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Format of Short Course (approx.)

• 3 one-hour blocks

• 40 minutes lecture

• 20 minutes

• Questions by you (also allowed during lecture!)
• A few comprehensive questions to be discussed in subgroups
• Checking answers
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Course Content

• Block 1

• Introduction - Motivation
• Some fundamentals of wave propagation
• The finite-difference method
• The pseudospectral method

• Block 2

• The finite (spectral) element method

• Block 3

• The finite-volume method
• The discontinuous Galerkin method
• Outlook
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Introduction
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Goals of lecture

• Who needs computational seismology?

• What are some fundamental aspects of computational wave propagation?

• Is it a tough or an easy problem as far as computational resources are concerned?

• Which numerical methods are on the market, basic principles, and domains of application?

• What options do you have to get training (Jupyter notebooks, COURSERA, etc) ...?
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What is Computational Seismology?

We define computational seismology such that it involves the complete
solution of the seismic wave propagation (and rupture) problem for
arbitrary 3-D models by numerical means.
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What is not covered ... but you can do tomography with ...

• Ray-theoretical methods

• Quasi-analytical methods (e.g., normal modes,
reflectivity method)

• Frequency-domain solutions

• Boundary integral equation methods

• Discrete particle methods

These methods are important for benchmarking
numerical solutions!
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Who needs Computational Seismology

Many problems rely on the analysis of elastic wavefields

• Global seismology and tomography of the Earth’s interior

• The quantification of strong ground motion - seismic hazard

• The understanding of the earthquake source process

• The monitoring of volcanic processes and the forecasting of eruptions

• Earthquake early warning systems

• Tsunami early warning systems

• Local, regional, and global earthquake services

• Global monitoring of nuclear tests

• Laboratory scale analysis of seismic events
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Who needs Computational Seismology (cont’d)

(...)

• Ocean generated noise measurements and cross-correlation techniques

• Planetary seismology - Apollo, INSIGHT

• Exploration geophysics, reservoir scale seismics

• Geotechnical engineering (non-destructive testing, small scale tomography)

• Medical applications, breast cancer detection, reverse acoustics
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Why numerical methods?
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Computational Seismology, Memory, and Compute Power

Numerical solutions necessitate the discretization of Earth
models. Estimate how much memory is required to store the
Earth model and the required displacement fields.

Are we talking laptop or supercomputer?
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Seismic Wavefield Observations
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Exercise: Sampling a global seismic wavefield

• The highest frequencies that we observe for global
wave fields is 1Hz.

• We assume a homogeneous Earth (radius 6371km).

• P velocity vp = 10km/s and the vp/vs ratio is
√

3

• We want to use 20 grid points (cells) per
wavelength

• How many grid cells would you need (assume cubic
cells).

• What would be their size?

• How much memory would you need to store one such
field (e.g., density in single precision).

You may want to make use of

c =
λ

T
= λf =

ω

k
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Exercise: Solution (Matlab)

% Earth volume
ve = 4/3 ∗ pi ∗ 63713;

% smallest velocity (ie, wavelength)
vp=10; vs=vp/sqrt(3);
% Shortest Period
T=10;
% Shortest Wavelength
lam=vs*T;
% Number of points per wavelength and
% required grid spacing
nplambda = 20;
dx = lam/nplambda;
% Required number of grid cells
nc = ve/(dx3);

% Memory requirement (TBytes)
mem = nc ∗ 8/1000/1000/1000/1000;

Results (@T = 1s) : 360 TBytes
Results (@T = 10s) : 360 GBytes

Results (@T = 100s) : 360 MBytes
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Computational Seismology, Memory, and Compute Power

1960: 1 MFlops

1970: 10MFlops

1980: 100MFlops

1990: 1 GFlops

1998: 1 TFlops

2008: 1 Pflops

20??: 1 EFlops
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The Ultimate Goal: Matching Wavefield Observations
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A Bit of Wave Physics



Acoustic wave equation: no source

Acoustic wave equation

∂2
t p = c2∆p + s

p → p(x, t), pressure
c → c(x), velocity
s → s(x, t), source term

Initial conditions

p(x, t = 0) = p0(x, t)

∂tp(x, t = 0) = 0 Snapshot of p(x, t) (solid line) after some time for
initial condition p0(x, t) (Gaussian, dashed line),
1D case.
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Acoustic wave equation: external source

Green’s Function G

∂2
t G(x, t ; x0, t0)− c2∆G(x, t ; x0, t0) = δ(x − x0)δ(t − t0)

Delta function δ

δ(x) =

{
∞ x = 0
0 x ̸= 0

∫ ∞

−∞
δ(x)dx = 1 ,

∫ ∞

−∞
f (x)δ(x)dx = f (0)

δ-generating function using
boxcars.
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Acoustic wave equation: analytical solutions

Green’s functions for the inhomogeneous acoustic wave equation for all
dimensions. H(t) is the Heaviside function.

1D 2D 3D
1
2c H(t − |r |

c ) 1
2πc2

H(t− |r|
c )√

t2− r2

c2

1
4πc2r δ(t − r/c)

r = x r =
√

x2 + y2 r =
√

x2 + y2 + z2
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Acoustic wave equation: analytical solutions

21



Wave Equation as Linear System

Seismogram for arbitrary source s(t) as convolution (exact)

p(x, t) = G(x, t , x0)⊗ s(t)

Seismogram for arbitrary source s(t) as convolution (numerical)

p̃(x, t) = G̃(x, t , x0)⊗ s(t)

Important consequence:

Even if your numerical Green’s function G̃(x, t , x0) is inaccurate, the numerical solution p̃(x, t) might
be very accurate provided the s(t) is defined in the right frequency band!
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Wave Equation as Linear System

• Accurate Green’s functions cannot
be calculated numerically

• A numerical solver is a linear
system

• The convolution theorem applies

• Inaccurate simulations can be filtered
afterwards

• Source time functions can be altered
afterwards

• ... provided the sampling is good
enough ...
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Spatial Scales, Scattering, Solution Strategies

• Recorded seismograms are affected
by ...

• ... the ratio of seismic wavelength λ

and structural wavelength a ...

• ... how many wavelengths are
propagated ...

• strong scattering when a ≈ λ →
numerical methods

• ray theory works when a >> λ

• random medium theory necessary
for strong scattering media (and long
distances)
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Numerical Methods for Wave
Propagation Problems



What’s on the market

• The finite-difference
method

• The pseudospectal method

• The finite-element method

• The spectral-element
method

• The finite-volume method

• The discontinuous Galerkin
method

25



The Finite-Difference Method



Finite differences in a Nutshell

• Direct numerical approximation of partial
derivatives using finite-differences

• Local computational scheme → efficient
parallelisation

• Very efficient on regular grids,
cumbersome for strongly heterogeneous
models

• Boundary conditions difficult to implement
with high-order accuracy

• The method of choice for models with flat
topo and moderate velocity perturbations

• Highly efficient extensions possible, but
rarely used!
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Acoustic waves in 1D

To solve the wave equation, we start with the
simplemost wave equation:

The constant density acoustic wave equation in 1D

p̈ = c2 ∂2
x p + s

impossing pressure-free conditions at the two boundaries
as

p(x) |x=0,L= 0
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Acoustic waves in 1D

The following dependencies apply:

p → p(x, t) pressure

c → c(x) P-velocity

s → s(x, t) source term

As a first step we need to discretize space and time and we do that with a constant
increment that we denote dx and dt.

xj = jdx , j = 0, jmax

tn = ndt , n = 0, nmax
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Acoustic waves in 1D

Starting from the continuous description of the partial differential equation to a
discrete description. The upper index will correspond to the time discretization, the
lower index will correspond to the spatial discretization

pn+1
j → p(xj , tn + dt)

pn
j → p(xj , tn)

pn−1
j → p(xj , tn − dt)

pn
j+1 → p(xj + dx , tn)

pn
j → p(xj , tn)

pn
j−1 → p(xj − dx , tn)

.
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Acoustic waves in 1D

pn+1
j − 2pn

j + pn−1
j

dt2 = c2
j

[
pn

j+1 − 2pn
j + pn

j−1

dx2

]
+ sn

j .

the r.h.s. is defined at same time
level n

the l.h.s. requires information from
three different time levels

t

n − 1

n

n + 1

j − 1 j j + 1 x 30



Acoustic waves in 1D

Assuming that information at time level n (the presence) and n − 1 (the past) is
known, we can solve for the unknown field pn+1

j :

pn+1
j = c2

j
dt2

dx2

[
pn

j+1 − 2pn
j + pn

j−1

]
+ 2pn

j − pn−1
j + dt2sn

j

The initial condition of our wave simulation problem is such that everything is at
rest at time t = 0:

p(x , t)|t=0 = 0 , ṗ(x , t)|t=0 = 0.

31



Acoustic wave equation: numerical solutions
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von Neumann Analysis, Stability, Dispersion

• Plane waves in a discrete
world

• p(x , t) = ek j dx−ωn dt

• Simulations are conditionally
stable

• c dt
dx ≤ ϵ ≈ 1 CFL - criterion

• Simulated phase velocity
becomes numerically
dispersive!

• The more points per
wavelength the more accurate

• How to check?
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Numerical Anisotropy
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Meshes, grids, structured, unstructured
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Applications, recent , community codes

Source: geodynamics.org (SW4)

• Method of choice for flat surfaces
and body wave problems
(exploration)

• Very accurate (optimal) operators
possible, but ...

• Summation-by-parts approach
(better for topography)

• Combination with homogenisation
(regular grid revival)

• Community codes: SW4 (CIG),
SOFI3D (Karlsruhe)
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The Pseudospectral Method: the
road to spectral elements



The Pseudospectral Method in a Nutshell

• Calculation of exact derivatives in
spectral domain

• Less dispersive than the
finite-difference method (isotropic
errors)

• Boundary conditions hard to
implement (except with Chebyshev)

• Global communication scheme →
inefficient parallelisation

• Combinations with FD possible

• Hardly in use today, but concepts
used in the spectral-element method
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Fourier Series and Transforms

Forward Transform

F (k) = F [f (x)] =
1√
2π

∫ ∞

−∞
f (x)e−ikxdx

Inverse Transform

f (x) = F−1[F (k)] =
1√
2π

∫ ∞

−∞
F (k)eikxdk
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Fourier Series and Transforms

Taking the formulation of the inverse transform to obtain the derivative of function
f(x)

d
dx

f (x) =
d
dx

1√
2π

∫ ∞

−∞
F (k)eikxdk

=
1√
2π

∫ ∞

−∞
ik F (k)eikxdk

=
1√
2π

∫ ∞

−∞
D(k) F (k)eikxdk

with D(k) = ik
We can extend this formulation to the calculation of the n − th derivative of f (x) to
achieve

F (n)(k) = D(k)n F (k) = (ik)n F (k)
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Fourier Series and Transforms

Thus using the condense Fourier transform operator F we can obtain an exact
n − th derivative using

f (n)(x) = F−1[(ik)n F (k)]

= F−1[(ik)n F [f (x)]] .
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Acoustic 1D with Python

Calculating the 2nd derivatives using the
Fourier transform

∂2
x pn

j = F−1[(ik)2 Pn
ν ]

= F−1[−k2 Pn
ν ]

where Pn
ν is the discrete complex

wavenumber spectrum at time n
leading to an exact derivative with only
numerical rounding errors.
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Exact interpolation/derivative: Fourier Series
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Applications, recent developments

Seismic wave simulation in the Moon (Wang et al., GJI, 2013)

• Axisymmetric wave
propagation (Group
Prof. Furumura)

• Implementation in
spherical coordinates

• Pseudospectral
approach in θ direction

• Finite-difference
approach in radial
direction

• Used in combination
with axisem (→
axisem3d)
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I: Comprehensive Questions

• How much longer would a simulation take if you want to double the dominant frequency (e.g.,
2Hz instead of 1Hz)?

• Can you imagine a strategy to check whether your simulation of a strongly heterogeneous
medium is accurate?

• What do you think is the reason why the finite-difference method is so popular in the seismic
exploration domain?

• Can the Green’s function of the wave equation be simulated?
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The Finite-Element Method



The Finite-Element Method in a Nutshell

• Solution of the weak form of the wave
equation

• Wavefield is interpolated with (linear)
orthogonal basis functions

• Global linear system of equations
has to be solved (matrix inversion)

• Free surface condition implicitly
fullfilled

• Works on hexahedral or tetrahedral
meshes
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Static Elasticity



Discretization

Departing from the 1D elastic wave equation

ρ∂2
t u(x , t) = ∂xµ(x)∂xu(x , t) + f (x , t)

we assume the following:

Independent in time: ∂2
t u(x , t) = 0

Elastic properties of our 1D medium are independent of space: µ(x) = const.

that leads to the equation
−µ∂2

x u = f .
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Illustration

Static elasticity. A string with
homogeneous properties (density and
shear modulus) is pulled with a certain
force. The Poisson equation
determines the displacement of the
string given appropriate boundary
conditions. Don’t overdo this
experiment, in particular if you have old
strings.
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Weak form

Transform strong form into weak form by multiplying the equation with an arbitrary
space-dependent test function that we denote as v → v(x). Then we integrate the
equation on both sides over the entire physical domain D with x ∈ D

−
∫

D
µ∂2

x u v dx =

∫
D

f v dx .

Performing an integration by parts of the left side:

−
∫

D
µ∂2

x u v dx =

∫
D
µ ∂x u ∂x v dx − [µ∂xu v ]xmax

xmin
.

where the last term is an anti-derivative.

48



Free surface

Free-surface condition =⇒ No stress at the boundaries.
As the anti-derivative is evaluated at the domain boundaries this implies that this
term vanishes.

µ

∫
D
∂x u ∂x v dx =

∫
f v dx

which is still a description in the continuous world. To enter the discrete world we
replace our exact solution u(x) by a u, a sum over some basis functions φi that we
do not yet specify

u ≈ u(x) =
N∑

i=1

uiφi .

Replacing u by u, we obtain

µ

∫
D
∂x u ∂x v dx =

∫
f v dx
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Basis functions

As a choice for our test function v(x) we use the same set of basis functions. Thus
v(x) → φj(x).
What is the simplemost choice for our basis functions φi? Denoting
xi , i = 1,2, ...,N as the boundaries of our elements we define our basis functions
such that φi = 1, x = xi and zero elsewhere. Inside the elements our solution field
is described by a linear function:

φi(x) =


x−xi−1
xi−xi−1

for xi−1 < x ≤ xi
xi+1−x
xi+1−xi

for xi < x < xi+1

0 elsewhere
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Basis functions

Linear basis functions for the finite-element method. A 1D domain is discretized with n − 1 elements
having n = 10 element boundaries (open circles). The basis functions φi = 1 at x = xi . With this
basis an arbitrary function can be exactly interpolated at the element boundary points xi .
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Galerkin Principle

We are ready to assemble our discretized version of the weak form by replacing
the continuous displacement field by its approximation and applying the Galerkin
principle. We obtain

µ

∫
D
∂x

(
N∑

i=1

uiφi

)
∂x φj dx =

∫
f φj dx

N∑
i=1

ui

∫
D
µ ∂x φi ∂x φj dx =

∫
f φj dx

which is a system of N equations as we project the solution on the basis functions
φj with j = 1, ...,N. In the second equation we switched the sequence of
integration and sum.
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Matrix-Vector Notation

The discrete system thus obtained can be written using matrix-vector notation.
Defining the solution vector u as

u =


u1

u2
...

uN


the source vector f as

f =


∫

D f φ1 dx∫
D f φ2 dx

...∫
D f φN dx
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Matrix-Vector Notation

and the matrix containing the integral over the basis function derivatives as K

K → Kij = µ

∫
D
∂x φi ∂x φj
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Solution

System of equations can be written in component form as

ui Kij = fj

where we use the Einstein summation convention and in matrix-vector notation

KT u = f

Note: Matrix K is called the it stiffness matrix.
This system of equations has as many unknowns as equations. Provided that the
matrix is positive definite we can determine its inverse:

u = (KT )−1f
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Linear basis functions, system matrices

Linear finite-element method and low-order finite-difference method are basically identical
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1D Elastic Wave Equation

Using matrix-vector notation with the following definitions for the time-dependent
solution vector of displacement values u(t), mass matrix M, the already
well-known stiffness matrix K, and the source vector f:

u(t) → ui(t)

M → Mij =

∫
D
ρ φi φj dx

K → Kij =

∫
D
µ ∂x φi ∂x φjdx

f → fj =
∫

D
f φj dx .
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1D Elastic Wave Equation

Thus we can write the system of equations as

üM + uK = f

or with transposed system matrices as

MT ü + KT u = f .

For the second time-derivative we use a standard finite-difference approximation

ü = ∂2
t u ≈ u(t + dt)− 2u(t) + u(t − dt)

dt2
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1D Elastic Wave Equation

Replacing the original partial derivative with respect to time to obtain

MT
[

u(t + dt)− 2u(t) + u(t − dt)
dt2

]
= f − KT u .

Starting from an initial state u(t = 0) = 0 we can determine the displacement field
at time t + dt by

u(t + dt) = dt2(MT )−1
[
f − KT u

]
+ 2u(t)− u(t − dt) .
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Applications, Recent Developments

Finite element mesh, octree approach

(Bielak et al.)

• Requires linear algebra libraries for
matrix inversion

• Suboptimal for parallelization

• Allows arbitrary geometric complexity

• Curbed element boundaries possible

• Standard in engineering applications

• Hardly used in seismology (why?)
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The Spectral-Element Method



The Spectral-Element Method in a Nutshell

• Same mathematical derivation as the
finite-element method

• Lagrange polynomial representation
of wave field

• Gauss-Lobatto-Legendre collocation
points (stability!)

• Diagonal mass matrix → trivially
inverted

• Explicit extrapolation scheme →
efficient parallelisation

• Method of choice for global wave
propagation (specfem, axisem)

• Meshing required
61



Lagrange polynomials

Remember we seek to approximate u(x , t) by a sum over space-dependent basis
functions ψi weighted by time-dependent coefficients ui(t).

u(x , t) ≈ u(x , t) =
n∑

i=1

ui(t) ψi(x)

Our final choice: Lagrange polynomials:

ψi → ℓ
(N)
i :=

N+1∏
k=1, k ̸=i

ξ − ξk

ξi − ξk
, i = 1,2, . . . ,N + 1

where xi are fixed points in the interval [−1,1].
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Lagrange polynomials graphically

Top: Family of N + 1 Lagrange polynomials for
N = 2 defined in the interval ξ ∈ [−1,1]. Note
their maximum value in the whole interval does
not exceed unity.
Bottom: Same for N = 6. The domain is di-
vided into N intervals of uneven length. When
using Lagrange polynomials for function interpo-
lation the values are exactly recovered at the col-
location points (squares).
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Gauss-Lobatto-Legendre points

Illustration of the spatial distribution of Gauss-Lobatto-Legendre points in the interval [-1,1]

from bottom to top for polynomial order 1 to 12. Note the increasing difference of largest to

smallest interval between collocation points! Consequences?
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Function approximation

This is the final mathematical description of the unknown field u(x , t) for the
spectral-element method based on Lagrange polynomials.

ue(ξ) =
N+1∑
i=1

ue(ξi)ℓi(ξ)

Other options at this point are the Chebyhev polynomials. They have equally good
approximation properties (but ...)
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Interpolation with Lagrange Polynomials

The function to be approximated is given by
the solid lines. The approximation is given by
the dashed line exactly interpolating the func-
tion at the GLL points (squares). Top: Order
N = 2 with three grid points. Bottom: Order
N = 6 with seven grid points.
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Integration scheme for an arbitrary function f (x)

1∫
−1

f (x)dx ≈
1∫

−1

PN(x)dx =
N+1∑
i=1

wi f (xi)

defined in the interval x ∈ [−1,1] with

PN(x) =
N+1∑
i=1

f (xi)ℓ
(N)
i (x)

wi =

1∫
−1

ℓ
(N)
i (x)dx .
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Numerical integration scheme

• Exact function (thick solid
line)

• Approximation by Lagrange
polynomials (thin solid line)

• Difference between true and
approximate function (light
gray)
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Extrapolation for time-dependent coefficients ug

This is our final algorithm as it is implemented using Matlab or Python

ug(t + dt) = dt2
[

Mg
−1 (fg(t)− Kg ug(t))

]
+ 2ug(t) − ug(t − dt)

Looks fairly simple, no?
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Spectral elements: work flow

A substantial part consists of preparing the interpolation and integration procedures required to initialize the global mass- and stiffness matrices. The
final time-extrapolation is extremely compact and does not require the inversion of a global matrix as is the case in classic finite-element methods.
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Python Code:Time Extrapolation

71



Example, convergence
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Applications, Recent Developments

• Many applications in regional and
global seismology

• Method of choice whenever surface
waves are involved

• Spherical geometry with cubed
sphere approach

• Applications to soil-structure
interaction

• Works for hexahedral and tetrahedral
meshes (→ salvus)

• specfem or salvus are widely used
community software for seismology
(3D)

73



II: Comprehensive Questions

• What are some major points that speak for a finite- (spectral-) element type solution to your
problem?

• Why are spectral-element methods so efficient on parallel computers despite the large system
of equations to solve?

• Why do you think is the spectral element method called spectral?
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The Finite-Volume Method



The Finite-Volume Method in a Nutshell

• Mathematically derived from energy
and mass conservation law

• Spatial discretization with arbitrary
volumes

• Extreme geometric flexibility (e.g.,
shock waves)

• Voronoi cells, tetrahedra, polygons

• Entirely local formulation (cell based)

• Communication with neighbours
through flux scheme

• Hardly used in seismology
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The Finite-Volume Method via Conservation Laws

To describe what is happening we put ourselve into a finite volume cell that we
denote as C and denote the boundaries as x ∈ x1, x2. We further assume a
positive advection speed a.
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The Finite-Volume Method via Conservation Laws

The total mass of any quantity inside the cell is∫ x2

x1

q(x , t)dx

and a change in time can only be due to fluxes across the left and/or right cell
boundaries. Thus

∂t

∫ x2

x1

q(x , t)dx = F1(t)− F2(t)

where Fi(t) are rates (e.g., in g/s) at which the quantity flows through the
boundaries.
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The Finite-Volume Method via Conservation Laws

If we assume advection with a constant transport velocity a this flux is given as a
function of the values of q(x , t) as

F → f (q(x , t)) = aq(x , t)

in other words

∂t

∫ x2

x1

q(x , t)dx = f (q(x1, t))− f (q(x2, t))

This is called the integral form of a hyperbolic conservation law.
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The Finite-Volume Method via Conservation Laws

Using the definition of integration and antiderivates to obtain

∂t

∫ x2

x1

q(x , t)dx = −
∫ x2

x1

∂x f (q(x , t))dx∫ x2

x1

[∂tq(x , t) + ∂x f (q(x , t))]dx = 0

which leads to the well-known partial-differential equation of linear advection

∂tq(x , t) + ∂x f (q(x , t)) = 0

or
∂tq(x , t) + a∂xq(x , t) = 0
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Upwind scheme

Instead of working on the field q(x,t) itself we
approximate the integral of q(x,t) over the cell
C by

Qn
i ≈ 1

dx

∫
C

q(x , tn)dx

This is the average value of q(x , t) inside the
cell.
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Upwind scheme

Using the following terms for the fluxes at the boundaries

F n
L,R =

∫ tn+1

t
f (q(xL,R, t))dt

we obtain a time-discrete scheme for the average values of our solution field q(x,t)

Qn+1
i = Qn

i − dt
dx

(F n
R − F n

L )

where the upper index n denotes time level tn = n ∗ dt and the lower index i
denotes cell Ci of size dx .
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Fluxes, Riemann problem

The finite-volume approach allows derivation of acoustic wave equation from first principles (i.e.,
mass conservation)

82



Applications, Recent Developments

Kaeser et al., 2000

• Method of choice for conservation
problems with strongly discontinuous
solutions

• Many applications in geophysical
fluid dynamics

• Relatively simple, finite-difference
style algorithms

• Linear extrapolation schemes
strongly diffusive

• Recent general extensions to higher
order

• Potential for seismology not fully
explored

83



The Discontinuous Galerkin
Method



The Discontinuous Galerkin Method in a Nutshell

• Numerical solution of first-order
systems

• Developed for hyperbolic problems
(e.g., neutron diffusion)

• Local formulation for each element

• Solution of weak form of wave
equation

• Communication between elements
through fluxes → FV

• Explicit time extrapolation → efficient
parallelisation

• Nodal and modal approaches for
hexahedral and tetrahedral meshes 84



Wave Equation

1st order wave equation

ρ∂tv = ∂xσ + f

∂tσ = µ∂xv

Matrix-vector form

∂tQ + A∂xQ = f
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The Discontinuous Galerkin Method Put To Action

In matrix notation we yielded for one element

M∂tq(t) − K T q(t) = −F (a,q(t))

requiring an extrapolation scheme of the form

∂tq(t) = M−1(K T q(t) − F (a,q(t)))

where F (a,q(t)) is the flux vector as defined above. We seek to extrapolate the
system from some initial conditions and obtain using the simple Euler method for
each element

q(tn+1) ≈ q(tn) + dt
[
M−1(K T q(tn) − F (a,q(t))

]

where for the flux scheme F() we use the upwind approach. 86



The Discontinuous Galerkin Method Put To Action

The matrix-vector form of the discontinuous Galerkin method. The system of
questions at an elemental level is illustrated by plotting the absolute matrix/vector
values. N = 3, Np = N + 1 = 4
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Fluxes, tetrahedral meshes

The first competitive scheme for tetrahedral meshes in seismology, but ...
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Applications, Recent Developments

• Applications in exploration,
volcanology, shaking hazard,
earthquake physics

• Inefficient with tetrahedral meshes
(for smooth problems)

• Method of choice for dynamic rupture
simulations

• Extremely well scalable (Gordon Bell
finalist 2015)

• New modal, octree approach
developed in ExaHype project
(exahype.eu)

• Community codes: seissol (Munich),
nex3d (Bochum) 89



III: Comprehensive Questions

• What do you think is better to discretize complex geometries, tetraedral or hexahedral
elements?

• What does the discontinuous mean in the DG method??

• What could be the reason why the DG method works so well for earthquake rupture
simulations?
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"Meet the future ..." (From: Butch Cassidy and the Sundance Kid)
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Challenges - Meshing

Human time Simulation workflow cpu time
15% Design 0%
80% (weeks) Geometry creation, meshing 10%
5% Solver 90%

• Meshing work flow not well defined

• Still major bottleneck for simulation
tasks with complex geometries

• Tetrahedral meshes easier, but ...

• Salvus?
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Spectral element method - Salvus

• Developed at ETH, now
commercial (!) mondaic.com

• Spectral-element
implementation

• (tetrahedral and) hexahedral
meshes

• Built on top of community
libraries (e.g., PetSc)

• Meshing routines for some
model classes

• Work flow with Jupyter
notebooks
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Future Strategies - Alternative Formulations

Al-Attar and Crawford GJI 2016

• Particle relabelling, grid
stretching

• Mapping geometrical
complexity onto regular grids

• Smart pre-processing rather
than meshing?

• Similar concept used in
summation-by-parts (SBP)
algorithms (SW4)
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Future Strategies - Homogenization

• We only see low-pass
filtered Earth

• So why simulate models
with infinite frequencies?

• Homogenisation of
discontinuous model

• Renaissance of regular
grid methods?
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Challenges - Community Platforms

www.geodynamics.org

We would need ...

• Science gateways for basic
simulation tasks

• High level model initialization

• Large scale simulations -
hidden supercomputers

• Complex admission protocols

• Black boxes

• Great idea, but ...

96



Computational Seismology, Practical Exercises, Jupyter Notebooks

• Jupyter notebooks are interactive
documents that work in any browser

• Simple text editing

• Inclusion of graphics

• Equations with Latex

• Executable code cells with Python (or else)

• The coolest thing since ...

• Many examples on: www.seismo-live.org

• Computational Seismology: A Practical
Introdcution (Oxford University Press)

Try it out!
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9-week course in Computational wave propagation on COURSERA (free!)

Covers the
finite-difference,
pseudospectral,

finite-element, and
spectral-element

method.
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Winter School 2022 - Skience - www.skience.de

Software training in
seismology: ObsPy,

seissol, salvus,
specfem, etc ...

99



Conclusions

The forward problem is solved, but ...
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