Introduction

Seismic waves: A primer

» What are the governing equations for
elastic wave propagation?

» What are the most fundamental results !
in simple media?

» How do we describe and input seismic ja "
sources (superposition principle)?

» What are consequences of the reciprocity principle?

» What rheologies do we need (stress-strain relation)?
» 3-D heterogeneities and scattering

» Green's functions, numerical solvers as linear systems

Goal: You know what to expect when running a wave simulation
code!
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Wave Equations
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The elastic wave equation (strong form)

p@ful. — 8].(017. +Ml.j) + f
O = Ciibu

|
Er = E(ak”z az”k)

This is the displacement — stress formulation

Introduction Computational Seismology 3



The elastic wave equation — the cast

poiu, =0,(c, + M)+ f;

Gz‘j = Cijklgkl
o0 — p(Xx) Mass density £, = %(5;% B
u. — u,(x,t) Displacement vector
o, > 0,(X,t) Stress tensor (3x3)

M. — Ml.j (x,#) Moment tensor (3x3)

[ > f.(x,1) Volumetric force

Citg = Ciy (X) Tensor of elastic constants (3x3x3x3)

g, = €,(X,1) Strain tensor (3x3)
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The elastic wave equation

Introduction

0,V = Gj(al.j +Ml.j)+fl.
dy = Czjklékz

. 1

= E(akvl "‘51‘%)

vV, =U; = atui

This is the velocity — stress formulation.
This is a coupled formulation.
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1D elastic wave equation

puU=0_po u+ f

This is a scalar wave equation descriptive of transverse motions of a string
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3D acoustic wave equation

A 2 This is the constant density
p = C Ap TS acoustic wave equation (sound

in a liquid or gas)

C _) C( x) P-velocity

p —> p(x’ l‘) Pressure
S 9 S()C, t) Sou.rces

X
8 o) Laplace Operator
Y . o
This is equation is still
2 tremendously important in
\ z / exploration seismics!
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Rheologies
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Introduction

To first order the Earth's

crust deforms like an
elastic body when the
deformation (strain) is
small.

In other words, if the force 1

that causes the

deformation is stopped the
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rock will go back to its

original form.

The change in shape (i.e., the deformation)
is called strain, the forces that cause this

strain are called stresses.
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Linear Elasticity — symmetric part

Introduction

P
The partial derivatives of the vector :
components
u
ou. P
: P e———0Q,
Ox, ox

represent a second-rank tensor which can be resolved into a symmetric
and anti-symmetric part:

1 (Gui +%)5Xk_ ] (8uk - ou,

ou, )Ox,

.=
2 Ox, Ox 2 ox, oOx,

- symmetric * antisymmetric

- deformation * pure rotation
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Linear Elasticity — deformation tensor

The symmetric part is called the
deformation tensor

1 . ou. |
gij — (aul + J) "o o———*Q
2 8xj Ox. ox

and describes the relation between deformation and displacement in
linear elasticity. In 2-D this tensor looks like

ou., 1 ou, My ]

. Ox 2( Gy Ox )
“|'1 Ou, uy 8uy

2( 8y Ox ) oy |

Can strain be directly measured?
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Stress tensor

... in components we can write this as

where o ist the stress tensor and n;is a

3

tl. =Gijnj

surface normal.

The stress tensor describes the forces
acting on planes within a body. Due to
the symmetry condition

there are only six independent elements.

Introduction

Ojj

The vector normal to the corresponding surface
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Stress - Glossary

Introduction

Stress units

bars (106dyn/cm?), 1N=10°dyn (cm g/s?)
10Pa=1MPa=10bars

1 Pa=1 N/m?

At sea level p=1bar

At depth 3km p=1kbar

maximum
compressive
stress

the direction perpendicular to the minimum
compressive stress, near the surface mostly in

horizontal direction, linked to tectonic processes.

principle stress
axes

the direction of the eigenvectors of the stress
tensor

Can stress be directly measured?

Computational Geophysics and Data Analysis
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Other rheologies (not further explored in this course)

Viscoelasticity

« the loss of energy due to internal friction

» possibly frequency-dependent

» different for P and S waves (why?)

« described by Q

» Not easy to implement numerically for time-domain methods

Porosity

» Effects of pore space (empty, filled, partially filled) on stress-strain
* Frequency-dependent effects

« Additional wave types (slow P wave)

« Highly relevant for reservoir wave propagation

Plasticity

« permanent deformation due to changes in the material as a
function of deformation or stress

» resulting from (micro-) damage to the rock mass

« often caused by damage on a crystallographic scale

* important close to the earthquake source

* not well constrained by observations
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Stress-strain relation

The relation between stress and strain in general is described by the tensor of
elastic constants cy

Gij = Cijklgkl Generalised Hooke’s Law

From the symmetry of the stress and strain tensor and a thermodynamic condition
if follows that the maximum number if independent constants of cyis 21. In an
isotropic body, where the properties do not depend on direction the relation
reduces to

Gi]’ = ﬁ@&l] + 2,Ll6‘l.j Hooke’s Law

where | and m are the Lame parameters, q is the dilatation and djis the
Kronecker delta.

@51.]. = gkkd.j = (gxx +&, +E., )6U
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Seismic Waves
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Consequences of the equations of motion

What are the solutions to this equation? At first we look
at infinite homogeneous isotropic media, then:

o, =A00, +2ue,
o, =A0u, 0, +pu(Ou;+0u,)
po*u, = f;+0 ,(10,u,8, + u@u, +0 u,))
p&ful. = f, +40,0,u, + 10,0 u, + ,u@iul.

Introduction Computational Geophysics and Data Analysis 17



Spherical Waves

Introduction

Let us assume that h is a function of

the distance from the source
2 1
2 .o
Ap =8,,p+;8,,p =C—2p

where we used the definition of the Laplace
operator in spherical coordinates
let us define —

P

P =
to obtain r

with the known solution ; = f(r—oat)
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Geometrical spreading

so a disturbance propagating away with spherical wavefronts
decays like

1 1
p=—f(r—aor) pR—
14 14

... this is the geometrical spreading for
spherical waves, the amplitude decays
proportional to 1/r.

If we had looked at cylindrical waves the result would have
been that the waves decay as (e.g. surface waves)

1

A
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Seismic wave types

P — primary waves — compressional waves — longitudinal
waves

P-Welle i Kom presslon

I— Dllatatlon _ | Ungestortes

Medium

e o
¥ RS Po

L S

Ausbreftungsrichtung

Introduction Computational Geophysics and Data Analysis 20



Seismic wave types

S —waves — secondary waves — shear waves — transverse

waves
S-Welle
SEAN: FSeaamaanan
= &l 3 Ungestoes
Medlum

Ausbreftungsrichtung

e ——-
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Seismic wave types

Rayleigh waves — polarized in the plane through source and
receiver — superposition of P and SV waves

Rayleigh-Welle
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Seismic wave types

Love waves — transversely polarized — superposition of SH
waves in layered media

Love-Welle

2 = 5 il el - o s
" = - a = ez [ g 227 5 T BN

2 e ) F 3 e o S

- g e 77 b

5 . o - o s ;) -1_ B 33

x o o T j 5 j
T 15 il R i G B

Ausbreltungsrichtu "ﬂ :
R

Introduction Computational Geophysics and Data Analysis 23



Seismic wave velocities

Introduction

Seismic wave velocities strongly depend on

* rock type (sediment, igneous, metamorphic, volcanic)

*  porosity

e  pressure and temperature
« pore space content (gas, liquid)

Yy =

ElasticModuli

Density

P-waves

v, = A+2u
\ »

approximately S-waves
Vp = \/?VS v, = ﬁ
Yo,

Computational Geophysics and Data Analysis
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Reflection, Transmission
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Introduction

Reflection and transmission at boundaries

P waves can be converted to S waves and vice versa. This creates
a quite complex behavior of wave amplitudes and wave forms at
interfaces. This behavior can be used to constrain the properties of
the material interface.

incoming P-wave
p P
reflections

MGTZF‘lCll 1 Interface

Material 2

transmissions
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Boundary conditions: internal interfaces
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Boundary conditions: free surface
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Rayleigh wave displacement

Displacement in the x-z plane for a plane harmonic
surface wave propagating along direction x

u_=C(e "% —0.5773¢ %) sin k(ct — x)
u, = C(-0.8475¢"*"*% +1.4679¢™"" %) cos k(ct — x)

This development was first made by Lord Rayleigh in 1885. It
demonstrates that YES there are solutions to the wave equation
propagating along a free surface!

Some remarkable facts can be drawn from this particular form:
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Lamb’s Problem

-the two components are out of phase by p theoretical

- for small values of z a particle describes an a %
ellipse and the motion is retrograde TmmmesS—— ﬂ
- at some depth z the motion is linear in z

- below that depth the motion is again elliptical but
prograde

- the phase velocity is independent of k: there is v ———;—\ -
no dispersion for a homogeneous half space

surface of a half space is called Lamb‘s problem
(after Horace Lamb, 1904). : ~

- the problem of a vertical point force at the b experimental \’\A

- Right Figure: radial and vertical motion for a

4.9 . i
source at the surface Source cm Receiver

Y

Introduction Computational Geophysics and Data Analysis 30



U.U.i.ﬂ“v....huu «~— o

UUT.HHU!HU e

o
o M A

U&HUT&UAHU = &

OAHIQULI.HFAUOMV & B
muglﬂ“’u —® <9

mvnﬂmu-InﬁuonMuo <0 <0

muAHmvl.ﬁc,ﬂ, @ P

n
()
>
©
=
L
D
9
>
©
e
-
9
e
®)
=
Q@
O
=
Q)
al

Oﬂmuvlolnanunﬂu P @

AUP.\HU?I.U — e




Data Example
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Surface wave dispersion

5.0

4.0

Velocity (km/s)

3.0

Introduction

LLove Waves

phase

group

1

100 200 300
Period (s)

Rayleigh Waves

5.0F
phase
4.0k
! s _ group
20 100 200 300
Period (s)

Computational Geophysics and Data Analysis



Surface waves summary

Introduction

» Elastic surface waves (Love and Rayleigh) in nature

generally show dispersive behavior (later we will see that
there is also dispersive behaviour due to numerical
effects!)

Surface waves are a consequence of the free-surface
boundary condition. We thus might expect that — when
using numerical approximations there might be differences
concerning the accurate implementation of this boundary
condition.

The accurate simulation of surface waves plays a
dominant role in global and regional (continental scale)
seismology and is usually not so important in exploration
geophysics.
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Seismic sources
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Radiation from a point double-couple source

Geometry we use
to express the
seismic wavefield
radiated by point
double-couple
source with area A
and slip Du

X2

Here the fault
plane is the x;x,-
plane and the slip
is in x4-direction.
- > Which stress
- g mmme-- X1
T components are

affected?

slip patch
with area A

FIGURE 5 Cartesian and polar coordinate systems for analysis of
radiation by a slip patch with area A and average slip {Au(t)).
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Radiation from a point source

T
uix,r)= 4—1—1""—4 f Myt — 1) drt
Tpo r
1
P .
| 43;}7;}—1 A r—zﬂff[:.(f - ‘F'H(LIP) ... one Of the
| o most important
T o A”FM”” """ r{vs) results of
| > 1 seismology!
+ 4—3A”’—M‘U{r —r/vp) ... Let’'s have a
ove f closer look ...
1 pgl
+ ——— AT Mt — rjvs).
drrpug r

u ground displacement as a ) - -
function of space and AN = 95in 26 cos ¢F — 6(cos 26 cos ¢ — cos b sin ),
time

r density A" = 45in 26 cos ¢r — 2(cos 26 cos zﬁ:ﬁ — COS f s1n r,t:q?))*

r distance from source _ . N

V, shear velocity A = —3sin 26 cos @F + 3(cos 26 cos ¢ — cosf sin g gh),

Vo P-velocity

N near field AT = sin 26 cos ¢F,

IP/S intermediate field

FP/S far field A"S = c0s 26 cos p0 — cos 6 sin g,

My seismic moment
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Radiation from a point source

Introduction

riug

1 1

u(x,t)= — A"V — Myt — 1) dr

dmp ré

rivp

|

-

, 1
.. A" =Myt —r/vp)
4 pup re

1
—— A =My (¢ —r/vg)

Near field term
contains the
static
deformation

Intermediate
terms

Far field terms:

+— .
4 pus r the main
| I ingredient for
o+ ———= A" =Myt — r/vp) source
arpvp 4 inversion, ray
| pol theory, etc.
+——= A" =Myt —r/vs).
dpuyg r
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Source mechanisms

Introduction

Stiike-slip Faulting

. o N-l_gf‘
? //_f @H)

Normal Fauting Basic fault types
“.__ and their
('LI“"; o appearance in the
< focal mechanisms.
Dark regions
Thast Fauting ) indicate
oo o e compressional P-
il ) wave motion.
——

Oblique Marmal

Ni ; ; . 270 « W « 360

Ly

=}

i
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Radiation patterns of a double couple point sources

Far field P — blue
Far field S - red
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Introduction

Radiation from shear dislocation

— N~ -\
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First motion of P
waves at
seismometers in

various directions.

The polarities of
the observed
motion is used to
determine the
point source
characteristics.
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Beachballs and moment tensor

Moment Tensor Beachball Moment Tensor Beachball
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Seismic moment M,

| 1
u(x,t) = — AV — Myt — 1) drt
4 p ré

|
B +— A’-‘ﬁﬂ.»fufr ~r/vs)
M, = u{Au(?))4

A””iw-(r —rfv
— My J"f’b;:}

|
+ dmpuy ¥
I ol
+ ——— AFS_ Myt — r/vg).
47 puyg r
M, seismic moment
m rigidity
<Au(t)> average slip |
A fault area Note that the far-field

displacement is proportional
to the moment rate!
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Source time function

Near-field Far-field Far-field spectrum
A A A

A

log(A)

(O

area (Qp o< M)

displacement
displacement

> displacement

velocity

velocity

velocity

t t log(f) g
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The superposition principle
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Discrete representation of finite sources

(@)
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Introduction

Superposition principle

We allow each subfault to slip once and parameterize the
slip process in terms of slip amplitude (slipy ), rupture veloc-
ity (¢"P) and rise time (R). The slip amplitude is heteroge-
neous across the fault plane, leading to 24 free parameters.
Together with the distance between the center of subfault k
and the hypocenter, the rupture velocity provides the rup-
ture time tg(c™?) of subfault k. The rise time expresses the
duration of the slip. Both rupture velocity and rise time are
homogeneous parameters across the fault plane. Thus, we
invert for 26 free parameters in total. Finally. the complete
seismic response, v/ (w), at station r, component [ and for
the circular frequency, w = 2w f. is computed as a linear sum
of N(= 24) subfault contributions

N
v (w) = z slipy exp[—iwtr(c"")] G (w) S(R,w).  (2)
k=1

In equation (2) S represents the source function that we im-

plemented as an ordinary ramp function. Additional details
on the source function are provided in Appendix B.

Computational Seismology
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Introduction

Finite Source superposition

space derivative) within the rupture element and name the repre-
sentative approximation as G}, (x, 1 — t"). Note that the above-
mentioned approximations introduce frequency-dependent errors,
depending also on receiver position with respect to the source po-
sition (directivity, see e.g. Spudich & Archuleta 1987). Finally, we
obtain:

N
) = Z H” -G (x,t — 1'”)] x5 (t)- " A", (4)

:p q
n=I

where 4" is the area of the nth subfault o,. We call the part en-
closed in the brackets “NGF’ and denote it as g’(x, ¢t — t"). It can
be calculated using a slip rate impulse with a given rupture mecha-
nism. Finally, we obtain the basic equation for synthesis of ground
motions:

Zg (x,t —1")*xs (t) " A". (5)

Note that the complete Gy, , tensor (see eq. 4) could be stored,

Computational Seismology
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The Earth (or a numerical solver)
as a linear system
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Source-receiver
reciprocity
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Introduction

The displacement field generated by a distribution of body
forces and surface tractions can be synthesized using the elasto-
dynamic Green function G;;(x, t;x", 1"), giving the i component
of displacement at (x. 1) due to a localized unit body force op-
erating at (x’, 1) in the j direction. The elastodynamic Green
function satisfies the Navier equation of motion for a linear elas-
tic solid
% , , J )

572 Gij = 3,‘;‘3(1‘ — X )01 —1)+ '—{(I“!MEGH} (1.10)

{].l'n C

0

where §( ) 1s the Dirac delta function. A complete determination
of G;; requires meeting initial conditions (taken usually to be
G =0dG/dt =0fort <t and x # x')and specified boundary
conditions on the surface of the medium.

It G;; satisfies homogeneous boundary conditions (i.e.. zero
traction or zero displacement) on S, it has the following spa-
tiotemporal reciprocity properties

!

G@j{x,?‘:l‘f.f!):(fﬁ(l‘f. —f . x, —1). (1.11)

Computational Seismology
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Practical example

Figure 1. Overview of Valhall Field showing the layout of the geophone array at the sea
floor (red lines), the top of the reservoir, the outline of the field (dark blue line), and the
wells (thin blue lines).

Introduction Computational Seismology 52



¥ locaton (km)
315&Tﬂﬂlp1112131415TF1?1F

3

e
= 5‘ -I----l—ll_-——--\
£ o e e e =
S 7 —_— T T

- - —_--f'-l-—h - T

u' l:._ --- -' 1,_. - - e c—
. g mmenengy

I'E - —

10+
(a) 414

3 4 5§ 8 7 & @ W 11 12 13 14 15 @ 1T 18

1700 1750 1800 1850 1000 1950
velocity (m/s)

Sirgue et al., 2010

Introduction Computational Seismology 53



To understand seismic wave propagation the following
concepts need to be understood,;

» The mathematical description of the deformation of an elastic 3-D
object -> strain

» The forces that are at work for a given deformation and its (mostly
linear!) dependence on the magnitude of deformation .> stress —
strain relation

» The description of elastic modules and the various symmetry
systems (-> elasticicity tensor, isotropy, transverse isotropy,
hexagonal symmetry).

» The boundary condition required at the free surface (traction-free)
and the consequences for wave propagation -> surface waves

» The description of seismic sources using the moment tensor
concept (-> double couples, explosions)

» The origin, scale, spectrum of material heterogeneities in side the
Earth (-> the reason why we need to resort to numerical methods)
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