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The Finite-Element Method: 1D
Elastic Wave Equation



1D Elastic Wave Equation

Apply the Galerkin principle to the 1D elastic wave equation

ρ∂2
t u = ∂x µ ∂xu + f .

where again we omit space and time-dependencies. From now on we assume that
the properties of the medium, density ρ, and shear modulus µ are both
space-dependent. We obtain the weak form as∫

D
ρ ∂2

t u ϕj dx =

∫
D
∂x µ ∂x u ϕj dx +

∫
D

f ϕj dx .

Integration by parts of the term containing the space derivatives leads to∫
D
∂x µ ∂x u ϕj dx =

[
µ∂x u ϕj

]
−
∫

D
µ ∂x u ∂x ϕj dx
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1D Elastic Wave Equation

Assuming a stress-free boundary condition leads to∫
D
ρ ∂2

t u ϕj dx +

∫
D
µ ∂x u ∂x ϕj dx =

∫
D

f ϕj dx

where u is the continuous unknown displacement field. We replace the exact
displacement field by an approximation u of the form

u(x , t)→ u(x , t) =
N∑

i=1

ui(t) ϕi(x)

where the coefficients ui are expected to correspond to a discrete representation
of the solution field. The wave equation bevomes∫

D
ρ ∂2

t u ϕj dx +

∫
D
µ ∂x u ∂x ϕj dx =

∫
D

f ϕj dx
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1D Elastic Wave Equation

Turning the continuous weak form into a system of linear equations∫
D
ρ ∂2

t

(
N∑

i=1

ui(t) ϕi(x)

)
ϕj dx

+

∫
D
µ ∂x

(
N∑

i=1

ui(t) ϕi(x)

)
∂x ϕj dx

=

∫
D

f ϕj dx .

Changing the order of integration and summation we obtain
N∑

i=1

∂2
t ui

∫
D
ρ ϕi ϕj dx +

N∑
i=1

ui

∫
D
µ ∂x ϕi ∂x ϕj dx =

∫
D

f ϕj dx

using the fact that the unknown coefficients ui only depend on time.
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1D Elastic Wave Equation

Using matrix-vector notation with the following definitions for the time-dependent
solution vector of displacement values u(t), mass matrix M, the already
well-known stiffness matrix K, and the source vector f:

u(t)→ ui(t)

M→ Mij =

∫
D
ρ ϕi ϕj dx

K→ Kij =

∫
D
µ ∂x ϕi ∂x ϕjdx

f→ fj =
∫

D
f ϕj dx .
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1D Elastic Wave Equation

Thus we can write the system of equations as

üM + uK = f

or with transposed system matrices as

MT ü + KT u = f .

For the second time-derivative we use a standard finite-difference approximation

ü = ∂2
t u ≈ u(t + dt)− 2u(t) + u(t − dt)

dt2
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1D Elastic Wave Equation

Replacing the original partial derivative with respect to time to obtain

MT
[

u(t + dt)− 2u(t) + u(t − dt)
dt2

]
= f− KT u .

Starting from an initial state u(t = 0) = 0 we can determine the displacement field
at time t + dt by

u(t + dt) = dt2(MT )−1
[
f− KT u

]
+ 2u(t)− u(t − dt) .
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The System Matrices

To calculate the entries of the system matrices we transform the space coordinate
into a local system

ξ = x − xi

hi = xi+1 − xi .

However, now we allow the element size hi to vary. With the definition above
element i is defined in the interval x ∈ [xi , xi+1]. In the local coordinate system the
basis functions are defined by

ϕi(ξ) =


ξ

hi−1
for − hi−1 < ξ ≤ 0

1− ξ
hi

for 0 < ξ < hi

0 elsewhere
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The System Matrices

with the corresponding derivatives

∂x ϕi(ξ) =


1

hi−1
for − hi−1 < ξ ≤ 0

− 1
hi

for 0 < ξ < hi

0 elsewhere

Example of a finite-element domain with
irregular element sizes hi . The basis
functions (thick solid lines) are illustrated
with the normalized derivatives (thin solid
lines).
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The Mass Matrix

Looking at the global definition of the mass matrix M with components

Mij =

∫
D
ρ ϕi ϕj dx

the only non-zero entries are around the diagonal and are of components Mi,i−1

Mi,i and Mi,i+1 for i = 2, ...,N − 1. Elements M11 and MNN have to be treated
separately. For the diagonal elements we obtain

Mii =

∫
D
ρ ϕi ϕi dx =

∫
Dξ

ρ ϕi ϕi dξ

in the local coordinate system.
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The Mass Matrix

Integration has to be carried out over the elements to the left and right of the
boundary points xi . We thus obtain

Mii = ρi−1

∫ 0

−hi−1

(
ξ

hi−1
+ 1
)2

dξ + ρi

∫ hi

0

(
1− ξ

hi

)2

dξ

=
1
3
(ρi−1 hi−1 + ρi hi)

For the off-diagonal elements the basis functions overlap only in one element

Mi,i−1 = ρi−1

∫ 0

−hi−1

(
ξ

hi−1
+ 1
)
−ξ

hi−1
dξ =

1
6
ρi−1 hi−1

or

Mi,i+1 = ρi

∫ hi

0

ξ

hi

(
1− ξ

hi

)
dξ =

1
6
ρi hi .
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The Mass Matrix

Just to illustrate the banded nature of the mass matrix, assuming constant element
size h and density ρ the mass matrix is given by

M =
ρ h
6



. . . 0
1 4 1

1 4 1
1 4 1

0
. . .



Note: In the general case with varying element size the mass matrix is not
symmetric.
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Stiffness matrix

The same concepts apply to the stiffness matrix. We move to the local coordinate
system by

Kij =

∫
D
µ ∂x ϕi ∂x ϕj dx =

∫
Dξ

µ ∂ξ ϕi ∂ξ ϕj dξ

to obtain for a diagonal element, assuming constant shear modulus µ inside each
element

Kii = µi−1

∫ 0

−hi−1

(
1

hi−1

)2

dξ + µi

∫ hi

0

(
− 1

hi

)2

dξ

=
µi−1

hi−1
+
µi

hi
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Stiffness matrix

For the off-diagonal elements

Ki,i+1 = µi

∫ hi

0

(
− 1

hi

)(
1
hi

)
dξ = −µi

hi

Ki,i−1 = µi−1

∫ 0

−hi−1

(
− 1

hi−1

)(
1

hi−1

)
dξ = −µi−1

hi−1

while all other elements of the stiffness matrix are zero. For example, assuming
constant shear modulus and element size the stiffness matrix reads

K =
µ

h



. . . 0
−1 2 −1

−1 2 −1
−1 2 −1

0
. . .


.
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Simulation Example

Parameter Value
xmax 10000m
nx 1000
vs 3000 m/s
ρ 2500 kg/m3

h 10 m
eps 0.5
f0 20 Hz

# Time e x t r a p o l a t i o n
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for i t in range ( n t ) :

( . . . )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# F i n i t e D i f f e rence Method
pnew = ( d t∗∗2) ∗ Mf @ (D @ p + f / dx∗src [ i t ] ) + 2∗p − pold
pold , p = p , pnew

Python code segment for a finite-difference al-
gorithm in matrix-vector form.
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Simulation Example

The structure of the system matrices for the finite-element method are compared with the
finite-difference method formulated with matrix-vector operations. Top row: Stiffness and inverse
mass matrix for the finite element method. Bottom row: Stiffness (differential) matrix and diagonal
mass matrix for the finite-difference method.

16



Simulation Example

Mass matrix for the general case of vary-
ing element size
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Mass mat r i x M_i j (Eq 6.56)
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
M = np . zeros ( ( nx , nx ) , dtype= f l o a t )
for i in range (1 , nx−1):

for j in range (1 , nx−1):
i f j == i :

M[ i , j ] = ( ro [ i −1]∗h [ i −1] + ro [ i ]∗h [ i ] ) / 3
e l i f j == i +1:

M[ i , j ] = ro [ i ]∗h [ i ] / 6
e l i f j == i −1:

M[ i , j ] = ro [ i −1]∗h [ i −1]/6
else :

M[ i , j ] = 0

# Corner elements
M[ 0 , 0 ] = ro [0 ]∗h [ 0 ] / 3
M[ nx−1,nx−1] = ro [ nx−1]∗h [ nx−2]/3
# I n v e r t M
Minv = np . l i n a l g . inv (M)
( . . . )

Finite element time extrapolation
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Time e x t r a p o l a t i o n
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−
for i t in range ( n t ) :

# −−−−−−−−−−−−−−−−−−−−−−−
# F i n i t e Element Method
unew=( d t∗∗2)∗Minv@( f∗src [ i t ]−K@u)+2∗u−uold
uold , u = u , unew

( . . . )
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Simulation Example

Snapshots of the displacement wave-
field calculated with the finite-element
method (solid line) are compared with
the finite-difference method (dotted
line) at various distances from the
source using the same parameters.
The length of the window is 500m.
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h - adaptivity

h - adaptivity: The simplicity with which the element size can vary due to
geometrical features or the velocity model.
Think about an Earth model in which the seismic velocities have strong variations.

P-velocity in the oceans (1.5 km/s)

P-velocities at the core-mantle boundary (13 km/s)

Any numerical scheme with globally constant element size has to be accurate
for the shortest wavelength

=⇒ Regions with higher velocities will be oversampled
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h - adaptivity

Left Middle Right
x 4600m 1000m 4600m
vs 6000m

s 1500m
s 3000m

s
dx 40m 10m 20m
ρ 2500 kg

m3 2500 kg
m3 2500 kg

m3

Parameter Value
nt 18000
dt 3.3 ms
f0 5 Hz
eps 0.5

We demonstrate this in the 1D case
with a strongly heterogeneous veloc-
ity model in which the number of grid
points per wavelength is kept con-
stant in the entire physical domain.
The model mimics the situation in a
fault zone with a central low-velocity
zone (damage zone) with different
material properties on the two sides
of the fault.
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h - adaptivity

Snapshots of displacement values are shown as a function time. Where displacement amplitudes
are below a threshold, the velocity models is shown in gray scale. Note the polarity change of the
reflections at the boundaries and the slope of the signals in the x − t plane indicated their velocities. 21



h - adaptivity

Detail of the finite-element simulation with varying element size at one of the domain boundaries.
The crosses indicate the element boundaries and the changing element size. Note the continuous
but non-differentiable behaviour of the displacement field at the interface. 22



Shape Functions in 1D and 2D



1D

Let us recall how we replaced the originally continuous unknown field u(x) by a
sum over some basis functions ϕi

u(x) =
N∑

i=1

ciϕi(x)

denoting the coefficients of the basis functions by ci . Mapping all elements to a
local coordinate system such

ξ =
x − xi

xi+1 − xi

where our reference element is defined with ξ ∈ [0,1].
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Linear Shape Functions

We put ourselves at element level and assume that our unknown function u(ξ) is
linear

u(ξ) = c1 + c2ξ

where ci are real coefficients. Each element has two node points, namely the
element boundaries at ξ1,2 = 0,1. This leads to the following conditions and
solutions for coefficients ci

u1 = c1 → c1 = u1

u2 = c1 + c2 → c2 = −u1 + u2
.
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Linear Shape Functions

This can also be written in matrix notation which will help us when dealing with
high-order systems. We obtain[

u1

u2

]
=

[
1 0
1 1

][
c1

c2

]

and using matrix inversion[
c1

c2

]
=

[
1 0
−1 1

][
u1

u2

]
.
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Linear Shape Functions

With appropriate matrix and vector definitions this can be written as

u = Ac→ c = A−1u

implying that to obtain coefficients c we need to calculate the inverse of A.

u(ξ) = u1 + (−u1 + u2)ξ

= u1(1− ξ) + u2ξ

= u1N1(ξ) + u2N2(ξ)

where we introduced a novel concept, the shape functions Ni(ξ) with the following
form

N1(ξ) = 1− ξ , N2(ξ) = ξ .
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Linear Shape Functions

The sum over the weighted shape function of
general order N gives the approximate contin-
uous representation of the solution field u(ξ)
inside the element.

u(ξ) =
N∑

i=1

uiNi(ξ)

Top: Linear shape functions as used in the
development of the finite-element solution to
static and dynamic elastic problems. Node
points are indicated by crosses. Bottom:
Quadratic shape functions requiring one more
node point at the center of the element.

27



Quadratic Shape Functions

Describing our solution field by quadratic functions requires

u(ξ) = c1 + c2ξ + c3ξ
2

where we added one more node point at the center of the element ξ1,2,3 = 0, 1
2 ,1.

With these node locations we obtain

u1 = c1

u2 = c1 + 0.5c2 + 0.25c3

u3 = c1 + c2 + c3

and after inverting the resulting system matrix A

(A)−1 =

 1 0 0
−3 4 −1
2 −4 2


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Quadratic Shape Functions

We can represent the final quadratic solution field inside the element with

u(ξ) =c1 + c2ξ + c3ξ
2

=u1(1− 3ξ + 2ξ2)+

=u2(4ξ − 4ξ2)+

=u3(−xi + 2ξ2)

resulting in the following shape functions

N1(ξ) = 1− 3ξ + 2ξ2

N2(ξ) = 4ξ − 4ξ2

N3(ξ) = −ξ + 2ξ2
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Triangular Shape Functions

Triangular elements. Mapping of physical co-
ordinates (x , y , top) to a local reference frame
(bottom) with coordinates ξ, η.
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Triangular Shape Functions

To perform the integration operations when calculating the system matrices we
move to the local coordinate system ξ, η ∈ [0,1] (sometimes the reference space
is chosen to be [−1,1]) through

x = x1 + (x2 − x1)ξ + (x3 − x1)η

y = y1 + (y2 − y1)ξ + (y3 − y1)η .

We seek to describe a linear function inside our triangle, therefore

u(ξ, η) = c1 + c2ξ + c3η .
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Triangular Shape Functions

We only know our function at the corners of the reference triangle, therefore the
constraints for coefficients ci are

u1 = u(0,0) = c1

u2 = u(1,0) = c1 + c2

u3 = u(0,1) = c1 + c3 .

This leads - using the same matrix inversion approach described above to - the
following shape functions for triangular elements

N1(ξ, η) = 1− ξ − η
N2(ξ, η) = ξ

N3(ξ, η) = η .
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Triangular Shape Functions

Triangular elements. The three corner nodes lead to an equivalent number of
shape functions Ni(ξ, η) with unit value at one of the corners.
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Rectangular Shape Functions

Quadrilateral elements. Mapping of physical
coordinates (x , y , top) to a local reference
frame (bottom) with coordinates ξ, η.
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Rectangular Shape Functions

Accordingly, shape functions can be derived for general quadrilateral elements.
We map space to a local coordinate system through

x = x1 + (x2 − x1)ξ + (x4 − x1)η + (x3 − x2)ξη

y = y1 + (y2 − y1)ξ + (y4 − y1)η + (y3 − y2)ξη .

Requiring linear behaviour of the function inside the element

u(ξ, η) = c1 + c2ξ + c3η + c4ξη

we obtain the following shape functions

N1(ξ, η) = (1− ξ)(1− η)
N2(ξ, η) = ξ(1− η)
N3(ξ, η) = ξη

N4(ξ, η) = (1− ξ)η .
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Rectangular Shape Functions

Rectangular reference elements. The four shape functions Ni(ξ, η) with unity value
at one of the corners.
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Summary

• The finite-element method was originally developed mostly for static structural engineering
problems.

• The element concept relates to describing the solution field in an analogous way inside each
element, thereby facilitating the required calculations of the system matrices.

• The finite-element approach can in principle be applied to elements of arbitrary shape. Most
used shapes are triangles (tetrahedra) or quadrilateral (hexahedral) structures.

• The finite-element method is a series expansion method. The continuous solution field is
replaced by a finite sum over (not necessarily orthogonal) basis functions.

• For static elastic problems or the elastic wave propagation problem finite-element analysis
leads to a (large) system of linear equations. In general, the matrices are of size N × N where
N is the number of degrees of freedom.

• Because of the specific interpolation properties of the basis functions, their coefficients take
the meaning of the values of the solution field at specific node points.
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Summary

• In an initialization step the global stiffness and mass matrices have to be calculated. They
depend on integrals over products of basis functions and their derivatives.

• If equation parameters (e.g., elastic parameters, density) vary inside elements, then numerical
integration has to be performed.

• The stress-free surface condition can be implicitly solved. This is a major advantage for
example for the simulation of surface waves.

• The classic finite-element method plays a minor role in seismology as its high-order sister, the
spectral-element method, is more efficient.
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Comprehension questions

1 In which community was the finite-element method primarily developed? Give some typical
problems.

2 What are weak and strong forms of partial differential equations? Give examples.

3 Discuss the pros and cons of the finite-element method vs. low-order finite-difference methods.

4 Present and discuss problem classes that can be handled well with the finite-volume method,
compare to problems better handled with other methods.

5 Compare the spatial discretization strategies of finite-element and finite-difference methods.

6 Describe the concept of shape functions.

7 Discuss qualitatively (use sketches) the use of basis functions. Compare with the
pseudospectral method.

8 Is the finite-element method a global or a local scheme?

9 Why does the finite-element method require the solution of a (possible huge) system of linear
equations? What is the consequence for parallel computing?

10 Why is the classic linear finite-element method not so much used for seismological research
today? 39



Theoretical questions

11 The scalar advection equation is simply

∂tq(x , t) + c(x)∂x q(x , t) = 0

where q(x , t) is the scalar quantity to be advected and c(x) is the advection velocity. Write
down the weak form of this equation and perform integration by parts. What happens to the
anti-derivative? Does it cancel out at the boundaries like in the 1D elastic wave equation?
Note: This is the point of departure for the discontinuous Galerkin method).

12 Are the linear basis functions

ϕi(x) =


x−xi−1
xi−xi−1

for xi−1 < x ≤ xi

xi+1−x
xi+1−xi

for xi < x < xi+1

0 elsewhere

orthogonal?

13 Calculate all entries of the stiffness matrix Aij =
∫

D µ∂x ϕi ∂x ϕj for a static elastic problem with
µ = 70GPa and h = 1m for a problem with n = 5 degrees of freedom.
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Theoretical questions

14 A finite-element system has the following parameters: Element sizes h = [1, 3, 0.5, 2, 4],
density ρ = [2, 3, 2, 3, 2]kg/m3. Calculate the entries of the mass matrix given by
Mij =

∫
D ρ ϕi ϕj dx using linear basis functions.

15 H-adaptivity. For the simulation with varying velocities and element size, calculate the time step
required for ε = 0.5 in each of the subdomains. Discuss the result.

16 Follow the approach of the derivation of shape functions and derive the cubic case in 1D:
u(x) = c1 + c2ξ + c3ξ

2 + c4ξ
3. What are key differences to quadratic and linear cases?

17 Derive the quadratic shape functions N(ξ, η) for 2D triangles with the following node points:

P1(0, 0),P2(1, 0),P3(0, 1),

P4(1/2, 0),P5(1/2, 1/2),P6(0, 1/2)

18 Derive the quadratic shape functions N(ξ, η) for 2D rectangles with the following node points:

P1(0, 0),P2(1/2, 0),P3(1, 0),P4(1, 1/2),

P5(1, 1),P6(1/2, 1),P7(0, 1),P8(0, 1/2)
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Programming Exercise

19 Static elastic case. Extend the formulation given to arbitrary element sizes (calculation of
stiffness matrix and source vector). Make examples and compare with the regular grid
finite-difference solution (relaxation method).

20 1D elastic case. Determine numerically the stability limit and compare with the finite-difference
solution.

21 Initialize a strongly heterogeneous velocity model with spatially varying element size. Try to
match the results with a regular grid finite-difference implementation of the same model.
Discuss the two approaches in terms of time step, run time, memory usage.

22 Plot the high-order 2D shape functions derived in the problems above.
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