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Introduction



Motivation

e Static and time-dependent PDEs
¢ Implicit approach
e Irregular grids




e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e In addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).

o Li(1994) presented parallel implementations on the legendary CM-2 massively parallel
supercomputer.

o Finite-element principles are also the basis for the so-called direct solution method that was
introduced by R. Geller and co-workers.

e Problems in seismic shaking hazards and engineering seismology were conducted by the
group of J. Bielak and co-workers.

e The methods were later extended to the problem of full waveform inversion (Askan 2008).

e Hybrid methods that make use of advantages of both finite-difference and finite-element
methods were presented by Moczo (2010).



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e |n addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e |n addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).

e Li (1994) presented parallel implementations on the legendary CM-2 massively parallel
supercomputer.



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e |n addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).

e Li (1994) presented parallel implementations on the legendary CM-2 massively parallel
supercomputer.

e Finite-element principles are also the basis for the so-called direct solution method that was
introduced by R. Geller and co-workers.



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e |n addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).

e Li (1994) presented parallel implementations on the legendary CM-2 massively parallel
supercomputer.

e Finite-element principles are also the basis for the so-called direct solution method that was
introduced by R. Geller and co-workers.

e Problems in seismic shaking hazards and engineering seismology were conducted by the
group of J. Bielak and co-workers.



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e |n addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).

e Li (1994) presented parallel implementations on the legendary CM-2 massively parallel
supercomputer.

e Finite-element principles are also the basis for the so-called direct solution method that was
introduced by R. Geller and co-workers.

e Problems in seismic shaking hazards and engineering seismology were conducted by the
group of J. Bielak and co-workers.

e The methods were later extended to the problem of full waveform inversion (Askan 2008).



History

e As the free-surface boundary condition is implicitly fulfilled study of surface wave propagation
(Lysmer 1972, Schlue 1979).

e Seismic scattering problems were simulated with the method in the dissertation by Day (1977).

e |n addition to the physical propagation modes, parasitic modes for high-order implementations
were found Kelly (1990).

e Li (1994) presented parallel implementations on the legendary CM-2 massively parallel
supercomputer.

e Finite-element principles are also the basis for the so-called direct solution method that was
introduced by R. Geller and co-workers.

e Problems in seismic shaking hazards and engineering seismology were conducted by the
group of J. Bielak and co-workers.

e The methods were later extended to the problem of full waveform inversion (Askan 2008).

e Hybrid methods that make use of advantages of both finite-difference and finite-element
methods were presented by Moczo (2010).



Finite Elements in a Nutshell
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1D elastic wave equation with space-
dependent density p, shear modulus p,
and forcing term f(x, t)

pO2U = Oy ju Oxu + f .

We seek to find solutions to the displace-
ment field u(x, t), thus, we replace it by a
finite sum over (here at first linear) basis
functions ;. Our unknowns are the coef-
ficients of the basis functions ¢;

u(x) ~T(x) = > u(t)pi(x) .

=1



Finite Elements in a Nutshell

Furthermore, we formulate a so-called weak form of the wave equation,
multiplying the original strong form by a test function ¢; of the same basis, followed
by an integration over the entire physical domain. This leads to a linear system of
equations of the form

/p@tZU¢jdX+/u8XU8X¢jdX:/f<pjdx
D D D

where we seek to find the approximate displacement field u. Given appropriate
initial conditions, the solution at the next time step u(t + dt) can be found by the
following matrix-vector equation

u(t + dt) = d2(M7)~"! [f - KTu} +2u(t) — u(t — dt)

where M and K are the mass matrix and stiffness matrix, respectively.



Finite Elements in a Nutshell

e Global matrices in the sense that if a physical domain is discretized with N
elements, then the matrix sizes is N x N.

e One of the matrices has to be inverted.

o Mass matrix M consists of elements of the form [, pp;p;dx and the stiffness
matrix K is built up with elements of the form [, uV;V;dx.

e These integrals can be computed in an elegant way for each element by
mapping the physical space to a local reference space.



Static Elasticity



Discretization
Departing from the 1D elastic wave equation
pd2u(x, t) = dxpu(X)Oxu(x, t) + f(x, 1)
we assume the following:

Independent in time: 92u(x, t) = 0
Elastic properties of our 1D medium are independent of space: u(x) = const.

that leads to the equation
—pd2u =f.



lllustration

Static elasticity. A string with
homogeneous properties (density and
shear modulus) is pulled with a certain
force. The Poisson equation
determines the displacement of the
string given appropriate boundary
conditions. Don’t overdo this
experiment, in particular if you have old
strings.



Weak form

Transform strong form into weak form by multiplying the equation with an arbitrary
space-dependent test function that we denote as v — v(x). Then we integrate the
equation on both sides over the entire physical domain D with x € D

—/uﬁfuvdx:/ fvadx.
D D

Performing an integration by parts of the left side:

Xmin

—/yaﬁuvdx: /uaxuaxvdx—[uaxuv]"max.
D D

where the last term is an anti-derivative.



Free surface

Free-surface condition = No stress at the boundaries.
As the anti-derivative is evaluated at the domain boundaries this implies that this

term vanishes.
u/axuaxvdx:/fvdx
D

which is still a description in the continuous world. To enter the discrete world we
replace our exact solution u(x) by a u, a sum over some basis functions ¢, that we
do not yet specify

N
u~ U(X) = ZU/QO,‘ 2
=i

Replacing u by u, we obtain

D
10



Basis functions

As a choice for our test function v(x) we use the same set of basis functions. Thus
v(x) — ©j(X).
What is the simplemost choice for our basis functions ¢;? Denoting
X;, i =1,2,..., N as the boundaries of our elements we define our basis functions
such that ¢; = 1, x = x; and zero elsewhere. Inside the elements our solution field
is described by a linear function:

X—Xi—1

Xi—Xi—1

) ) Xip1—x
(PI(X) = m forx; < x < Xit+1

for xi_1 < x < X;

0 elsewhere
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Basis functions

Basis function i

|

1 2 3 4 5 6 7 8 9 10
Element boundaries

Linear basis functions for the finite-element method. A 1D domain is discretized with n — 1 elements
having n = 10 element boundaries (open circles). The basis functions ¢; = 1 at x = x;. With this
basis an arbitrary function can be exactly interpolated at the element boundary points x;.
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Galerkin Principle

We are ready to assemble our discretized version of the weak form by replacing
the continuous displacement field by its approximation and applying the Galerkin

principle. We obtain
N
M/ Ox (wa) Ox @j dXZ/fQOj ax
b i=1

N
Zui/DM8x<Piax<deXZ/f90jdX
i=1

which is a system of N equations as we project the solution on the basis functions
pj with j=1,..., N. In the second equation we switched the sequence of
integration and sum.
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Matrix-Vector Notation

The discrete system thus obtained can be written using matrix-vector notation.
Defining the solution vector u as

Uy
Uz
u=

un
the source vector f as

fo(p1 ax
o fo(png

foSON ax
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Matrix-Vector Notation

and the matrix containing the integral over the basis function derivatives as K

K—>K/'/':/L/Dax99i8x(/7j
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Solution

System of equations can be written in component form as
uj Ky =1;
where we use the Einstein summation convention and in matrix-vector notation
KMu=f

Note: Matrix K is called the it stiffness matrix.
This system of equations has as many unknowns as equations. Provided that the
matrix is positive definite we can determine its inverse:

u=(K") 't
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Boundary Conditions

In case you would like to invoke specific values at the boundaries the approximate

solution becomes N
—1

u = Up1 + Z Uipj + UnpnN
i=2
where uy and uy are the boundary values. The weak form becomes

N—1
Z M/ax(ﬁiax‘ﬂjdx:/f@jdx
i=2 & &
+ U(Xmin) /Dax 1 Ox pj dx

+ U(Xmax)/Dax ©N Ox Pj dx
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Boundary Conditions

KT

=

Graphical representation of the matrix-
vector system with boundary conditions.
The global system matrix has N—2x N—2
elements. The system feels the bound-
ary conditions through a modified source
terms. The red spot indicates the source
location inside the medium.
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Reference Element, Mapping

Mapping the physical domain to a reference element. In our case we center the
local coordinate system denoted as ¢ at point x; and obtain

E=X—X

hi = Xi — Xj—1

where h; denotes the size of element i defined in the interval x € [x;, x;.1]. The
local basis functions becomes

41 for —h<€£<0
pi(€)=91-% for0O<e<h
0 elsewhere
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Reference Element, Mapping

and their derivatives

¢ ¢i(§)

Tfor —h<¢<0
—1Lforo<¢&<h

0 elsewhere
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Reference Element, Mapping

Basis function ¢;

Gradient 0¢¢;

0.5

-0.5

i-2

i-1 i it
Element edges

i+2

Basis functions and their derivatives.
Top: The basis function ¢; (thick solid
line) is shown along with the neighbor-
ing functions ;4 (thin dotted lines). Bot-
tom: The same for their derivatives with
respect to the space coordinate €.
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Stiffness Matrix

We can now proceed with calculating the elements of the stiffness matrix K
defined as

Kij :M/Dax90i Ox Pj ax

with the corresponding expression in local coordinates ¢

Kij = u/ O¢pi Ogpj dE .
D
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Stiffness Matrix

Let us calculate some of the elements of matrix Kj; starting with the diagonall
elements. For example, for Ki1 we obtain

K11=M/D<9x¢1 Ox 1 dx

h_1_1 L h L
= [ F R = [ =%
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Stiffness Matrix

For diagonal element Ay, the derivatives overlap in element 1 and 2 implying the
integration has to be performed for the interval £ € [—h, h].

KZZZM/Dax(PZaxSDZdX

0 h
= H/h3590235302d§+/i/0 O¢ 02 0¢ o d§

0 h
_ s #[7_2
_hZ/_hd§+h2/0 ~h
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Stiffness Matrix

Equivalently, the off-diagonal terms overlap only in one element, for example

K12=M/03x901 Ox 2 dx

h 7 —q) {
Zu/ Ot p1 O p2 dE = Tﬁdf
0 0

h
_TH S
_h2/0d§ h

Kot = Ki2
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Stiffness Matrix

Finally, the stiffness matrix for an elastic physical system with constant shear
modulus ; and element size h reads

Note: Space-dependent terms in our linear system are proportional to the 3-point
operator matrix for a 2nd finite-difference derivative
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Simulation Example

Parameter Value
Xmax 1

nx 20

1 1

h 0.0526
u(0) 0.15

0.05

The physical domain is defined in the in-
terval x € [0, 1] and we apply a unit forc-
ing at x = 0.75 at one of the boundary
element points.
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Simulation Example

#
# Initialization of setup
#
nx = 20 # Number of boundary points
u = np.zeros (nx) # Solution vector
f = np.zeros(nx) # Source vector
mu = 1 # Constant shear modulus
. #
# Element boundary points # Souce term is a spike at i = 3*nx/4
x = np.linspace(0, 1, nx) # x in [0,1] f[int (3*nx/4)] = 1
h = x[2] - x[1] # Constant element size
# Boundary condition at x = 0
p uf0] = 0.15 ; £{1] = u[0]/h
# Assemble stiffness matrix K ij (Eq 6.30) # Boundary condition at x = 1
I ———. ulnx-1] = 0.05 ; £[nx-2] = ulnx-1]/h
K = np.zeros((nx, nx)) ¥
for i in range(1l, nx-1): # Finite element solution. (Eq 6.19)
for j in range(l, nx-1):
if i=— §: ull:nx-1] = np.linalg.inv(K[1:nx-1, 1:nx-1]) @ np.transpose (f[l:nx-1])
K[i, j] = 2*mu/h
elif i == j 8
K[i, jl
elif i +1 =
K[i, jl
else:

=0

K[i, jl



Relaxation method

Starting with the Poisson equation —p02u = f, omitting space dependencies, we
replace the |.h.s. with a finite-difference approximation and obtain

u(x —h) —2u(x) + u(x + h)

— i 12 = 1}
and after rearranging
ulx—h)+u(x+h Hh
u(x) = ( )2 ( )_2;/'

This equation can be used as an iterative procedure with an initial guess for the
the unknown field u.

29



Simulation Example

With discretization u; = u(x;) and iteration step k this can be written as

k k 2
gt = Y Uy
! 2 2u

with initial guess uf=" = 0 - also called a relaxation method.

for it in range(nt):
# Calculate the average of u (omit boundaries)
for i in range(l, nx-1):
dul[i] =u [i+1] + ul[i-1]
u= 0.5%( £f*h**2/mu + du )

ul[0] = 0.15 # Boundary condition at x=0
u[nx-1] = 0.05 # Boundary condition at x=1I
fd = u
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Simulation Example

Simulation example comparing the finite-
element solution (thick solid line) with a
finite-difference based relaxation method
(thin lines) that iteratively converges to
the correct solution (see text for details).
500 iterations were employed for the re-
laxation method and the solution is shown
after any 25 iterations.
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Summary

e The finite-element method was originally developed mostly for static structural engineering
problems.

e The element concept relates to describing the solution field in an analogous way inside each
element, thereby facilitating the required calculations of the system matrices.

e The finite-element approach can in principle be applied to elements of arbitrary shape. Most
used shapes are triangles (tetrahedra) or quadrilateral (hexahedral) structures.

e The finite-element method is a series expansion method. The continuous solution field is
replaced by a finite sum over (not necessarily orthogonal) basis functions.

e For static elastic problems or the elastic wave propagation problem finite-element analysis
leads to a (large) system of linear equations. In general, the matrices are of size N x N where
N is the number of degrees of freedom.

e Because of the specific interpolation properties of the basis functions, their coefficients take
the meaning of the values of the solution field at specific node points.
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Summary

¢ In an initialization step the global stiffness and mass matrices have to be calculated. They
depend on integrals over products of basis functions and their derivatives.

e [f equation parameters (e.g., elastic parameters, density) vary inside elements, then numerical
integration has to be performed.

e The stress-free surface condition can be implicitly solved. This is a major advantage for
example for the simulation of surface waves.

e The classic finite-element method plays a minor role in seismology as its high-order sister, the
spectral-element method, is more efficient.
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