The Finite Difference Method

Heiner Igel
Department of Earth and Environmental Sciences
Ludwig-Maximilians-University Munich

Introduction

Motivation

- Simple concept
- Robust
- Easy to parallelize
- Regular grids
- Explicit method

History

- Several Pioneers of solving PDEs with finite-difference method (Lewis Fry Richardson, Richard Southwell, Richard Courant, Kurt Friedrichs, Hans Lewy, Peter Lax and John von Neumann)
- First application to elastic wave propagation (Alterman and Karal, 1968)
- Simulating Love waves and was the frst showing snapshots of seimsic wave fields (Boore, 1970)
- Concept of staggered-grids by solving the problem of rupture propagation (Madariaga, 1976 and Virieux and Madariaga, 1982)

History

- Several Pioneers of solving PDEs with finite-difference method (Lewis Fry Richardson, Richard Southwell, Richard Courant, Kurt Friedrichs, Hans Lewy, Peter Lax and John von Neumann)
- First application to elastic wave propagation (Alterman and Karal, 1968)
- Simulating Love waves and was the frst showing snapshots of seimsic wave fields (Boore, 1970)
- Concept of staggered-g ids by solving the problem of rupture propagation (Madariaga, 1976 and Virieux and Madariaga, 1982)

History

- Several Pioneers of solving PDEs with finite-difference method (Lewis Fry Richardson, Richard Southwell, Richard Courant, Kurt Friedrichs, Hans Lewy, Peter Lax and John von Neumann)
- First application to elastic wave propagation (Alterman and Karal, 1968)
- Simulating Love waves and was the frst showing snapshots of seimsic wave fields (Boore, 1970)
- Concept of staggered-grids by solving the problem of rupture propagation (Madariaga, 1976 and Virieux and Madariaga, 1982)

History

- Several Pioneers of solving PDEs with finite-difference method (Lewis Fry Richardson, Richard Southwell, Richard Courant, Kurt Friedrichs, Hans Lewy, Peter Lax and John von Neumann)
- First application to elastic wave propagation (Alterman and Karal, 1968)
- Simulating Love waves and was the frst showing snapshots of seimsic wave fields (Boore, 1970)
- Concept of staggered-grids by solving the problem of rupture propagation (Madariaga, 1976 and Virieux and Madariaga, 1982)

History

- Extension to 3D because of parallel computations (Frankel and Vidale, 1992; Olsen and Archuleta, 1996; etc.)
- Application to spherical geometry by Igel and Weber, 1995; Chaljub and Tarantola, 1997 and 3D spherical sections by Igel et al., 2002
- Incorporation in the first full waveform inversion schemes initially in 2D, e.g. (Crase et al., 1990) and later in 3D (Chen et al., 2007)

History

- Extension to 3D because of parallel computations (Frankel and Vidale, 1992; Olsen and Archuleta, 1996; etc.)
- Application to spherical geometry by Igel and Weber, 1995; Chaljub and Tarantola, 1997 and 3D spherical sections by Igel et al., 2002
- Incorporation in the first full waveform inversion schemes initially in 2D, e.g. (Crase et al., 1990) and later in 3D (Chen et al., 2007)

History

- Extension to 3D because of parallel computations (Frankel and Vidale, 1992; Olsen and Archuleta, 1996; etc.)
- Application to spherical geometry by Igel and Weber, 1995; Chaljub and Tarantola, 1997 and 3D spherical sections by Igel et al., 2002
- Incorporation in the first full waveform inversion schemes initially in 2D, e.g. (Crase et al., 1990) and later in 3D (Chen et al., 2007)

Finite Differences in a Nutshell

- Snapshot in space of the pressure field p
- Zoom into the wave field with grid points indicated by +
- Exact interpolate using Taylor series

Scalar wave equation

1D acoustic wave equation

$$
\ddot{p}(x, t)=c(x)^{2} \partial_{x}^{2} p(x, t)+s(x, t)
$$

p pressure
c acoustic velocity
s source term
Approximation with a difference formula

$$
\ddot{p}(x, t) \approx \frac{p(x, t+d t)-2 p(x, t)+p(x, t-d t)}{d t^{2}}
$$

Finite Differences and Taylor Series

Finite Differences

Forward derivative

$$
d_{x} f(x)=\lim _{d x \rightarrow 0} \frac{f(x+d x)-f(x)}{d x}
$$

Centered derivative

$$
d_{x} f(x)=\lim _{d x \rightarrow 0} \frac{f(x+d x)-f(x-d x)}{2 d x}
$$

Backward derivative

$$
d_{x} f(x)=\lim _{d x \rightarrow 0} \frac{f(x)-f(x-d x)}{d x}
$$

Finite Differences

Forward derivative

$$
d_{x} f^{+} \approx \frac{f(x+d x)-f(x)}{d x}
$$

Centered derivative

$$
d_{x} f^{c} \approx \frac{f(x+d x)-f(x-d x)}{2 d x}
$$

Backward derivative

$$
d_{x} f^{-} \approx \frac{f(x)-f(x-d x)}{d x}
$$

Finite Differences and Taylor Series

The approximate sign is important here as the derivatives at point x are not exact. Understanding the accuracy by looking at the definition of Taylor Series:

$$
f(x+d x)=f(x)+f^{\prime}(x) d x+\frac{1}{2!} f^{\prime \prime}(x) d x^{2}+O\left(d x^{3}\right)
$$

Subtraction with $f(x)$ and division by $d x$ leads to the definition of the forward derivative:

$$
\frac{f(x+d x)-f(x)}{d x}=f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x) d x+O\left(d x^{2}\right)
$$

Finite Differences and Taylor Series

Using the same approach - adding the Taylor Series for $f(x+d x)$ and $f(x-d x)$ and dividing by $2 d x$ leads to:
$\frac{f(x+d x)-f(x-d x)}{2 d x}=f^{\prime}(x)+O\left(d x^{2}\right)$

This implies a centered finite-difference scheme more rapidly converges to the correct derivative on a regular grid
\Longrightarrow It matters which of the approximate formula one chooses
\Longrightarrow It does not imply that one or the other finite-difference approximation is always the better one

Higher Derivatives

The partial differential equations have often 2nd (seldom higher) derivatives Developing from first derivatives by mixing a forward and a backward definition yields

$$
\partial_{x}^{2} f \approx \frac{\frac{f(x+d x)-f(x)}{d x}-\frac{f(x)-f(x-d x)}{d x}}{d x}=\frac{f(x+d x)-2 f(x)+f(x-d x)}{d x^{2}}
$$

Higher Derivatives - Alternative derivation

Determining the weights with which the function values have to be multiplied to obtain derivative approximations ...

$$
\begin{aligned}
a f(x+d x) & =a\left[f(x)+f^{\prime}(x) d x+\frac{1}{2!} f^{\prime \prime}(x) d x^{2}+\ldots\right] \\
b f(x) & =b[f(x)] \\
c f(x-d x) & =c\left[f(x)-f^{\prime}(x) d x+\frac{1}{2!} f^{\prime \prime}(x) d x^{2}-\ldots\right]
\end{aligned}
$$

Higher Derivatives - Alternative derivation

How to determine a, b, and c ?

$$
\begin{gathered}
a f(x+d x)+b f(x)+c f(x-d x) \approx \\
f(x)[a+b+c] \\
+d x f^{\prime}[a \quad-c] \\
+\frac{1}{2!} d x^{2} f^{\prime \prime}\left[\begin{array}{ll}
a & +c]
\end{array}\right.
\end{gathered}
$$

Higher Derivatives - Alternative derivation

To obtain a 2nd derivative we require

$$
\begin{aligned}
a+b+c & =0 \\
a-c & =0 \\
a \quad+c & =\frac{2!}{d x^{2}}
\end{aligned}
$$

Higher Derivatives - Alternative derivation

$$
\begin{aligned}
\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 0 & -1 \\
1 & 0 & 1
\end{array}\right) & \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
\end{aligned}=\left(\begin{array}{c}
0 \\
0 \\
\frac{2!}{d x}
\end{array}\right) .
$$

with solution

$$
\mathbf{w}=\mathbf{A}^{-1} \mathbf{s}
$$

Higher Derivatives - Solution

$$
\begin{aligned}
a & =\frac{1}{d x^{2}} \\
b & =-\frac{2}{d x^{2}} \\
c & =\frac{1}{d x^{2}}
\end{aligned}
$$

High-Order Operators

What happens if we extend the domain of influence for the derivative(s) of our function $f(x)$?
Let us search for a 5-point operator for the second derivative

$$
\begin{aligned}
& f^{\prime \prime} \approx a f(x+2 d x)+b f(x+d x)+c f(x)+d f(x-d x)+e f(x-2 d x) \\
& a+b+c+d+e=0 \\
& 2 a+b-d-2 e=0 \\
& 4 a+b+d+4 e=\frac{1}{2 \mathrm{~d} x^{2}} \\
& 8 a+b-d-8 e=0 \\
& 16 a+b+d+16 e=0
\end{aligned}
$$

High-Order Operators

Using matrix inversion we obtain a unique solution

$$
\begin{aligned}
a & =-\frac{1}{12 \mathrm{~d} x^{2}} \\
b & =\frac{4}{3 \mathrm{~d} x^{2}} \\
c & =-\frac{5}{2 \mathrm{~d} x^{2}} \\
d & =\frac{4}{3 \mathrm{~d} x^{2}} \\
e & =-\frac{1}{12 \mathrm{~d} x^{2}}
\end{aligned}
$$

with a leading error term for the 2nd derivative is $O\left(d x^{4}\right)$
\Longrightarrow Accuracy improvement

High-Order Operators

Graphical illustration of the Taylor Operators for the first derivative for higher orders
The weights rapidly become small for increasing distance to central point of evaluation

Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

To solve the wave equation, we start with the simplemost wave equation:
The constant density acoustic wave equation in 1D

$$
\ddot{p}=c^{2} \partial_{x}^{2} p+s
$$

impossing pressure-free conditions at the two boundaries as

$$
\left.p(x)\right|_{x=0, L}=0
$$

Acoustic waves in 1D

The following dependencies apply:

$$
\begin{array}{ll}
p \rightarrow p(\mathbf{x}, \mathbf{t}) & \text { pressure } \\
c \rightarrow c(\mathbf{x}) & \text { P-velocity } \\
s \rightarrow s(\mathbf{x}, \mathbf{t}) & \text { source term }
\end{array}
$$

As a first step we need to discretize space and time and we do that with a constant increment that we denote dx and dt .

$$
\begin{gathered}
x_{j}=j \mathrm{~d} x, \quad j=0, j_{\max } \\
t_{n}=n \mathrm{~d} t, \quad n=0, n_{\max }
\end{gathered}
$$

Acoustic waves in 1D

Starting from the continuous description of the partial differential equation to a discrete description. The upper index will correspond to the time discretization, the lower index will correspond to the spatial discretization

$$
\begin{aligned}
p_{j}^{n+1} & \rightarrow p\left(x_{j}, t_{n}+\mathrm{d} t\right) \\
p_{j}^{n} & \rightarrow p\left(x_{j}, t_{n}\right) \\
p_{j}^{n-1} & \rightarrow p\left(x_{j}, t_{n}-\mathrm{d} t\right) \\
p_{j+1}^{n} & \rightarrow p\left(x_{j}+\mathrm{d} x, t_{n}\right) \\
p_{j}^{n} & \rightarrow p\left(x_{j}, t_{n}\right) \\
p_{j-1}^{n} & \rightarrow p\left(x_{j}-\mathrm{d} x, t_{n}\right)
\end{aligned}
$$

Acoustic waves in 1D

$$
\frac{p_{j}^{n+1}-2 p_{j}^{n}+p_{j}^{n-1}}{\mathrm{~d} t^{2}}=c_{j}^{2}\left[\frac{p_{j+1}^{n}-2 p_{j}^{n}+p_{j-1}^{n}}{\mathrm{~d} x^{2}}\right]+s_{j}^{n}
$$

the r.h.s. is defined at same time level n
the l.h.s. requires information from three different time levels

Acoustic waves in 1D

Assuming that information at time level n (the presence) and $n-1$ (the past) is known, we can solve for the unknown field p_{j}^{n+1} :

$$
p_{j}^{n+1}=c_{j}^{2} \frac{\mathrm{~d} t^{2}}{\mathrm{~d} x^{2}}\left[p_{j+1}^{n}-2 p_{j}^{n}+p_{j-1}^{n}\right]+2 p_{j}^{n}-p_{j}^{n-1}+\mathrm{d} t^{2} s_{j}^{n}
$$

The initial condition of our wave simulation problem is such that everything is at rest at time $\mathrm{t}=0$:

$$
\left.p(x, t)\right|_{t=0}=0,\left.\dot{p}(x, t)\right|_{t=0}=0 .
$$

Acoustic waves in 1D

Waves begin to radiate as soon as the source term $s(x, t)$ starts to act
For simplicity: the source acts directly at a grid point with index j_{s}
Temporal behaviour of the source can be calculated by Green's function

$$
s(x, t)=\delta\left(x-x_{s}\right) \delta\left(t-t_{s}\right)
$$

where x_{s} and t_{s} are source location and source time and $\delta()$ corresponds to the delta function

Acoustic waves in 1D

A delta function contains all frequencies and we cannot expect that our numerical algorithm is capable of providing accurate solutions Operating with a band-limited source-time function:

$$
s(x, t)=\delta\left(x-x_{s}\right) f(t)
$$

where the temporal behaviour $f(t)$ is chosen according to our specific physical problem

Example

Simulating acoustic wave propagation in a 10 km column (e.g. the atmosphere) and assume an air sound speed of $c=0.343 \mathrm{~m} / \mathrm{s}$. We would like to hear the sound wave so it would need a dominant frequency of at least 20 Hz . For the purpose of this exercise we initialize the source time function $f(t)$ using the first derivative of a Gauss function.

$$
f(t)=-8 f_{0}\left(t-t_{0}\right) e^{-\frac{1}{\left(4 t_{0}\right)^{2}}\left(t-t_{0}\right)^{2}}
$$

where t_{0} corresponds to the time of the zero-crossing, f_{0} is the dominant frequency

Example

- What is the minimum spatial wavelength that propagates inside the medium?
- What is the maximum velocity inside the medium?
- What is the propagation distance of the wavefield (e.g., in dominant wavelengths)?

Example

Sufficient to look at the relation between frequency and wavenumber:

$$
c=\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f
$$

where c is velocity, T is period, λ is wavelength, f is frequency, and $\omega=2 \pi f$ is angular frequency
dominant wavelength of $f_{0}=20 \mathrm{~Hz}$
substantial amount of energy in the wavelet is at frequencies above 20 Hz
$\Longrightarrow \lambda=17 \mathrm{~m}$ and $\lambda=7 \mathrm{~m}$ for frequencies 20 Hz and 50 Hz , respectively

Python code fragment

```
# Time extrapolation
for it in range(nt):
    # calculate partial derivatives (omit boundaries)
    for i in range(1, nx - 1):
        d2p[i] = (p[i + 1] - 2 * p[i] + p[i - 1]) / dx ** 2
    # Time extrapolation
    pnew = 2 * p - pold + dt ** 2 * c ** 2 * d2p
    # Add source term at isrc
    pnew[isrc] = pnew[isrc] + dt ** 2 * src[it] / dx
    # Remap time levels
    pold, p = p, pnew
```


Result

Choosing a grid increment of $d x=0.5 \mathrm{~m} \longrightarrow$ about 24 points per spatial wavelength for the dominant frequency
Setting time increment $d t=0.0012 \longrightarrow$ around 40 points per dominant period

Summary

- Replacing the partial derivatives by finite differences allows partial differential equations such as the wave equation to be solved directly for (in principle) arbitrarily heterogeneous media
- The accuracy of finite-difference operators can be improved by using information from more grid points (i.e., longer operators). The weights for the grid points can be obtained using Taylor series

