Computational Seismology: What is the best strategy for my problem?

Heiner Igel April 28, 2022

Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich

Course Content

- Introduction Motivation
- Fundamentals of wave propagation (wave equations, analytical solutions, reciprocity, superposition principle, dispersion, homogenization)
- The finite-difference method
- The pseudospectral method
- Linear finite-element method
- The spectral-element method
- The finite-volume method
- The discontinuous Galerkin method
- Applications

Introduction

- · Who needs computational seismology?
- What are some fundamental aspects of computational wave propagation?
- Is it a tough or an easy problem as far as computational resources are concerned?
- · Which numerical methods are on the market, basic principles, and domains of application?
- What options do you have to get training (Jupyter notebooks, COURSERA, etc) ...?

We define **computational seismology** such that it **involves the complete solution of the seismic wave propagation (and rupture) problem for arbitrary 3-D models by numerical means**.

What is not covered ... but you can do tomography with ...

- · Ray-theoretical methods
- **Quasi-analytical** methods (e.g., normal modes, reflectivity method)
- Frequency-domain solutions
- · Boundary integral equation methods
- · Discrete particle methods

These methods are important for **benchmarking** numerical solutions!

Who needs Computational Seismology

Many problems rely on the analysis of elastic wavefields

- Global seismology and tomography of the Earth's interior
- The quantification of strong ground motion seismic hazard
- The understanding of the earthquake source process
- · The monitoring of volcanic processes and the forecasting of eruptions
- · Earthquake early warning systems
- · Tsunami early warning systems
- · Local, regional, and global earthquake services
- Global monitoring of nuclear tests
- · Laboratory scale analysis of seismic events

Who needs Computational Seismology (cont'd)

(...)

- · Ocean generated noise measurements and cross-correlation techniques
- · Planetary seismology Apollo, INSIGHT
- · Exploration geophysics, reservoir scale seismics
- Geotechnical engineering (non-destructive testing, small scale tomography)
- Medical applications, breast cancer detection, reverse acoustics

Literature

- Igel, Computational Seismology: A Practical Introduction (Oxford University Press, 2016)
- Shearer, Introduction to Seismology (3rd edition, 2019)
- Aki and Richards, **Quantitative Seismology** (1st edition, 1980)
- Mozco, The Finite-Difference Modelling of
 Earthquake Motions (Cambridge University Press)
- Fichtner, Full Seismic Waveform Modelling and Inversion (Springer Verlag, 2010).

A Practical Introduction

Covers the finite-difference, pseudospectral, finite-element, and spectral-element method.

Why numerical methods?

Computational Seismology, Memory, and Compute Power

Numerical solutions necessitate the discretization of Earth models. Estimate how much memory is required to store the Earth model and the required displacement fields.

Are we talking laptop or supercomputer?

Seismic Wavefield Observations

Exercise: Sampling a global seismic wavefield

- The highest frequencies that we observe for global wave fields is 1Hz.
- We assume a homogeneous Earth (radius 6371km).
- P velocity $v_p = 10 km/s$ and the v_p/v_s ratio is $\sqrt{3}$
- We want to use 20 grid points (cells) per wavelength
- How many grid cells would you need (assume cubic cells).
- What would be their size?
- How much memory would you need to store one such field (e.g., density in single precision).

You may want to make use of

Exercise: Solution (Matlab)

% Earth volume $v_{e} = 4/3 * pi * 6371^{3}$; % smallest velocity (ie, wavelength) vp=10; vs=vp/sqrt(3); % Shortest Period T=10: % Shortest Wavelength lam=vs*T: % Number of points per wavelength and % required grid spacing nplambda = 20;dx = lam / nplambda:% Required number of arid cells $nc = v_{e}/(dx^{3})$; % Memory requirement (TBytes) mem = nc * 8/1000/1000/1000/1000;

Results (@T = 1s) : 360 TBytes Results (@T = 10s) : 360 GBytes Results (@T = 100s) : 360 MBytes

Computational Seismology, Memory, and Compute Power

1960: 1 MFlops

- 1970: 10MFlops
- 1980: 100MFlops
- 1990: 1 GFlops

1998: 1 TFlops

2008: 1 Pflops

2021: 1 EFlops

16

The Ultimate Goal: Matching Wavefield Observations

A Bit of Wave Physics

Acoustic wave equation: no source

 $p(\mathbf{x}, t = 0) = p_0(\mathbf{x}, t)$ $\partial_t p(\mathbf{x}, t = 0) = 0$

Snapshot of $p(\mathbf{x}, t)$ (solid line) after some time for initial condition $p_0(\mathbf{x}, t)$ (Gaussian, dashed line), 1D case.

Acoustic wave equation: external source

Green's Function G

$$\partial_t^2 G(\mathbf{x}, t; \mathbf{x}_0, t_0) - c^2 \Delta G(\mathbf{x}, t; \mathbf{x}_0, t_0) = \delta(\mathbf{x} - \mathbf{x}_0) \delta(t - t_0)$$

Delta function δ

$$\delta(x) = \begin{cases} \infty & x = 0 \\ 0 & x \neq 0 \end{cases}$$

$$\int_{-\infty}^{\infty} \delta(x) dx = 1 , \int_{-\infty}^{\infty} f(x) \delta(x) dx = f(0)$$

Green's functions for the inhomogeneous acoustic wave equation for all dimensions. H(t) is the Heaviside function.

Acoustic wave equation: analytical solutions

Displacement-stress formulation

$$\rho \partial_t^2 u_i = \partial_j (\sigma_{ij} + M_{ij}) + f_i$$

$$\sigma_{ij} = \lambda \epsilon_{kk} \delta_{ij} + 2 \mu \epsilon_{ij}$$

$$\epsilon_{kl} = \frac{1}{2} (\partial_k u_l + \partial_l u_k),$$

Dependencies

$$\begin{array}{lll} u_i &\rightarrow u_i(\mathbf{x},t) & i = 1,2,3 \\ v_i &\rightarrow v_i(\mathbf{x},t) & i = 1,2,3 \\ \sigma_{ij} &\rightarrow \sigma_{ij}(\mathbf{x},t) & i,j = 1,2,3 \\ \epsilon_{ij} &\rightarrow \epsilon_{ij}(\mathbf{x},t) & i,j = 1,2,3 \\ \rho &\rightarrow \rho(\mathbf{x}) \\ c_{ijkl} &\rightarrow c_{ijkl}(\mathbf{x}) & i,j,k,l = 1,2,3 \\ f_i &\rightarrow f_i(\mathbf{x},t) & i = 1,2,3 \\ M_{ij} &\rightarrow M_{ij}(\mathbf{x},t) & i,j = 1,2,3, \end{array}$$

1-D elastic wave equation

Shear Motion

$$\rho(\mathbf{x})\partial_t^2 u(\mathbf{x},t) = \partial_x \left[\mu(\mathbf{x})\partial_x u(\mathbf{x},t) \right] + f(\mathbf{x},t)$$

u displacement *f* external force ρ mass density μ shear modulus

Velocity - Stress Formulation

Defining velocity v and stress component σ as

$$\partial_t \mathbf{u} = \mathbf{v}$$

 $\sigma = \mu \partial_x \mathbf{u}$

and assuming space-time dependencies leads to the wave equation

$$\rho \partial_t \mathbf{v} = \partial_{\mathbf{x}} \sigma + \mathbf{f}$$
$$\dot{\sigma} = \mu \partial_{\mathbf{x}} \mathbf{v}$$

Our unknown solution vector is

$$\mathbf{q}(\mathbf{x},t)=(\mathbf{v},\sigma)$$

In order of relevance

- · Viscoelasticity
- Anisotropy
- Poroelasticity
- Plasticity

Attenuation

Amplitude decay

$$\frac{1}{Q(\omega)} = -\frac{\Delta E}{2\pi E}$$
$$\omega x$$

$$A(x) = A_0 e^{-2cQ}$$

Anisotropy

Generalized Hooke's Law

$$\sigma_{ij} = c_{ijkl} \epsilon_{kl}, \quad i, j, k, l = 1, 2, 3$$

Reduced notation (Kelvin-Voight)

$$c_{pq} = \begin{pmatrix} c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\ c_{12} & c_{11} & c_{13} & 0 & 0 & 0 \\ c_{13} & c_{13} & c_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{c_{11} - c_{12}}{2} \end{pmatrix}$$

Velocity variations (Thomson parameters)

$$\begin{aligned} v_{qP}(\theta) &= v_{P0} \left(1 + \delta \sin^2(\theta) \cos^2(\theta) + \epsilon \sin^4(\theta) \right) \\ v_{qSV}(\theta) &= v_{S0} \left(1 + \frac{v_{P0}^2}{v_{S0}^2} (\epsilon - \delta) \sin^2(\theta) \cos^2(\theta) \right) \\ v_{qSH}(\theta) &= v_{S0} \left(1 + \gamma \sin^2(\theta) \right) \end{aligned}$$
(1)

Anisotropic velocities

Free Surface Boundary Conditions

$$t_i = \sigma_{ij} n_j \rightarrow \sigma_{xz} = \sigma_{yz} = \sigma_{zz} = 0$$

Lamb's Problem

Internal Boundary Conditions

$$\sigma_{ij}n_j^{(1)} = \sigma_{ij}n_j^{(2)}$$
$$u_i^{(1)} = u_i^{(2)}$$

Internal boundary conditions need not be modelled explicitly!

Gradient

$$\nabla \mathbf{u}(\mathbf{x},t) = \partial_j u_i(\mathbf{x},t) \; .$$

Deformation

$$\epsilon_{ij}(\mathbf{x},t) = \frac{1}{2}(\partial_i u_j(\mathbf{x},t) + \partial_j u_i(\mathbf{x},t))$$

Curl

$$\frac{1}{2}\nabla\times\mathbf{u}=\frac{1}{2}\begin{pmatrix}\partial_{y}u_{z}-\partial_{z}u_{y}\\\partial_{z}u_{x}-\partial_{x}u_{z}\\\partial_{x}u_{y}-\partial_{y}u_{x}\end{pmatrix}$$

Ralyeigh and Love Waves

Dispersion Curves

Numerical Dispersion

0.35

Time (s)

0.4

0.2 0.25 0.3

Numerical and physical dispersion can be confused! In wave simulations we have to **avoid** numerical dispersion!

$\mathbf{Moment Tensor} \\ \mathbf{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix}$

$$M_0 = \mu A d$$

Double Couple Green's function

Radiation and Source Time Function

Wavefields from Moment Tensor Sources

Wavefields from Moment Tensor Sources

Superposition Principle

$$v_l^r(\omega) = \sum_{k=1}^N \operatorname{slip}_k \exp[-i\omega t_k(c^{rup})]G_{kl}^r(\omega)S(R,\omega)$$

Finite sources can be simulated by summing up over point sources

$$G_{ij}(\mathbf{x}, t; \mathbf{x}_0, t_0) = G_{ji}(\mathbf{x}_0, -t_0; \mathbf{x}, -t)$$

The wave equation is symmetric in time. Source and receiver locations can be interchanged. This has dramatic consequences for modeling and inversion!

Time Reversal

Seismogram for arbitrary source s(t) as convolution (exact)

 $p(\mathbf{x},t) = G(\mathbf{x},t,\mathbf{x}_0) \otimes s(t)$

Seismogram for arbitrary source s(t) as convolution (numerical)

$$ilde{
ho}(\mathbf{x},t) = ilde{G}(\mathbf{x},t,\mathbf{x}_0)\otimes s(t)$$

Important consequence:

Even if your numerical Green's function $\tilde{G}(\mathbf{x}, t, \mathbf{x}_0)$ is inaccurate, the numerical solution $\tilde{p}(\mathbf{x}, t)$ might be very accurate provided the s(t) is defined in the right frequency band!

Wave Equation as Linear System

- Accurate Green's functions cannot be calculated numerically
- A numerical solver is a **linear** system
- · The convolution theorem applies
- Inaccurate simulations can be filtered afterwards
- Source time functions can be altered afterwards
- ... provided the sampling is good enough ...

Spatial Scales, Scattering, Solution Strategies

- Recorded seismograms are affected by ...
- ... the ratio of seismic wavelength λ and structural wavelength a ...
- ... how many wavelengths are propagated ...
- strong scattering when $a \approx \lambda \rightarrow$ numerical methods
- ray theory works when $a >> \lambda$
- random medium theory necessary for strong scattering media (and long distances)

Human time	Simulation workflow	cpu time
15%	Design	0%
80% (weeks)	Geometry creation, meshing	10%
5%	Solver	90%

- · Meshing work flow not well defined
- Still major bottleneck for simulation tasks with complex geometries
- Tetrahedral meshes easier, but ...
- Salvus?

Future Strategies - Alternative Formulations

- Particle relabelling, grid stretching
- Mapping geometrical complexity onto regular grids
- Smart pre-processing rather than meshing?
- Similar concept used in summation-by-parts (SBP) algorithms (SW4)

Future Strategies - Homogenization

- We only *see* low-pass filtered Earth
- So why simulate models with infinite frequencies?
- Homogenisation of discontinuous model
- Renaissance of regular grid methods?

Computational Seismology - Part I

Questions?