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Introduction



Motivation

1. Orthogonal basis functions, special case
of FD

2. Spectral accuracy of space derivatives

3. High memory efficiency

4. Explicit method

5. No requirement of grid staggering

6. Problems with strongly heterogeneous
media
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History

• Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981;
Kossloff and Bayssal, 1982)

• Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984),
and to 3D (Reshef et al., 1988)

• Developing efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be
used in the extrapolation procedure

• Replacing harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff
et al., 1990)

• To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as
coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)

• By mixing finite-difference operators and pseudospectral operators in the different spatial directions, the
method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett,
2005)
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The Pseudospectral Method in a Nutshell

The Pseudospectral method is:

• a grid point method

• a series expansion method (Fourier or Chebyshev)

Looking at the acoustic wave equation using finite-difference method leaves us
with

p(x , t + dt)− 2p(x , t) + p(x , t − dt)
dt2 = c(x)2∂2

x p(x , t) + s(x , t)
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The Pseudospectral Method in a Nutshell

The remaining task is to calculate the space derivative on the r.h.s.

∂
(n)
x p(x , t) = F−1[(ik)nP(k , t)]

where i is the imaginary unit, F−1 is the inverse Fourier transform, and P(k , t) is
the spatial Fourier transform of the pressure field p(x , t), k being the wavenumber.

Using discrete Fourier transform of functions defined on a regular grid, we obtain
exact derivatives up to the Nyquist wavenumber kN = π/dx .
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The Pseudospectral Method in a Nutshell

Principle of the pseudospectral method
based on the Fourier series

• Use of sine and cosine functions for the
expansions implies periodicity

• Using Chebyshev polynomials similar
accuracy of common boundary
conditions (free surface, absorbing) can
be achieved
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The Pseudospectral Method:
Ingredients



Orthogonal Functions, Interpolation, Derivative

In many situations we either...

• seek to approximate a known analytic function by a polynomial representation

• know a function only at a discrete set of points and we would like to
interpolate in between those points

Let us start with the first problem such that our known function is approximated by
a finite sum over some N basis functions Φi

f (x) ≈ gN(x) =
N∑

i=1

aiΦi(x)

and assume that the basis functions form an orthogonal set
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Orthogonal Functions, Interpolation, Derivative

Why would one want to replace a known function by something else?

Dynamic phenomena are mostly expressed
by PDEs

Either nature is not smooth and
differentiable

mathemical functions are
non-differentiable
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Orthogonal Functions, Interpolation, Derivative

With the right choice of differentiable basis functions Φi the calculation becomes

∂x f (x) ≈ ∂xgN(x) =
N∑

i=1

ai∂x Φi(x)

Consider the set of (trigonometric) basis functions

cos(nx) n = 0,1, . . . ,∞
sin(nx) n = 1,2, . . . ,∞

with

1, cos(x), cos(2x), cos(3x), . . .

sin(x), sin(2x), sin(3x), . . .

in the interval [−π, π]
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Orthogonal Functions, Interpolation, Derivative

Checking whether these functions are orthogonal by eval-
uating integrals with all possible combinations

π∫
−π

cos(jx) cos(kx)dx =


0 for j 6= k

2π for j = k = 0

π for j = k > 0
π∫
−π

sin(jx) sin(kx)dx =

0 for j 6= k ; j , k > 0

π for j = k > 0
π∫
−π

cos(jx) sin(kx)dx = 0 for j > 0 , k > 0
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Orthogonal Functions, Interpolation, Derivative

The approximate function gN(x) can be stated as

f (x) ≈ gN(x) =
N∑

k=0

ak cos(kx) + bk sin(kx)

By minimizing the difference between approximation gN(x) and the original
function f (x), the so-called l2-norm, the coefficients ak ,bk can be found

‖f (x)− gN(x)‖l2 =

 b∫
a

{f (x)− gN(x)}2 dx


1
2

= Min

=⇒ independent of the choice of basis functions
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Fourier Series and Transforms

The most important concept of this section will consist of the properties of Fourier
series on regular grids.

The approximate function gN(x) has the following form

gN(x) =
1
2

a0 +
n∑

k=1

ak cos(kx) + bk sin(kx)

and leads to the coefficients

ak =
1
π

π∫
−π

f (x) cos(kx)dx k = 0,1, . . . ,n

bk =
1
π

π∫
−π

f (x) sin(kx)dx k = 1,2, . . . ,n .
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Fourier Series and Transforms

Using Euler’s formulae, yields

gN(x) =
k=n∑

k=−n

ckeikx

with complex coefficients ck given by

ck =
1
2

(ak − ibk )

c−k =
1
2

(ak + ibk ) k > 0

c0 =
1
2

a0 .
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Fourier Series and Transforms

Finding the interpolating trigonometric polynomial for
the periodic function

f (x + 2πx) = f (x) = x2 x ∈ [0,2π]

The approximation gN(x) can be obtained with

gN(x) =
4π2

3
+

N∑
k=1

{ 4
k2 cos(kx)− 4π

k
sin(kx)}
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Fourier Series and Transforms

We assume that we know our function f(x) at a discrete set of points xi given by

xi =
2π
N

i i = 0, . . . ,N .

Using the "trapezoidal rule" for the integration of a definite integral we obtain for
the Fourier coefficients

a∗k =
2
N

N∑
j=1

f (xj) cos(kxj) k = 0,1, . . . ,n

b∗k =
2
N

N∑
j=1

f (xj) sin(kxj) k = 1,2, . . . ,n
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Fourier Series and Transforms

We thus obtain the specific Fourier polynomial with
N = 2n

g∗n :=
1
2

a∗0 +
n−1∑
k=1

{a∗k cos(kx)− b∗k sin(kx)}

+
1
2

a∗ncos(nx)

with the tremendously important property

g∗n(xi) = f (xi) .
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Cardinal functions

Approximate unity value at grid point xi

and zero at all other points

Analytical solution is a sinc-function

This is called a Cardinal function
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Fourier Series and Transforms

Forward Transform

F (k) = F [f (x)] =
1√
2π

∫ ∞
−∞

f (x)e−ikxdx

Inverse Transform

f (x) = F−1[F (k)] =
1√
2π

∫ ∞
−∞

F (k)eikxdk
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Fourier Series and Transforms

Taking the formulation of the inverse transform to obtain the derivative of function
f(x)

d
dx

f (x) =
d
dx

1√
2π

∫ ∞
−∞

F (k)eikxdk

=
1√
2π

∫ ∞
−∞

ik F (k)eikxdk

=
1√
2π

∫ ∞
−∞

D(k) F (k)eikxdk

with D(k) = ik
We can extend this formulation to the calculation of the n − th derivative of f (x) to
achieve

F (n)(k) = D(k)n F (k) = (ik)n F (k)
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Fourier Series and Transforms

Thus using the condense Fourier transform operator F we can obtain an exact
n − th derivative using

f (n)(x) = F−1[(ik)n F (k)]

= F−1[(ik)n F [f (x)]] .

Adopting the complex notation of the forward transform we get

Fk =
N−1∑
j=0

fj e−i 2πjk/N k = 0, . . . ,N

and the inverse transform

fj =
1
N

N−1∑
k=0

Fk ei 2πjk/N j = 0, . . . ,N
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Fourier Series and Transforms

We are able to get exact n − th derivatives on our regular grid by performing the
following operations on vector fj defined at grid points xj

∂
(n)
x fj = F−1[(ik)n Fk ]

where
Fk = F [fj ]
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Example

We initialize a 2π-periodic Gauss-function
in the interval x ∈ [0,2π] as

f (x) = e−1/σ2 (x−x0)
2

with x0 = π and the derivative

f ′(x) = −2
(x − x0)

σ2 e−1/σ2 (x−x0)
2

Grid spacing of dx = 2π
N with N = 127 and

xj = j 2π
N , j = 0, . . . ,N.
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Result

The error on the right figure was multiplied by a factor 1013 !
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Acoustic 1D

Constant-density acoustic wave equation in 1D

p̈ = c2∂2
x p + s

The time-dependent part is solved using a standard 3-point finite-difference
operator leading to

pn+1
j − 2pn

j + pn−1
j

dt2 = c2
j ∂

2
x pn

j + sn
j

where upper indices represent time and lower indices space.
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Acoustic 1D

Calculating the 2nd derivatives using the
Fourier transform

∂2
x pn

j = F−1[(ik)2 Pn
ν ]

= F−1[−k2 Pn
ν ]

where Pn
ν is the discrete complex

wavenumber spectrum at time n
leading to an exact derivative with only
numerical rounding errors.
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Example

In FD method possible to initiate a point-like source at
one grid point

In PS method not possible because Fourier transform
of a spike-like function creates oscillations

=⇒ Defining a space-dependent part of the source
using a Gaussian function e−1/σ2(x−x0)

2
with σ = 2dx ,

dx being the grid interval and x0 the source location

Parameter Value
xmax 1250 m
nx 2048
c 343 m/s
dt 0.00036 s
dx 0.62 m
f0 60 Hz
ε 0.2
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Result
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Stability, Convergence, Dispersion

To understand the behaviour of numerical approximations using discrete plane
waves of the form

pn
j = ei(kjdx−ωndt)

∂2
x pn

j = −k2ei(kjdx−ωndt)

The time-dependent part can be expressed as

∂2
t pn

j = − 4
dt2 sin2(

ωdt
2

) ei(kjdx−ωndt)

where we made use of Euler’s formula and that 2 sin2 x = 1/2(1− cos 2x)

28



Stability, Convergence, Dispersion

Phase velocity c(k)

c(k) =
ω

k
=

2
kdt

sin−1(
kcdt

2
) .

• When dt becomes small sin−1(kcdt/2) ≈ kcdt/2

• dx does not appear in this equation

• The inverse sine must be smaller than one the stability limit requires
kmax (cdt/2) ≤ 1. As kmax = π/dx the stability criterion for the 1D case is
ε = cdt/dx = 2/π ≈ 0.64
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Stability, Convergence, Dispersion
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Acoustic 2D

Acoustic wave equation in 2D

p̈ = c2(∂2
x p + ∂2

z p) + s

The time-dependent part is replaced by a standard 3-point finite-difference
approximation

pn+1
j,k − 2pn

j,k + pn−1
j,k

dt2 = c2
j,k (∂2

x p + ∂2
z p)j,k + sn

j,k

Using Fourier approach for approximating 2nd partial derivatives

∂2
x p + ∂2

z p = F−1[−k2
x F [p]] + F−1[−k2

z F [p]]
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Acoustic 2D

Parameter Value
xmax 200 m
nx 256
c 343 m/s
dt 0.00046 s
dx 0.78 m
f0 200 Hz
ε 0.2
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Acoustic 2D
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Numerical anisotropy

Investigating the dispersion behaviour by finding solutions to monochromatic plane
waves propagating in the direction k = (kx , kz)

pn
j,k = ei(kx jdx+kzkdx−ωndt)

With Fourier method the derivatives can be calculated by

∂2
x pn

j,k = −k2
x ei(kx jdx+kzkdx−ωndt)

∂2
z pn

j,k = −k2
z ei(kx jdx+kzkdx−ωndt)

Combining this with the 3-point-operator for the time derivative

∂2
t pn

j,k = − 4
dt2 sin2(

ωdt
2

) ei(kx jdx+kzkdx−ωndt)
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Numerical anisotropy

We obtain the numerical dispersion relation in 2D for arbitrary wave number
vectors (i.e., propagation directions) k as

c(k) =
ω

|k|
=

2
|k|dt

sin−1(
cdt

√
k2

x + k2
z

2
) .
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Elastic 1D

1D Elastic wave equation

ρ(x)ü(x , t) = ∂x [µ(x)∂xu(x , t)] + f (x , t)

u displacement field
µ space-dependent shear modulus

The finite-difference approximation of the extrapolation part leads to

ρi
uj+1

i − 2uj
i + uj−1

i
dt2 = (∂x [µ(x)∂xu(x , t)])j

i + f j
i

with space derivatives to be calculated using the Fourier method.
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Elastic 1D

The sequence of operations required to obtain the r.h.s. reads

uj
i → F [uj

i ]→ U j
ν → ikU j

ν → F−1[ikU j
ν ]→ ∂xuj

i

∂xuj
i → F [µi∂xuj

i ]→ Ũ j
ν → F−1[ikŨ j

ν ]→ ∂x [µ(x)∂xu(x , t)]

where capital letters denote fields in the spectral domain, lower indices with Greek
letters indicate discrete frquencies, and Ũ j

ν = µi∂xuj
i was introduced as an

intermediate result to facilitate notation.
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Elastic 1D

Finding a setup for a classic staggered-
grid finite-difference solution to the elas-
tic 1D problem, leads to an energy mis-
fit to the analytical solution ua of 1%.
The energy misfit is simply calculated by
(uFD − ua)2/u2

a

FD PS
nx 3000 1000
nt 2699 3211
c 3000 m/s 3000 m/s
dx 0.33 m 1.0 m
dt 5.5e-5 s 4.7e-5 s
f0 260 Hz 260 Hz
ε 0.5 0.14
n/λ 34 11

38



Elastic 1D

Comparing memory requirements and computation speed between the Fourier method (right) and a 4th-order
finite-difference scheme (left). In both cases the relative error compared to the analytical solution (misfit energy
calculated by uFD−ua

u2
a

) is approximately 1%. The big difference is the number of grid points along the x

dimension. The ratio is 3:1 (FD:Fourier) 39



Summary

• Pseudospectral methods are based on discrete function approximations that allow
exact interpolation at so-called collocation points. The most prominent examples are
the Fourier method based on trigonometric basis functions and the Chebyshev
method based on Chebyshev polynomials.

• The Fourier method can be interpreted as an application of discrete Fourier series on
a regular-spaced grid. The space derivatives can be obtained exactly (except for
rounding errors). Derivatives can be efficiently calculated with the discrete Fourier
transform requiring n log n operations.

• The Fourier method implicitly assumes periodic behavior. Boundary conditions like
the free surface or absorbing behaviour are difficult to implement.
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