The Pseudospectral Method

Comprehension

- 1. Explain the concept of *exact* interpolation behaviour in the context of pseudospectral methods. What are cardinal functions?
- 2. Explain the meaning of the term *pseudospectral*. What is so *spectral* about the pseudospectral method?
- 3. What are the main differences between Fourier and Chebyshev approaches? Give application examples.
- 4. Discuss pros and cons of the Fourier method compared with the finite-difference method. Give examples where you would prefer one over the other. What is the role of computer architecture?

Theory

5.

In general, the spectrum F(k) of the derivative of a function f(x) is given by

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx.$$

Use integration by parts to show that (only by) assuming f(x) vanishes if $x \to \pm \infty$ we obtain the extremely useful result that $F^{(n)}(k) = (ik)^n F(k)$ is the spectrum of the *n*th derivative of f(x).

Notebooks

6. Run the notebooks *ps_fourier_derivative_solution*, *ps_fourier_acoustic_1d*, *ps_cheby_derivative*. Try to understand the cells, modify parameters, and discuss the results.