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Introduction



Motivation

• Simple concept

• Robust

• Easy to parallelize

• Regular grids

• Explicit method
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History

• Several Pioneers of solving PDEs with finite-difference method (Lewis Fry
Richardson, Richard Southwell, Richard Courant, Kurt Friedrichs, Hans Lewy,
Peter Lax and John von Neumann)

• First application to elastic wave propagation (Alterman and Karal, 1968)

• Simulating Love waves and was the frst showing snapshots of seimsic wave
fields (Boore, 1970)

• Concept of staggered-grids by solving the problem of rupture propagation
(Madariaga, 1976 and Virieux and Madariaga, 1982)
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History

• Extension to 3D because of parallel computations (Frankel and Vidale, 1992;
Olsen and Archuleta, 1996; etc.)

• Application to spherical geometry by Igel and Weber, 1995; Chaljub and
Tarantola, 1997 and 3D spherical sections by Igel et al., 2002

• Incorporation in the first full waveform inversion schemes initially in 2D, e.g.
(Crase et al., 1990) and later in 3D (Chen et al., 2007)
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Finite Differences in a Nutshell

• Snapshot in space of the
pressure field p

• Zoom into the wave field with
grid points indicated by +

• Exact interpolate using Taylor
series
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Scalar wave equation

1D acoustic wave equation

p̈(x , t) = c(x)2 ∂2
x p(x , t) + s(x , t)

p pressure
c acoustic velocity
s source term

Approximation with a difference formula

p̈(x , t) ≈ p(x , t + dt)− 2p(x , t) + p(x , t − dt)
dt2

and equivalently for the space derivative
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Finite Differences and Taylor
Series



Finite Differences

Forward derivative

dx f (x) = lim
dx → 0

f (x + dx)− f (x)
dx

Centered derivative

dx f (x) = lim
dx → 0

f (x + dx)− f (x − dx)
2dx

Backward derivative

dx f (x) = lim
dx → 0

f (x)− f (x − dx)
dx

7



Finite Differences

Forward derivative

dx f+ ≈ f (x + dx)− f (x)
dx

Centered derivative

dx f c ≈ f (x + dx)− f (x − dx)
2dx

Backward derivative

dx f− ≈ f (x)− f (x − dx)
dx
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Finite Differences and Taylor Series

The approximate sign is important here as the derivatives at point x are not
exact. Understanding the accuracy by looking at the definition of Taylor
Series:

f (x + dx) = f (x) + f ′(x) dx + 1
2! f ′′(x) dx2 + O(dx3)

Subtraction with f(x) and division by dx leads to the definition of the forward
derivative:

f (x+dx)−f (x)
dx = f ′(x) + 1

2! f ′′(x) dx + O(dx2)
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Finite Differences and Taylor Series

Using the same approach - adding the Taylor Series for f (x + dx) and
f (x − dx) and dividing by 2dx leads to:

f (x+dx)−f (x−dx)
2dx = f ′(x) + O(dx2)

This implies a centered finite-difference scheme more rapidly converges to
the correct derivative on a regular grid

=⇒ It matters which of the approximate formula one chooses

=⇒ It does not imply that one or the other finite-difference approximation is
always the better one
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Higher Derivatives

The partial differential equations have often 2nd (seldom higher) derivatives

Developing from first derivatives by mixing a forward and a backward
definition yields

∂2
x f ≈

f (x+dx)−f (x)
dx − f (x)−f (x−dx)

dx
dx

=
f (x + dx)− 2f (x) + f (x − dx)

dx2
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Higher Derivatives - Alternative derivation

Determining the weights with which the function values have to be multiplied
to obtain derivative approximations ...

a f (x + dx) = a
[
f (x) + f ′(x) dx + 1

2! f ′′(x) dx2 + . . .
]

b f (x) = b [f (x)]

c f (x − dx) = c
[
f (x)− f ′(x) dx + 1

2! f ′′(x) dx2 − . . .
]
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Higher Derivatives - Alternative derivation

How to determine a, b, and c?

af (x + dx) + bf (x) + cf (x − dx) ≈
f (x) [a + b + c]

+dxf
′
[a − c]

+ 1
2!dx2f

′′
[a + c]
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Higher Derivatives - Alternative derivation

To obtain a 2nd derivative we require

a + b + c = 0

a − c = 0

a + c =
2!

dx2
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Higher Derivatives - Alternative derivation

 1 1 1
1 0 −1
1 0 1


 a

b
c

 =

 0
0
2!
dx


A w = s

with solution

w = A−1s
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Higher Derivatives - Solution

a =
1

dx2

b = − 2
dx2

c =
1

dx2
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High-Order Operators

What happens if we extend the domain of influence for the derivative(s) of our
function f(x)?
Let us search for a 5-point operator for the second derivative

f ′′ ≈ af (x + 2dx) + bf (x + dx) + cf (x) + df (x − dx) + ef (x − 2dx)

a + b + c + d + e = 0

2a + b − d − 2e = 0

4a + b + d + 4e =
1

2dx2

8a + b − d − 8e = 0

16a + b + d + 16e = 0
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High-Order Operators

Using matrix inversion we obtain a unique solution

a = − 1
12dx2

b =
4

3dx2

c = − 5
2dx2

d =
4

3dx2

e = − 1
12dx2 .

with a leading error term for the 2nd derivative is O(dx4)

=⇒ Accuracy improvement
18



High-Order Operators

Graphical illustration of the
Taylor Operators for the first
derivative for higher orders

The weights rapidly become
small for increasing distance to
central point of evaluation

19



Finite-Difference Approximation of
Wave Equations



Acoustic waves in 1D

To solve the wave equation, we start with the
simplemost wave equation:

The constant density acoustic wave equation in 1D

p̈ = c2 ∂2
x p + s

impossing pressure-free conditions at the two boundaries
as

p(x) |x=0,L= 0
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Acoustic waves in 1D

The following dependencies apply:

p → p(x, t) pressure

c → c(x) P-velocity

s → s(x, t) source term

As a first step we need to discretize space and time and we do that with a constant
increment that we denote dx and dt.

xj = jdx , j = 0, jmax

tn = ndt , n = 0, nmax
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Acoustic waves in 1D

Starting from the continuous description of the partial differential equation to a
discrete description. The upper index will correspond to the time discretization, the
lower index will correspond to the spatial discretization

pn+1
j → p(xj , tn + dt)

pn
j → p(xj , tn)

pn−1
j → p(xj , tn − dt)

pn
j+1 → p(xj + dx , tn)

pn
j → p(xj , tn)

pn
j−1 → p(xj − dx , tn)

.
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Acoustic waves in 1D

pn+1
j − 2pn

j + pn−1
j

dt2 = c2
j

[
pn

j+1 − 2pn
j + pn

j−1

dx2

]
+ sn

j .

the r.h.s. is defined at same time
level n

the l.h.s. requires information from
three different time levels

t

n − 1

n

n + 1

j − 1 j j + 1 x 23



Acoustic waves in 1D

Assuming that information at time level n (the presence) and n − 1 (the past) is
known, we can solve for the unknown field pn+1

j :

pn+1
j = c2

j
dt2

dx2

[
pn

j+1 − 2pn
j + pn

j−1

]
+ 2pn

j − pn−1
j + dt2sn

j

The initial condition of our wave simulation problem is such that everything is at
rest at time t = 0:

p(x , t)|t=0 = 0 , ṗ(x , t)|t=0 = 0.
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Acoustic waves in 1D

Waves begin to radiate as soon as the source term s(x , t) starts to act

For simplicity: the source acts directly at a grid point with index js

Temporal behaviour of the source can be calculated by Green’s function

s(x , t) = δ(x − xs) δ(t − ts)

where xs and ts are source location and source time and δ() corresponds to
the delta function
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Acoustic waves in 1D

A delta function contains all frequencies and we cannot expect that our numerical
algorithm is capable of providing accurate solutions Operating with a band-limited
source-time function:

s(x , t) = δ(x − xs) f (t)

where the temporal behaviour f(t) is chosen according to our specific physical
problem
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Example

Simulating acoustic wave propagation in a 10km column (e.g. the atmosphere)
and assume an air sound speed of c = 0.343m/s. We would like to hear the
sound wave so it would need a dominant frequency of at least 20 Hz. For the
purpose of this exercise we initialize the source time function f (t) using the first
derivative of a Gauss function.

f (t) = −8 f0 (t − t0) e
− 1

(4f0)
2 (t−t0)2

where t0 corresponds to the time of the zero-crossing, f0 is the dominant frequency
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Example

• What is the minimum spatial wavelength that
propagates inside the medium?

• What is the maximum velocity inside the
medium?

• What is the propagation distance of the
wavefield (e.g., in dominant wavelengths)?
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Example

Sufficient to look at the relation between frequency and wavenumber:

c =
ω

k
=

λ

T
= λ f

where c is velocity, T is period, λ is wavelength, f is frequency, and ω = 2πf is
angular frequency

dominant wavelength of f0 = 20Hz

substantial amount of energy in the wavelet is at frequencies above 20 Hz

=⇒ λ = 17m and λ = 7m for frequencies 20Hz and 50Hz, respectively
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Python code fragment

# Time extrapolation

for it in range(nt):

# calculate partial derivatives (omit boundaries)

for i in range(1, nx - 1):

d2p[i] = (p[i + 1] - 2 * p[i] + p[i - 1]) / dx ** 2

# Time extrapolation

pnew = 2 * p - pold + dt ** 2 * c ** 2 * d2p

# Add source term at isrc

pnew[isrc] = pnew[isrc] + dt ** 2 * src[it] / dx

# Remap time levels

pold, p = p, pnew
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Result

Choosing a grid increment of dx = 0.5m −→
about 24 points per spatial wavelength for the
dominant frequency

Setting time increment dt = 0.0012 −→ around
40 points per dominant period
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Summary

• Replacing the partial derivatives by finite differences allows partial differential
equations such as the wave equation to be solved directly for (in principle) arbitrarily
heterogeneous media

• The accuracy of finite-difference operators can be improved by using information
from more grid points (i.e., longer operators). The weights for the grid points can be
obtained using Taylor series
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