathbf{m}(\mathbf{x}) = [m_1(\mathbf{x}), m_2(\mathbf{x}), \dots, m_N(\mathbf{x})]^T$$

$$\chi(\mathbf{m}) = \chi(\widetilde{\mathbf{m}}) + \frac{1}{2} \int_G \int_G [\mathbf{m}(\mathbf{x}) - \widetilde{\mathbf{m}}(\mathbf{x})]^T \mathbf{H}(\mathbf{x}, \mathbf{y}) [\mathbf{m}(\mathbf{y}) - \widetilde{\mathbf{m}}(\mathbf{y})] d^3 \mathbf{x} d^3 \mathbf{y}$$

Hessian

... and the equivalence with probabilistic approach ...

$$\sigma(\mathbf{m}) = \text{const.} e^{-\chi_g(\mathbf{m})}$$

$$\chi_g(\mathbf{m}) = \frac{1}{2} \int_G \int_G [\mathbf{m}(\mathbf{x}) - \widetilde{\mathbf{m}}(\mathbf{x})]^T \mathbf{S}^{-1}(\mathbf{x}, \mathbf{y}) [\mathbf{m}(\mathbf{y}) - \widetilde{\mathbf{m}}(\mathbf{y})] \, \mathrm{d}^3 \mathbf{x} \, \mathrm{d}^3 \mathbf{y}$$

Variances

Following strategy suggested by Fichtner and Trampert, GJI, 2011