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Introduction



Motivation

• Robust

• Simple concept

• Irregular grids

• Explicit method

• Find solution for strongly
heterogeneous paramters and
discontinuities
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History

• First applications in plasma physics (Hermeline, 1993) and computational
fluids (Versteeg and Malalasekera, 1995)

• Discrete version of the divergence theorem was used for seismic wave
propagation (Dormy and Tarantola, 1995)

• Comparing and quantifying the accuracy of wave propagation of the finite
volume method was done by Kaeser et al. 2001

• Leveque, 2001 presented a natural consequence of conservation laws

• Dumbser et al., 2007a presented the arbitrary high-order scheme (ADER) to
the finite-volume method
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History
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Finite Volume in a Nutshell

In its basic form it takes an entirely local viewpoint
in the sense that the solution field q(x,t) is tracked
inside a cell. The field is approximated by an av-
erage quantity Qn

i inside cell C as:

Qn
i =

1
dx

∫
C

q(x , t)dx
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Finite Volume in a Nutshell

Tracking the change of the values with time inside each cell

Qn+1
i −Qn

i
dt

=
F n

i−1/2 − F n
i+1/2

dx

Assuming the flux depends only on the adjacent Qn
i values (for left boundary)

F n
i−1/2 = f (Qn

i−1,Q
n
i )

The requirement of conservation for a transport problem leads to the advection
equation of the form

∂tq(x , t) + a ∂xq(x , t) = 0

where a is the transport velocity
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Finite Volume in a Nutshell

For the constant-coefficient advection problem the flux terms obviously are

F n
i−1/2 = aQn

i−1

F n
i+1/2 = aQn

i

where a is the advection velocity. With these definitions we obtain a fully discrete
extrapolation scheme as

Qn+1
i = Qn

i + a
dt
dx

(Qn
i−1 −Qn

i )

A considerable better solution is the Lax-Wendroff scheme given as

Qn+1
i = Qn

i −
adt
2dx

(Qn
i+1 −Qn

i−1) +
1
2

(
adt
dx

)2(Qn
i−1 − 2Qn

i + Qn
i+1)

which is second-order accurate and much less dispersive.
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Ingredients



The Finite-Volume Method via Conservation Laws

To describe what is happening we put ourselve into a finite volume cell that we
denote as C and denote the boundaries as x ∈ x1, x2. We further assume a
positive advection speed a.
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The Finite-Volume Method via Conservation Laws

The total mass of any quantity inside the cell is∫ x2

x1

q(x , t)dx

and a change in time can only be due to fluxes across the left and/or right cell
boundaries. Thus

∂t

∫ x2

x1

q(x , t)dx = F1(t)− F2(t)

where Fi(t) are rates (e.g., in g/s) at which the quantity flows through the
boundaries.
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The Finite-Volume Method via Conservation Laws

If we assume advection with a constant transport velocity a this flux is given as a
function of the values of q(x , t) as

F → f (q(x , t)) = aq(x , t)

in other words

∂t

∫ x2

x1

q(x , t)dx = f (q(x1, t))− f (q(x2, t))

This is called the integral form of a hyperbolic conservation law.
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The Finite-Volume Method via Conservation Laws

Using the definition of integration and antiderivates to obtain

∂t

∫ x2

x1

q(x , t)dx = −
∫ x2

x1

∂x f (q(x , t))dx∫ x2

x1

[∂tq(x , t) + ∂x f (q(x , t))] dx = 0

which leads to the well-known partial-differential equation of linear advection

∂tq(x , t) + ∂x f (q(x , t)) = 0
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Upwind scheme

Instead of working on the field q(x,t) itself we
approximate the integral of q(x,t) over the cell
C by

Qn
i ≈

1
dx

∫
C

q(x , tn)dx

This is the average value of q(x , t) inside the
cell.
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Upwind scheme

In order to find an extrapolation scheme to approximate the future state of our
finite-volume cells we integrate the integral form of a hyperbolic conservation law.∫

C
q(x , tn+1)dx −

∫
C

q(x , tn)dx

=

∫ tn+1

tn
f (q(xL, t)dt −

∫ tn+1

tn
f (q(xR, t)dt

where we used the definitions C → [x1, x2] = [xL, xR], rearranged terms, and
divided by dx in order to recover the average cell values.
This equation is exact!
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Upwind scheme

Using the following terms for the fluxes at the boundaries

F n
L,R =

∫ tn+1

t
f (q(xL,R, t))dt

we obtain a time-discrete scheme for the average values of our solution field q(x,t)

Qn+1
i = Qn

i −
dt
dx

(F n
R − F n

L )

where the upper index n denotes time level tn = n ∗ dt and the lower index i
denotes cell Ci of size dx .
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Upwind scheme

Figure 1: For the linear advection problem we can analytically predict where the tracer will
be located after time dt . The value of q(xi , tn+1) will be exactly the same as q(xi − adt , tn).
We can use this information to predict the new cell average Qn+1

i . 16



Upwind scheme

We thus seek to approximate the next cell update Qn+1
i knowing that

Qn+1
i ≈ q(xi , tn+1) = q(xi − adt , tn)

The new cell average analytically by adding the appropriate mass flowing via the
left boundary by interpolation

Qn+1
i = Qn

i−1 +
dx − adt

dx
(Qn

i −Qn
i−1)

Qn+1
i = Qn

i (1− adt
dx

) + Qn
i−1

adt
dx

.

After re-arranging we finally obtain a fully discrete scheme

Qn+1
i = Qn

i −
adt
dx

(Qn
i −Qn

i−1)
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Upwind scheme
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Upwind scheme

Stability criterion:

|adt
dx
| ≤ 1

Upwind scheme is of 1st order accuracy only and very dispersive. Therefore it is
not accurate enough to be of any use for actual simulation tasks.
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The Lax-Wendroff Scheme

Our goal is to find solutions to ∂tQ + a∂xQ = 0. We start by using the Taylor
expansion to extrapolate Q(x , t) in time to obtain

Q(x , tn+1) = Q(x , tn) + dt∂tQ(x , tn) +
1
2

dt2∂2
t Q(x , tn) + . . .

From the governing equation we can also state by additional differentiations

∂2
t Q = −a∂x∂tQ

∂x∂tQ = ∂t∂xQ = ∂x (−a∂xQ)

∂2
t Q = a2∂2

x Q

noting that we just derived the 2nd order form of the acoustic wave equation.
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The Lax-Wendroff Scheme

Replacing time derivatives by the equivalent expressions containing space
derivatives only and obtain

Q(x , tn+1) = Q(x , tn)− dta∂xQ(x , tn) +
1
2

dt2a2∂2
x Q(x , tn) + . . .

Using central differencing schemes for both space derivatives

∂xQ(x , tn) ≈
Qn

i+1 −Qn
i−1

2dx

∂2
x Q(x , tn) ≈

Qn
i+1 − 2Qn

i + Qn
i−1

dx2

we finally obtain a fully discrete second-order scheme

Qn+1
i = Qn

i −
adt
2dx

(Qn
i+1 −Qn

i−1) +
1
2

(
adt
dx

)2(Qn
i+1 − 2Qn

i + Qn
i−1)

known as the Lax-Wendroff scheme.
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The Lax-Wendroff Scheme

Using standard finite-difference considerations without making use of flux
concepts.
By extending the finite-volume method towards higher order to approximate
the solution inside the finite volume as a piecewise linear function.
The choice of slope considered then determines the specific 2nd order
numerical scheme that evolves.

The Lax-Wendroff scheme can also be interpreted as a finite-volume method by
considering the flux functions

F n
L =

1
2

a(Qn
i−1 + Qn

i )− 1
2

dt
dx

a2(Qn
i −Qn

i−1)

F n
R =

1
2

a(Qn
i + Qn

i+1)− 1
2

dt
dx

a2(Qn
i+1 −Qn

i )
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The Finite-Volume Method: Scalar
Advection



The Finite-Volume Method: Scalar Advection

We proceed with implementing the two numerical schemes 1) the upwind method
and 2) the Lax-Wendroff scheme. Recalling their formulations

Qn+1
i = Qn

i −
adt
dx

(Qn
i −Qn

i−1)

and
Qn+1

i = Qn
i −

adt
2dx

(Qn
i+1 −Qn

i−1) +
1
2

(
adt
dx

)2(Qn
i+1 − 2Qn

i + Qn
i−1)

Using a spatial initial condition, a Gauss function

Q(x , t = 0) = e−1/σ2(x−x0)
2

that is advected with speed c = 2500m/s. The analytical solution to this problem
is a simple translation of the initial condition to x = x0 + ct , where t = idt is the
simulation time at time step i .
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The Finite-Volume Method: Scalar Advection

Parameter Value
xmax 75000 m
nx 6000
c 2500 m/s
dt 0.0025 s
dx 12.5 m
ε 0.9
σ (Gauss) 200 m
x0 1000 m

24



The Finite-Volume Method: Scalar Advection

Implemement periodic and absorbing boundary conditions with the statements

Periodic: Qn
1 = Qn

nx−1

Absorbing: Qn
nx = Qn

nx−1

Figure 2: Boundary conditions. Absorbing, or circular boundary conditions can be
implemented by using ghost cells outside the physical domain x ∈ [x0, xmax ].
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The Finite-Volume Method: Scalar Advection

Figure 3: Top: Snapshots of an advected Gauss function (analytical solution, thick solid line) are
compared with the numerical solution of the 1st order upwind method (thin solid line) and the 2nd
order Lax-Wendroff scheme (dotted line) for increasing propagation distances. Bottom: The same
for a box-car function. 26



The Finite-Volume Method: Scalar Advection

Implemement periodic and absorbing boundary conditions with the statements

Periodic: Qn
1 = Qn

nx−1

Absorbing: Qn
nx = Qn

nx−1

Figure 4: Boundary conditions. Absorbing, or circular boundary conditions can be
implemented by using ghost cells outside the physical domain x ∈ [x0, xmax ].
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The Finite-Volume Method: Scalar Advection

Figure 5: Top: Snapshots of an advected Gauss function (analytical solution, thick solid line) are
compared with the numerical solution of the 1st order upwind method (thin solid line) and the 2nd
order Lax-Wendroff scheme (dotted line) for increasing propagation distances. Bottom: The same
for a box-car function. 28



The Finite-Volume Method for
Elastic Waves



The Finite-Volume Method for Elastic Waves

Source-free version of the coupled first-order elastic wave equation

∂tv −
1
ρ
∂xσ = 0

∂tσ − µ∂xv = 0 .

We proceed by writing this equation in matrix-vector notation

∂tQ + A∂xQ = 0

where Q = (σ, v) is the vector of unknowns and matrix A contains the parameters

A =

(
0 −1/ρ
−µ 0

)
29



The Finite-Volume Method for Elastic Waves

The problem hereby is that these eqations are coupled. What needs to be done is
to demonstrate the hyperbolicity of the wave equation in this form, i.e. show that A
is diagonalizable.
In the case of a quadratic matrix A with shape m ×m leads to an eigenvalue
problem. If we were able to obtain eigenvalues λp such that

Axp = λpxp , p = 1, ...,m

we get a diagonal matrix of eigenvalues

Λ =


λ1

. . .
λm


and the corresponding matrix R containing the eigenvectors xp in each column

R = (x1|x2| . . . |xp) . 30



The Finite-Volume Method for Elastic Waves

The Jacobian matrix A can now be expressed with the definitions

A = RΛR−1

Λ = R−1AR .

Applying these definitions to above equation we obtain

R−1∂tQ + R−1RΛR−1∂xQ = 0

and introducing the solution vector W = R−1Q results in

∂tW + Λ∂xW = 0 .
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The Finite-Volume Method for Elastic Waves

What remains to be shown is that in our specific case A has real eigenvalues.
These are easily determined as λ1,2 = ±

√
µ/ρ = ±c, corresponding to the shear

velocity c. For the eigenvectors we obtain

r1,2 =

(
±ρc

1

)
interestingly enough containing as first elements values of the seismic impedance
Z = ρc that is relevant for the reflection behaviour of seismic waves. Thus, the
matrix R and its inverse are

R =

(
Z −Z
1 1

)
, R−1 =

1
2Z

(
1 Z
−1 Z

)
.
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The Finite-Volume Method for Elastic Waves

The wave equation in the rotated eigensystem can be stated as

∂t

(
w1

w2

)
+

(
−c 0
0 c

)
∂x

(
w1

w2

)
= 0

with the simple general solution w1,2 = w (0)
1,2 (x ± ct), where the upper index 0

stands for the initial condition.
The initial condition also fullfills W(0) = R−1Q(0). We can therefore relate the
so-called characteristic variables w1,2 to the initial conditions of the physical
variables as

w1(x , t) =
1

2Z
(σ(0)(x + ct) + Zv (0)(x + ct))

w2(x , t) =
1

2Z
(−σ(0)(x − ct) + Zv (0)(x − ct))
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The Finite-Volume Method for Elastic Waves

Obtaining the final analytical solution for velocity v and stress σ as

σ(x , t) =
1
2

(σ(0)(x + ct) + σ(0)(x − ct))

+
Z
2

(v (0)(x + ct)− v (0)(x − ct))

v(x , t) =
1

2Z
(σ(0)(x + ct)− σ(0)(x − ct))

+
1
2

(v (0)(x + ct) + v (0)(x − ct)) .

In compact form this solution can be expressed as

Q(x , t) =
m∑

p=1

wp(x , t)rp

meaning that any solution is a sum over weighted eigenvectors, a superposition of
m waves. 34



Homogeneous Case

Riemann problem, homogeneous case.
Top: A discontinuity ∆Q is located at
x = 0 as initial condition to the advection
equation (e.g., as initial stress
discontinuity). Bottom: The discontinuity
propagates along characteristic curves in
the space-time domain. The figure
illustrates adjacent cells and two time
levels tn and tn+1. Two waves propagate in
opposite direction modifying the values in
the cells adjacent to x = 0.
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Homogeneous Case

The solution to our problem is a superposition of weighted eigenvectors rp, in our
case p = 1,2. Therefore, we can decompose the discontinuity jump into these
eigenvectors according to

∆Q = Qr −Ql = α1r1 + α2r2

Rα = ∆Q

α = R−1∆Q

where R is the matrix of eigenvectors as defined above and α are unknown
weights.
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Homogeneous Case

Decompose the solution into positive (right-propagating) and negative
(left-propagating) eigenvalues

Λ− =

(
−c 0
0 0

)
, Λ+ =

(
0 0
0 c

)

Then we can derive matrices A± - corresponding to the advection velocity in the
scalar case

A+ = RΛ+R−1

A− = RΛ−R−1
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Homogeneous Case

Figure 6: The constant average cell values of Q are illustrated for three adjacent cells i − 1, i, i + 1.
The eigenvector decomposition leads to wave A+ propagating from the left boundary with velocity c
in to cell i and wave A− propgating with velocity −c into cell i from the right boundary. This
determines the flux of discontinuities ∆Ql,r into cell i by the amount dt/dx∆Ql,r .
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Homogeneous Case

We are ready to formulate an upwind finite-volume scheme for any
multi-dimensional linear hyperbolic system:

∆Ql = Qi −Qi−1

∆Qr = Qi+1 −Qi

Qn+1
i = Qn

i −
dt
dx

(A+∆Ql + A−∆Qr ) .

We can relate this formulation to the very basic flux concept

Fl = A+∆Ql

Fr = A−∆Qr .
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Homogeneous Case

The 1st order upwind solution is of no practical use because of its strong
dispersive behaviour.
=⇒The 2nd order Lax-Wendroff scheme

The high-order scheme does not necessitate the separation into eigenvectors and
the Jacobian matrix A can be used in its original form. The extrapolation scheme
reads

Qn+1
i =Qn

i −
dt

2dx
A(Qn

i+1 + Qn
i−1)

+
1
2

dt
dx

2
A2(Qn

i−1 − 2Qn
i + Qn

i+1) .
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Example

Parameter Value
xmax 10000 m
nx 800
c 2500 m/s
ρ 2500 kg/m3

dt 0.025 s
dx 12.5 m
ε 0.5
σ (Gauss) 200 m
x0 5000 m
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Result

The stress-velocity system is advected for
an initial condition of Gaussian shape (top,
dashed line, scaled by factor 1/2). Top:
Stress snapshot at time t = 1.5s. Bottom:
Velocity snapshot at the same time. In both
cases analytical solutions are
superimposed.
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Heterogeneous Case

Top: Single discontinuity separating two
regions with different properties. Bottom:
Velocities and impedances on both sides of
the discontinuity. The Riemann problem
solves the problem of how waves on both
sides are partitioned.
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Heterogeneous Case

Mathematically the solution still has to consist of a weighted sum over
eigenvectors that now describe solutions in the left and right parts.

∆Q = α1

(
−Zl

1

)
+ α2

(
Zr

1

)
for some unknown scalar values α1,2. This can be written as a linear system of the
form

Rlrα = ∆Q

where α is a vector and the matrices with the eigenvector are

Rlr =

(
−Zl Zr

1 1

)
, R−1

lr =
1

Zl + Zr

(
−Zl Zr

1 1

)

44



Heterogeneous Case

Using the R matrix for cell boundaries separating cells with different (constant)
properties. Again we separate into left- and right-propagating eigenvalues within
cell i

Λ− =

(
−ci 0
0 0

)
, Λ+ =

(
0 0
0 ci

)
and using the definitions

Rl =

(
−Zi−1 Zi

1 1

)
, Rr =

(
−Zi Zi + 1
1 1

)
for the eigenvectors describing the solutions around the left and right boundaries
we can determine the corresponding advection terms as

A+ = RlΛ
+
l R−1

l

A− = Rr Λ+
r R−1

r
45



Heterogeneous Case

Leading to the 1st order upwind extrapolation scheme for the solution vector Qi in
the general heterogeneous case

∆Ql = Qi −Qi−1

∆Qr = Qi+1 −Qi

Qn+1
i = Qn

i −
dt
dx

(A+∆Ql + A−∆Qr )

=⇒ too dispersive but interesting side effect!

Let us take the eigenvector (i.e., wave) propagating in the left domain. What does
this imply for the wave propagating in the right domain?

∆Q =

(
Zl

1

)
46



Heterogeneous Case

We need to determine how the waves are partitioned given the discontinuous
material parameters described by matrix Rlr . This leads to the coefficients α as

α = R−1
lr ∆Q

=
1

Zl + Zr

(
−1 Zr

1 Zl

)(
Zl

1

)

=


Zr−Zl
Zl+Zr

2Zl
Zl+Zr

 =

R

T


that are the well known transmission and reflection coefficients for vertical
incidence at a material discontinuity.
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Heterogeneous Case

Reflection and transmission
coefficients. Seismic waves incident
perpendicular to a material discontinuity are
reflected and transmitted according to
coefficients R and T . These coefficients
can be derived via the Riemann problem
used to develop flux schemes for
finite-volume methods.
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Heterogeneous Case

Finally, we present the 2nd order scheme for the general heterogeneous results
and a simulation example.

Ai−1/2 =
1

Zi−1 + Zi

(
ciZi − ci−1Zi−1 (ci−1 + ci)Zi−1Zi

ci−1 + ci ciZi−1 − ci−1Zi

)

Ai+1/2 =
1

Zi + Zi+1

(
ci+1Zi+1 − ciZi (ci + ci+1)ZiZi+1

ci + ci+1 ci+1Zi − ciZi+1

)
.

With these definitions we can formulate the Lax-Wendroff extrapolation scheme for
elastic waves in heterogeneous material

Qn+1
i =Qn

i −
dt

2dx
[
Ai−1/2(Qn

i −Qn
i−1) + Ai+1/2(Qn

i+1 −Qn
i )
]

+
1
2

(
dt
dx

)2
[
A2

i+1/2(Qn
i+1 −Qn

i )− A2
i−1/2(Qn

i −Qn
i−1)

]
49



Example

Parameter Value
xmax 10000 m
nx 800
cl 2500 m/s
cr 5000 m/s
ρ 2500 kg/m3

dt 0.025 s
dx 12.5 m
ε 0.5
σ (Gauss) 200 m
x0 5000 m

50



Result
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The Finite-Volume Method via
Gauss’ Theorem



The Finite-Volume Method via Gauss’ Theorem

Gauss’ theorem states that the outward flux of a vector field Qi(x , t) through a
closed surface S is equal to the volume integral of the divergence over the volume
V inside the surface at some time t . Mathematically this can be expressed as∫

V
∂iQidV =

∫
S

niQidS

where ni are the components of the local surface normal vector.
Note:

Not restricted to vector fields −→ any tensor field Qi,j...

Applies also to scalar fields Q(x,t)
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The Finite-Volume Method via Gauss’ Theorem

Assuming the gradient of the solution field is smooth enough and can be assumed
constant inside volume V we can take it out of the integral and obtain an
expression for the derivative as a function of an integral over a surface S with
segements dS in 3D or a line with segments dL surrounding a surface S in 2D

∂iQ
∫

V
dV =

∫
S

niQdS

∂iQ3D =
1
V

∫
S

niQdS

∂iQ2D =
1
S

∫
L

niQdL
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The Finite-Volume Method via Gauss’ Theorem

Concept of numerical gradient calculation us-
ing Gauss’ theorem illustrated in 2D. The con-
stant gradient of a scalar field Q inside the
finite volume S is approximated as ∂iQ =

1/S
∑

α nαi dLαQα. The polygon can have any
shape.
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The Finite-Volume Method via Gauss’ Theorem

Once a discretization of surfaces or surround-
ing lines is found we can develop a discrete
scheme replacing the integrals in the above
equations by sums to obtain

∂iQ3D ≈
1
S

∑
α

nαi dSαQα

∂iQ2D ≈
1
L

∑
α

nαi dLαQα .

The importance here is that this description is
entirely independent of the shape of a partic-
ular volume.
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The Finite-Volume Method via Gauss’ Theorem

A rhombus-shaped finite volume cell is described by four edge points.

P1 = (−∆1,0),P2 = (+∆1,0),

P3 = (0,−∆2),P4 = (0,+∆2)

with the length of the sides given by ` =
√

∆2
1 + ∆2

2 and the surface S = 2∆1∆2.
The four normal vectors are defined by

n2,4 =

(
∆2

∆1

)
; n4,1 =

(
−∆2

∆1

)
;

n1,3 =

(
−∆2

−∆1

)
; n3,2 =

(
∆2

−∆1

)
.
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The Finite-Volume Method via Gauss’ Theorem

We now have all components to apply previous equation in the 2D case. We
integrate along the paths suggested in the figure to obtain

∂1Q =
1
S

(
`

2
Q1(−∆2

`
− ∆2

`
) +

`

2
Q2(

∆2

`
+

∆2

`
)

+
`

2
Q3(−∆2

`
+

∆2

`
) +

`

2
Q4(

∆2

`
− ∆2

`
))

=
1
S

(−Q1∆2 + Q2∆2)

=
Q2 −Q1

2∆1

for the 1st derivative of Q w.r.t. x .
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The Finite-Volume Method via Gauss’ Theorem

Example of elastic wave simulations in 2D us-
ing difference operators based on the finite-
volume approach (Kaeser 2001b). In this
example an unstructured grid follows a free-
surface topography with ghost cells outside
the surface to implement stress-free bound-
ary conditions.
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Summary

• The finite-volume method naturally follows from discretizing conservation equations
considering fluxes between finite-volume cells of averaged solution fields.

• The fluxes across boundaries during an extrapolation step are estimated using solutions to the
Riemann problem.

• The Riemann problem considers the advection of a single jump discontinuity taking into
account the analytical solution of the homogeneous problem. It allows an analytical prediction
of how much of the material (energy, stress, etc.) to be conserved enters into or leaves a cell.

• The lowest order finite-volume solution to the advection equation leads to a finite-difference
algorithm with a forward (or backward) spatial differencing scheme, depending on the
advection direction. This is called an upwind scheme.
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Summary

• First-order finite-volume schemes are highly dispersive and not appropriate for the solution of
wave propagation problems. The 2nd order Lax-Wendroff scheme does a much better job.

• The problem of elastic wave propagation can be formally cast as a 1st order hyperbolic
problem. Therefore - only with slight modifications - the fundamental schemes developed for
the scalar advection problem can be applied to elastic wave propagation.

• In the finite-volume method the problem of estimating partial derivatives (finite differences) is
replaced by the requirement to accurately calculate fluxes across cell boundaries.

• A main advantage of the finite-volume method is the fact that the scheme can be easily applied
to volume cells of any shape.

• Finite-volume schemes for arbitrary high-order reconstructions inside the cells and high-order
time-extrapolation schemes have been developed but not used extensively in seismology.
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Comprehension questions

1 What is the connection between finite-volume methods and conservation equations?

2 What is meant by finite volumes, is there any difference to a finite element?

3 If you look at the uwpind approach to the scalar advection problem (Eq. ??), why is the
finite-volume method so closely linked to staggered-grid finite-difference schemes? Explain.

4 What are the main advantages of finite-volume methods compared with finite-difference
methods?

5 Explain in a qualitative way what the Riemann problem is and why it is so essential for
finite-volume schemes.

6 In what areas of natural sciences are finite-volume schemes mostly used. Explore the
literature and try to give reasons.

7 What is numerical diffusion? Why is it relevant for finite-volume methods?

8 What is the connection between reflection/transmission coefficients of seismic waves and the
finite-volume method?

9 The finite-volume method extrapolates cell averages. What strategies do you see to extend the
method to high-order accuracy? 61



Theoretical problems

10 Show that equation is a finite-difference solution to the equation ∂tQ − a∂x Q = 0 using a
forward difference in space.

11 The stability criterion for the finite-volume method is cdt/dx ≤ 1. Starting with Fig. derive this
stability criterion from first principles.

12 Starting with the advection equation ∂tQ − a∂x Q = 0 derive the second-order wave equation
by applying the so-called Cauchy-Kovalevskaya procedure.

13 Following the finite-volume approach based on the divergence theorem calculate the spatial
derivative operator for the hexagonal cell.
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Theoretical problems

14 The linear system for elastic wave propagation in 1D (transverse motion) is given in equation.
The wave equation can also be formulated for compressional waves using the compressibility
K as elastic constant. Reformulate the linear system for acoustic wave propagation and
calculate the eigenvalues of the resulting Jacobian matrix A.

15 For either elastic or acoustic linear system derive the eigenvectors of Jacobian matrix A, the
matrix of eigenvectors and its inverse.

16 Show that the superposition of left- and right-propagating stress and velocity waves are
solutions to the linear system of equations for elastic wave propagation.

17 Show that a discontinuity of the form ∆Q = [1, 0] leads to an equi-partitioning of two seismic
waves propagating in opposite directions. Start with the Riemann problem formulated for the
homogeneous case.

18 Derive reflection and transmission coefficients for seismic waves with vertical incidence by
considering the Riemann problem for material discontinuity.
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Programming Exercises

19 Determine the stability limit of the Lax-Wendroff scheme for the scalar advection equation. Is it
the same as for the upwind scheme?

20 Create a highly unstructured 1D mesh and investigate the accuracy of the finite-volume
method (Lax-Wendroff) for the scalar advection problem.

21 Investigate the concept of trapped elastic waves by injecting an initial condition in a low-velocity
region. Use the Lax-Wendroff algorithm in 1D.

22 Implement circular boundary conditions in the 1D elastic Lax Wendroff solution. Initiate a
sinusoidal function f (x) = sin(kx) that is advected in one direction. Investigate the accuracy of
the finite-volume scheme as a function of wavelength and propagation distance by comparing
with the analytical solution.

23 The finite-volume method is supposed to conserve energy in the homogeneous case. Use the
computer programs for scalar advection, set up an example and calculate the total energy in
the system for each time step. Check whether it is conserved. Explore this problem for the
heterogeneous case.

24 Scalar advection problem: Advect a Gaussian shaped waveform as long as you can and
extract the travel time difference with the analytical solution in an automated way using
cross-correlation. Plot the time error as a function or propagation distance and your simulation
parameters.
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