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Course Content

• Introduction - Motivation

• Fundamentals of wave propagation (wave equations, analytical solutions, reciprocity,
superposition principle, dispersion, homogenization)

• The finite-difference method

• The pseudospectral method

• Linear finite-element method

• The spectral-element method

• The finite-volume method

• The discontinuous Galerkin method

• Applications
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Introduction
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Goals of lecture

• Who needs computational seismology?

• What are some fundamental aspects of computational wave propagation?

• Is it a tough or an easy problem as far as computational resources are concerned?

• Which numerical methods are on the market, basic principles, and domains of application?

• What options do you have to get training (Jupyter notebooks, COURSERA, etc) ...?
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What is Computational Seismology?

We define computational seismology such that it involves the complete
solution of the seismic wave propagation (and rupture) problem for
arbitrary 3-D models by numerical means.
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What is not covered ... but you can do tomography with ...

• Ray-theoretical methods

• Quasi-analytical methods (e.g., normal modes,
reflectivity method)

• Frequency-domain solutions

• Boundary integral equation methods

• Discrete particle methods

These methods are important for benchmarking
numerical solutions!
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Who needs Computational Seismology

Many problems rely on the analysis of elastic wavefields

• Global seismology and tomography of the Earth’s interior

• The quantification of strong ground motion - seismic hazard

• The understanding of the earthquake source process

• The monitoring of volcanic processes and the forecasting of eruptions

• Earthquake early warning systems

• Tsunami early warning systems

• Local, regional, and global earthquake services

• Global monitoring of nuclear tests

• Laboratory scale analysis of seismic events
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Who needs Computational Seismology (cont’d)

(...)

• Ocean generated noise measurements and cross-correlation techniques

• Planetary seismology - Apollo, INSIGHT

• Exploration geophysics, reservoir scale seismics

• Geotechnical engineering (non-destructive testing, small scale tomography)

• Medical applications, breast cancer detection, reverse acoustics

8



Literature

• Igel, Computational Seismology: A Practical
Introduction (Oxford University Press, 2016)

• Shearer, Introduction to Seismology (3rd edition,
2019)

• Aki and Richards, Quantitative Seismology (1st
edition, 1980)

• Mozco, The Finite-Difference Modelling of
Earthquake Motions (Cambridge University Press)

• Fichtner, Full Seismic Waveform Modelling and
Inversion (Springer Verlag, 2010).
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9-week course in Computational wave propagation on COURSERA (free!)

Covers the
finite-difference,
pseudospectral,

finite-element, and
spectral-element

method.
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Why numerical methods?
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Computational Seismology, Memory, and Compute Power

Numerical solutions necessitate the discretization of Earth
models. Estimate how much memory is required to store the
Earth model and the required displacement fields.

Are we talking laptop or supercomputer?
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Seismic Wavefield Observations
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Exercise: Sampling a global seismic wavefield

• The highest frequencies that we observe for global
wave fields is 1Hz.

• We assume a homogeneous Earth (radius 6371km).

• P velocity vp = 10km/s and the vp/vs ratio is
√

3

• We want to use 20 grid points (cells) per
wavelength

• How many grid cells would you need (assume cubic
cells).

• What would be their size?

• How much memory would you need to store one such
field (e.g., density in single precision).

You may want to make use of

c =
λ

T
= λf =

ω

k

14



Exercise: Solution (Matlab)

% Earth volume
ve = 4/3 ∗ pi ∗ 63713;

% smallest velocity (ie, wavelength)
vp=10; vs=vp/sqrt(3);
% Shortest Period
T=10;
% Shortest Wavelength
lam=vs*T;
% Number of points per wavelength and
% required grid spacing
nplambda = 20;
dx = lam/nplambda;
% Required number of grid cells
nc = ve/(dx3);

% Memory requirement (TBytes)
mem = nc ∗ 8/1000/1000/1000/1000;

Results (@T = 1s) : 360 TBytes
Results (@T = 10s) : 360 GBytes

Results (@T = 100s) : 360 MBytes
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Computational Seismology, Memory, and Compute Power

1960: 1 MFlops

1970: 10MFlops

1980: 100MFlops

1990: 1 GFlops

1998: 1 TFlops

2008: 1 Pflops

2021: 1 EFlops
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The Ultimate Goal: Matching Wavefield Observations
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A Bit of Wave Physics



Acoustic wave equation: no source

Acoustic wave equation

∂2
t p = c2∆p + s

p → p(x, t), pressure
c → c(x), velocity
s → s(x, t), source term

Initial conditions

p(x, t = 0) = p0(x, t)

∂tp(x, t = 0) = 0 Snapshot of p(x, t) (solid line) after some time for
initial condition p0(x, t) (Gaussian, dashed line),
1D case.
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Acoustic wave equation: external source

Green’s Function G

∂2
t G(x, t ; x0, t0)− c2∆G(x, t ; x0, t0) = δ(x − x0)δ(t − t0)

Delta function δ

δ(x) =

{
∞ x = 0
0 x ̸= 0

∫ ∞

−∞
δ(x)dx = 1 ,

∫ ∞

−∞
f (x)δ(x)dx = f (0)

δ-generating function using
boxcars.
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Acoustic wave equation: analytical solutions

Green’s functions for the inhomogeneous acoustic wave equation for all
dimensions. H(t) is the Heaviside function.

1D 2D 3D
1
2c H(t − |r |

c ) 1
2πc2

H(t− |r|
c )√

t2− r2

c2

1
4πc2r δ(t − r/c)

r = x r =
√

x2 + y2 r =
√

x2 + y2 + z2
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Acoustic wave equation: analytical solutions
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The Elastic Wave Equation

Displacement-stress formulation
Dependencies

22



1-D elastic wave equation

Shear Motion

ρ(x)∂2
t u(x , t) = ∂x [µ(x)∂xu(x , t)] + f (x , t)

u displacement

f external force

ρ mass density

µ shear modulus
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Velocity - Stress Formulation

Defining velocity v and stress component σ as

∂tu = v

σ = µ∂xu

and assuming space-time dependencies leads to the wave equation

ρ∂tv = ∂xσ + f

σ̇ = µ∂xv

Our unknown solution vector is

q(x , t) = (v , σ)
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Rheologies

In order of relevance

• Viscoelasticity

• Anisotropy

• Poroelasticity

• Plasticity

Anisotropy
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Attenuation

Amplitude decay

1
Q(ω)

= − ∆E
2πE

A(x) = A0e
−

ωx
2cQ

Examples
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Anisotropy

Generalized Hooke’s Law

σij = cijkl ϵkl , i, j, k , l = 1, 2, 3

Reduced notation (Kelvin-Voight)

cpq =



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12
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Velocity variations (Thomson parameters)

vqP(θ) = vP0

(
1 + δ sin2(θ) cos2(θ) + ϵ sin4(θ)

)
vqSV (θ) = vS0

(
1 +

v2
P0

v2
S0

(ϵ− δ) sin2(θ) cos2(θ)

)
vqSH(θ) = vS0

(
1 + γ sin2(θ)

)
(1)
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Anisotropic velocities
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Free Surface Boundary Conditions

ti = σij nj → σxz = σyz = σzz = 0
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Lamb’s Problem
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Internal Boundary Conditions

σijn
(1)
j = σijn

(2)
j

u(1)
i = u(2)

i

Internal boundary conditions need not
be modelled explicitly!
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Gradient, Divergence, Curl

Gradient
∇u(x, t) = ∂j ui (x, t) .

Deformation

ϵij (x, t) =
1
2
(∂i uj (x, t) + ∂j ui (x, t))

Curl

1
2
∇× u =

1
2

∂y uz − ∂zuy

∂zux − ∂x uz

∂x uy − ∂y ux
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Surface Waves - Dispersion

Ralyeigh and Love Waves Dispersion Curves
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Physical and Numerical Dispersion

Numerical Dispersion
Numerical and physical dispersion can

be confused!
In wave simulations we have to avoid

numerical dispersion!
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The Moment Tensor

Moment Tensor

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33



M0 = µ A d
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The DC analytical solution

Double Couple Green’s function

u(x , t) =
1

4πρ
AN 1

r4

r/β∫
r/α

τM0(t − τ)dτ+

+
1

4πρα2 AIP 1
r2 M0(t −

r
α
) +

1
4πρβ2 AIS 1

r2 M0(t −
r
β
)+

+
1

4πρα3 AFP 1
r

Ṁ0(t −
r
α
) +

1
4πρβ3 AFS 1

r
Ṁ0(t −

r
β
)
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Radiation and Source Time Function
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Wavefields from Moment Tensor Sources
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Wavefields from Moment Tensor Sources
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Superposition Principle

v r
l (ω) =

N∑
k=1

slipk exp[−iωtk (crup)]Gr
kl (ω)S(R, ω)

Finite sources can be simulated by summing up over
point sources
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Reciprocity

Gij(x , t ;x0, t0) = Gji(x0,−t0;x ,−t)

The wave equation is symmetric in
time. Source and receiver locations

can be interchanged. This has
dramatic consequences for modeling

and inversion!
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Time Reversal
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Wave Equation as Linear System

Seismogram for arbitrary source s(t) as convolution (exact)

p(x, t) = G(x, t , x0)⊗ s(t)

Seismogram for arbitrary source s(t) as convolution (numerical)

p̃(x, t) = G̃(x, t , x0)⊗ s(t)

Important consequence:

Even if your numerical Green’s function G̃(x, t , x0) is inaccurate, the numerical solution p̃(x, t) might
be very accurate provided the s(t) is defined in the right frequency band!
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Wave Equation as Linear System

• Accurate Green’s functions cannot
be calculated numerically

• A numerical solver is a linear
system

• The convolution theorem applies

• Inaccurate simulations can be filtered
afterwards

• Source time functions can be altered
afterwards

• ... provided the sampling is good
enough ...
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Spatial Scales, Scattering, Solution Strategies

• Recorded seismograms are affected
by ...

• ... the ratio of seismic wavelength λ

and structural wavelength a ...

• ... how many wavelengths are
propagated ...

• strong scattering when a ≈ λ →
numerical methods

• ray theory works when a >> λ

• random medium theory necessary
for strong scattering media (and long
distances)
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Challenges - Meshing

Human time Simulation workflow cpu time
15% Design 0%
80% (weeks) Geometry creation, meshing 10%
5% Solver 90%

• Meshing work flow not well defined

• Still major bottleneck for simulation
tasks with complex geometries

• Tetrahedral meshes easier, but ...

• Salvus?
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Future Strategies - Alternative Formulations

Al-Attar and Crawford GJI 2016

• Particle relabelling, grid
stretching

• Mapping geometrical
complexity onto regular grids

• Smart pre-processing rather
than meshing?

• Similar concept used in
summation-by-parts (SBP)
algorithms (SW4)
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Future Strategies - Homogenization

• We only see low-pass
filtered Earth

• So why simulate models
with infinite frequencies?

• Homogenisation of
discontinuous model

• Renaissance of regular
grid methods?
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Computational Seismology - Part I

Questions?
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