The Pseudospectral Method

Heiner Igel
Department of Earth and Environmental Sciences
Ludwig-Maximilians-University Munich

Introduction

Motivation

1. Orthogonal basis functions, special case of FD
2. Spectral accuracy of space derivatives
3. High memory efficiency
4. Explicit method
5. No requirement of grid staggering
6. Problems with strongly heterogeneous media

History

- Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981; Kossloff and Bayssal, 1982)
- Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984), and to 3D (Reshef et al., 1988)
- Devoloning efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be used in the extrapolation procedure
- Replacing harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff et al., 1990)
- To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)
- By miving finite-difference operators and nseudospectral onerators in the different spatial directions, the method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett, 2005)

History

- Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981; Kossloff and Bayssal, 1982)
- Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984), and to 3D (Reshef et al., 1988)
- Developing efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be used in the extrapolation procedure
- Replacina harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff et al., 1990)
- To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)
- By mixing finite-difference operators and pseudospectral operators in the different spatial directions, the method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett, 2005)

History

- Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981; Kossloff and Bayssal, 1982)
- Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984), and to 3D (Reshef et al., 1988)
- Developing efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be used in the extrapolation procedure
- Replacing harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff et al., 1990)
- To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)
- By mixing finite-difference operators and pseudospectral operators in the different spatial directions, the method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett, 2005)

History

- Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981; Kossloff and Bayssal, 1982)
- Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984), and to 3D (Reshef et al., 1988)
- Developing efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be used in the extrapolation procedure
- Replacing harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff et al., 1990)
- To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)
- By miving finite-difference operators and nseudospectral operators in the different onatial directions, the method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett, 2005)

History

- Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981; Kossloff and Bayssal, 1982)
- Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984), and to 3D (Reshef et al., 1988)
- Developing efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be used in the extrapolation procedure
- Replacing harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff et al., 1990)
- To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)
- By mixing finite-difference operators and pseudospectral operators in the different spatial directions, the method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett, 2005)

History

- Coining as transform methods as their implementation was based on the Fourier transform (Gazdag, 1981; Kossloff and Bayssal, 1982)
- Initial applications to the acoustic wave equation were extended to the elastic case (Kossloff et al., 1984), and to 3D (Reshef et al., 1988)
- Developing efficient time integration schemes (Tal-Ezer et al., 1987) that allowed large times steps to be used in the extrapolation procedure
- Replacing harmonic functions as bases for the function interpolation by Chebyshev poly-nomials (Kosloff et al., 1990)
- To improve the accurate modelling of curved internal interfaces and surface topography grid stretching as coordinate transforms was introduced and applied (Tessmer et al., 1992; Komatitsch et al., 1996)
- By mixing finite-difference operators and pseudospectral operators in the different spatial directions, the method was used for interesting seismological problems (Furumura et al., 1998b; Furumura and Kennett, 2005)

The Pseudospectral Method in a Nutshell

The Pseudospectral method is:

- a grid point method
- a series expansion method (Fourier or Chebyshev)

Looking at the acoustic wave equation using finite-difference method leaves us with

$$
\frac{p(x, t+\mathrm{d} t)-2 p(x, t)+p(x, t-\mathrm{d} t)}{\mathrm{d} t^{2}}=c(x)^{2} \partial_{x}^{2} p(x, t)+s(x, t)
$$

The Pseudospectral Method in a Nutshell

The remaining task is to calculate the space derivative on the r.h.s.

$$
\partial_{x}^{(n)} p(x, t)=\mathscr{F}^{-1}\left[(i k)^{n} P(k, t)\right]
$$

where i is the imaginary unit, \mathscr{F}^{-1} is the inverse Fourier transform, and $P(k, t)$ is the spatial Fourier transform of the pressure field $p(x, t), k$ being the wavenumber.

Using discrete Fourier transform of functions defined on a regular grid, we obtain exact derivatives up to the Nyquist wavenumber $k_{N}=\pi / d x$.

The Pseudospectral Method in a Nutshell

Principle of the pseudospectral method based on the Fourier series

- Use of sine and cosine functions for the expansions implies periodicity
- Using Chebyshev polynomials similar accuracy of common boundary conditions (free surface, absorbing) can be achieved

The Pseudospectral Method:
Ingredients

Orthogonal Functions, Interpolation, Derivative

In many situations we either...

- seek to approximate a known analytic function by a polynomial representation
- know a function only at a discrete set of points and we would like to interpolate in between those points

Let us start with the first problem such that our known function is approximated by a finite sum over some N basis functions Φ_{i}

$$
f(x) \approx g_{N}(x)=\sum_{i=1}^{N} a_{i} \phi_{i}(x)
$$

and assume that the basis functions form an orthogonal set

Orthogonal Functions, Interpolation, Derivative

Why would one want to replace a known function by something else?

Orthogonal Functions, Interpolation, Derivative

With the right choice of differentiable basis functions Φ_{i} the calculation becomes

$$
\partial_{x} f(x) \approx \partial_{x} g_{N}(x)=\sum_{i=1}^{N} a_{i} \partial_{x} \Phi_{i}(x)
$$

Consider the set of (trigonometric) basis functions

$$
\begin{aligned}
\cos (n x) & n=0,1, \ldots, \infty \\
\sin (n x) & n=1,2, \ldots, \infty
\end{aligned}
$$

with

$$
\begin{gathered}
1, \cos (x), \cos (2 x), \cos (3 x), \ldots \\
\sin (x), \sin (2 x), \sin (3 x), \ldots
\end{gathered}
$$

in the interval $[-\pi, \pi]$

Orthogonal Functions, Interpolation, Derivative

Checking whether these functions are orthogonal by evaluating integrals with all possible combinations

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos (j x) \cos (k x) \mathrm{d} x= \begin{cases}0 & \text { for } j \neq k \\
2 \pi & \text { for } j=k=0 \\
\pi & \text { for } j=k>0\end{cases} \\
& \int_{-\pi}^{\pi} \sin (j x) \sin (k x) \mathrm{d} x= \begin{cases}0 & \text { for } j \neq k ; j, k>0 \\
\pi & \text { for } j=k>0\end{cases} \\
& \int_{-\pi}^{\pi} \cos (j x) \sin (k x) \mathrm{d} x=0 \text { for } j \geqslant 0, k>0
\end{aligned}
$$

Orthogonal Functions, Interpolation, Derivative

The approximate function $g_{N}(x)$ can be stated as

$$
f(x) \approx g_{N}(x)=\sum_{k=0}^{N} a_{k} \cos (k x)+b_{k} \sin (k x)
$$

By minimizing the difference between approximation $g_{N}(x)$ and the original function $f(x)$, the so-called I_{2}-norm, the coefficients a_{k}, b_{k} can be found

$$
\left\|f(x)-g_{N}(x)\right\|_{I_{2}}=\left[\int_{a}^{b}\left\{f(x)-g_{N}(x)\right\}^{2} \mathrm{~d} x\right]^{\frac{1}{2}}=\operatorname{Min}
$$

\Longrightarrow independent of the choice of basis functions

Fourier Series and Transforms

The most important concept of this section will consist of the properties of Fourier series on regular grids.

The approximate function $g_{N}(x)$ has the following form

$$
g_{N}(x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n} a_{k} \cos (k x)+b_{k} \sin (k x)
$$

and leads to the coefficients

$$
\begin{array}{ll}
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) \mathrm{d} x & k=0,1, \ldots, n \\
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) \mathrm{d} x & k=1,2, \ldots, n
\end{array}
$$

Fourier Series and Transforms

Using Euler's formulae, yields

$$
g_{N}(x)=\sum_{k=-n}^{k=n} c_{k} e^{i k x}
$$

with complex coefficients c_{k} given by

$$
\begin{aligned}
c_{k} & =\frac{1}{2}\left(a_{k}-i b_{k}\right) \\
c_{-k} & =\frac{1}{2}\left(a_{k}+i b_{k}\right) \quad k>0 \\
c_{0} & =\frac{1}{2} a_{0}
\end{aligned}
$$

Fourier Series and Transforms

Finding the interpolating trigonometric polynomial for the periodic function

$$
f(x+2 \pi x)=f(x)=x^{2} \quad x \in[0,2 \pi]
$$

The approximation $g_{N}(x)$ can be obtained with

$$
g_{N}(x)=\frac{4 \pi^{2}}{3}+\sum_{k=1}^{N}\left\{\frac{4}{k^{2}} \cos (k x)-\frac{4 \pi}{k} \sin (k x)\right\}
$$

Fourier Series and Transforms

We assume that we know our function $\mathrm{f}(\mathrm{x})$ at a discrete set of points x_{i} given by

$$
x_{i}=\frac{2 \pi}{N} i \quad i=0, \ldots, N .
$$

Using the "trapezoidal rule" for the integration of a definite integral we obtain for the Fourier coefficients

$$
\begin{array}{ll}
a_{k}^{*}=\frac{2}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \cos \left(k x_{j}\right) & k=0,1, \ldots, n \\
b_{k}^{*}=\frac{2}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \sin \left(k x_{j}\right) & k=1,2, \ldots, n
\end{array}
$$

Fourier Series and Transforms

We thus obtain the specific Fourier polynomial with $N=2 n$

$$
\begin{aligned}
g_{n}^{*}:= & \frac{1}{2} a_{0}^{*}+\sum_{k=1}^{n-1}\left\{a_{k}^{*} \cos (k x)-b_{k}^{*} \sin (k x)\right\} \\
& +\frac{1}{2} a_{n}^{*} \cos (n x)
\end{aligned}
$$

with the tremendously important property

$$
g_{n}^{*}\left(x_{i}\right)=f\left(x_{i}\right)
$$

Cardinal functions

Approximate unity value at grid point x_{i} and zero at all other points
Analytical solution is a sinc-function
This is called a Cardinal function

Fourier Series and Transforms

Forward Transform

$$
F(k)=\mathscr{F}[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

Inverse Transform

$$
f(x)=\mathscr{F}^{-1}[F(k)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k
$$

Fourier Series and Transforms

Taking the formulation of the inverse transform to obtain the derivative of function $\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} i k F(k) e^{i k x} d k \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} D(k) F(k) e^{i k x} d k
\end{aligned}
$$

with $D(k)=i k$
We can extend this formulation to the calculation of the $n-t h$ derivative of $f(x)$ to achieve

$$
F^{(n)}(k)=D(k)^{n} F(k)=(i k)^{n} F(k)
$$

Fourier Series and Transforms

Thus using the condense Fourier transform operator \mathscr{F} we can obtain an exact $n-t h$ derivative using

$$
\begin{aligned}
f^{(n)}(x) & =\mathscr{F}^{-1}\left[(i k)^{n} F(k)\right] \\
& =\mathscr{F}^{-1}\left[(i k)^{n} \mathscr{F}[f(x)]\right]
\end{aligned}
$$

Adopting the complex notation of the forward transform we get

$$
F_{k}=\sum_{j=0}^{N-1} f_{j} e^{-i 2 \pi j k / N} k=0, \ldots, N
$$

and the inverse transform

$$
f_{j}=\frac{1}{N} \sum_{k=0}^{N-1} F_{k} e^{i 2 \pi j k / N} j=0, \ldots, N
$$

Fourier Series and Transforms

We are able to get exact n - th derivatives on our regular grid by performing the following operations on vector f_{j} defined at grid points x_{j}

$$
\partial_{x}^{(n)} f_{j}=\mathscr{F}^{-1}\left[(i k)^{n} F_{k}\right]
$$

where

$$
F_{k}=\mathscr{F}\left[f_{j}\right]
$$

Example

We initialize a 2π-periodic Gauss-function

 in the interval $x \in[0,2 \pi]$ as$$
f(x)=e^{-1 / \sigma^{2}\left(x-x_{0}\right)^{2}}
$$

with $x_{0}=\pi$ and the derivative

$$
f^{\prime}(x)=-2 \frac{\left(x-x_{0}\right)}{\sigma^{2}} e^{-1 / \sigma^{2}\left(x-x_{0}\right)^{2}}
$$

Grid spacing of $d x=\frac{2 \pi}{N}$ with $N=127$ and $x_{j}=j \frac{2 \pi}{N}, j=0, \ldots, N$.

```
# [...]
# Basic parameters
nx = 128
x0 = pi
def fourier_derivative(f, dx):
    # Length of vector f
    nx = f.size
    # Initialize k vector up to Nyquist wavenumber
    kmax = pi/dx
    dk = kmax/(nx/2)
    k = arange(float(nx))
    k[:nx/2] = k[:nx/2] * dk
    k[nx/2:] = k[:nx/2] - kmax
    # Fourier derivative
    ff = lj*k*fft(f)
    df = ifft(ff).real
    return df
# [...]
# Main program
# Initialize space and Gauss function (also return dx)
x = linspace(2*pi/nx, 2*pi, nx)
dx = x[1]-x[0]
sigma = 0.5
f = exp(-1/sigma**2 * (x - x0)**2)
# Calculate derivative of vector f
df = fourier_derivative(f, dx)
# [...]
```


Result

The error on the right figure was multiplied by a factor 10^{13} !

Acoustic 1D

Constant-density acoustic wave equation in 1D

$$
\ddot{p}=c^{2} \partial_{x}^{2} p+s
$$

The time-dependent part is solved using a standard 3-point finite-difference operator leading to

$$
\frac{p_{j}^{n+1}-2 p_{j}^{n}+p_{j}^{n-1}}{\mathrm{~d} t^{2}}=c_{j}^{2} \partial_{x}^{2} p_{j}^{n}+s_{j}^{n}
$$

where upper indices represent time and lower indices space.

Acoustic 1D

Calculating the $2^{\text {nd }}$ derivatives using the Fourier transform

$$
\begin{aligned}
\partial_{x}^{2} p_{j}^{n} & =\mathscr{F}^{-1}\left[(i k)^{2} P_{\nu}^{n}\right] \\
& =\mathscr{F}^{-1}\left[\begin{array}{ll}
-k^{2} & \left.P_{\nu}^{n}\right]
\end{array}\right.
\end{aligned}
$$

where P_{ν}^{n} is the discrete complex wavenumber spectrum at time n leading to an exact derivative with only numerical rounding errors.

```
# [...]
```


[...]

Fourier derivative

Fourier derivative

def fourier_derivative_2nd(f, dx):
def fourier_derivative_2nd(f, dx):
\# [...]
\# [...]
\# Fourier derivative
\# Fourier derivative
ff = (1j * k) **2 * fft(f)
ff = (1j * k) **2 * fft(f)
df = ifft(ff).real
df = ifft(ff).real
return df
return df

[...]

[...]

Time extrapolation

Time extrapolation

for it in range(nt):
for it in range(nt):
\# 2nd space derivative
\# 2nd space derivative
d2p = fourier_derivative_2nd(p, dx)
d2p = fourier_derivative_2nd(p, dx)
\# Extrapolation
\# Extrapolation
pnew = 2 * p - pold + c**2 * dt**2 * d2p
pnew = 2 * p - pold + c**2 * dt**2 * d2p
\# Add sources
\# Add sources
pnew = pnew + sg * src[it] * dt**2
pnew = pnew + sg * src[it] * dt**2
\# Remap pressure field
\# Remap pressure field
pold, p = p, pnew
pold, p = p, pnew

[...]

```
# [...]
```


Example

In FD method possible to initiate a point-like source at one grid point

In PS method not possible because Fourier transform of a spike-like function creates oscillations
\Longrightarrow Defining a space-dependent part of the source using a Gaussian function $e^{-1 / \sigma^{2}\left(x-x_{0}\right)^{2}}$ with $\sigma=2 d x$,

Parameter	Value
$x_{\max }$	1250 m
nx	2048
c	$343 \mathrm{~m} / \mathrm{s}$
dt	0.00036 s
dx	0.62 m
f_{0}	60 Hz
ϵ	0.2

Result

Fourier

Stability, Convergence, Dispersion

To understand the behaviour of numerical approximations using discrete plane waves of the form

$$
\begin{aligned}
p_{j}^{n} & =e^{i(k j \mathrm{~d} x-\omega n \mathrm{~d} t)} \\
\partial_{x}^{2} p_{j}^{n} & =-k^{2} e^{i(k j \mathrm{~d} x-\omega \mathrm{d} t)}
\end{aligned}
$$

The time-dependent part can be expressed as

$$
\partial_{t}^{2} p_{j}^{n}=-\frac{4}{d t^{2}} \sin ^{2}\left(\frac{\omega d t}{2}\right) e^{i(k j d x-\omega n d t)}
$$

where we made use of Euler's formula and that $2 \sin ^{2} x=1 / 2(1-\cos 2 x)$

Stability, Convergence, Dispersion

Phase velocity c(k)

$$
c(k)=\frac{\omega}{k}=\frac{2}{k d t} \sin ^{-1}\left(\frac{k c d t}{2}\right) .
$$

- When $d t$ becomes small $\sin ^{-1}(k c d t / 2) \approx k c d t / 2$
- $d x$ does not appear in this equation
- The inverse sine must be smaller than one the stability limit requires $k_{\max }(c d t / 2) \leq 1$. As $k_{\max }=\pi / d x$ the stability criterion for the 1D case is $\epsilon=c d t / d x=2 / \pi \approx 0.64$

Stability, Convergence, Dispersion

Acoustic 2D

Acoustic wave equation in 2D

$$
\ddot{p}=c^{2}\left(\partial_{x}^{2} p+\partial_{z}^{2} p\right)+s
$$

The time-dependent part is replaced by a standard 3-point finite-difference approximation

$$
\frac{p_{j, k}^{n+1}-2 p_{j, k}^{n}+p_{j, k}^{n-1}}{\mathrm{~d} t^{2}}=c_{j, k}^{2}\left(\partial_{x}^{2} p+\partial_{z}^{2} p\right)_{j, k}+s_{j, k}^{n}
$$

Using Fourier approach for approximating $2^{\text {nd }}$ partial derivatives

$$
\partial_{x}^{2} p+\partial_{z}^{2} p=\mathscr{F}^{-1}\left[-k_{x}^{2} \mathscr{F}[p]\right]+\mathscr{F}^{-1}\left[-k_{z}^{2} \mathscr{F}[p]\right]
$$

Acoustic 2D

Parameter	Value	
$X_{\text {max }}$	200 m	\# [...]
nX	256	\# second space derivatives for j in range($n z$):
C	343 m/s	d2px[:, j] = fourier_derivative_2nd(p[:, j].T, dx)
dt	0.00046 s	```for i in range(nx): d2pz[i,:] = fourier derivative 2nd(p[i,:], dx)```
dx	0.78 m	\# Extrapolation - -
f_{0}	200 Hz	```pnew = 2 * p - pold + c**2 * dt**2 * (d2px + d2pz) # [...]```
ϵ	0.2	

Acoustic 2D

Fourier Method

Finite-Difference Method

Numerical anisotropy

Investigating the dispersion behaviour by finding solutions to monochromatic plane waves propagating in the direction $\mathbf{k}=\left(k_{x}, k_{z}\right)$

$$
p_{j, k}^{n}=e^{i\left(k_{x} j \mathrm{~d} x+k_{z} k \mathrm{~d} x-\omega n \mathrm{~d} t\right)}
$$

With Fourier method the derivatives can be calculated by

$$
\begin{aligned}
& \partial_{x}^{2} p_{j, k}^{n}=-k_{x}^{2} e^{i\left(k_{x} j \mathrm{~d} x+k_{z} k \mathrm{~d} x-\omega n \mathrm{~d} t\right)} \\
& \partial_{z}^{2} p_{j, k}^{n}=-k_{z}^{2} e^{i\left(k_{x} j \mathrm{~d} x+k_{z} k \mathrm{~d} x-\omega n \mathrm{~d} t\right)}
\end{aligned}
$$

Combining this with the 3-point-operator for the time derivative

$$
\partial_{t}^{2} p_{j, k}^{n}=-\frac{4}{d t^{2}} \sin ^{2}\left(\frac{\omega d t}{2}\right) e^{i\left(k_{x} j \mathrm{~d} x+k_{z} k \mathrm{~d} x-\omega n \mathrm{~d} t\right)}
$$

Numerical anisotropy

We obtain the numerical dispersion relation in 2D for arbitrary wave number vectors (i.e., propagation directions) \mathbf{k} as

$$
c(\mathbf{k})=\frac{\omega}{|\mathbf{k}|}=\frac{2}{|\mathbf{k}| d t} \sin ^{-1}\left(\frac{c d t \sqrt{k_{x}^{2}+k_{z}^{2}}}{2}\right)
$$

Elastic 1D

1D Elastic wave equation

$$
\rho(x) \ddot{u}(x, t)=\partial_{x}\left[\mu(x) \partial_{x} u(x, t)\right]+f(x, t)
$$

u displacement field
$\mu \quad$ space-dependent shear modulus
The finite-difference approximation of the extrapolation part leads to

$$
\rho_{i} \frac{u_{i}^{j+1}-2 u_{i}^{j}+u_{i}^{j-1}}{\mathrm{~d} t^{2}}=\left(\partial_{x}\left[\mu(x) \partial_{x} u(x, t)\right]\right)_{i}^{j}+f_{i}^{j}
$$

with space derivatives to be calculated using the Fourier method.

Elastic 1D

The sequence of operations required to obtain the r.h.s. reads

$$
\begin{gathered}
u_{i}^{j} \rightarrow \mathscr{F}\left[u_{i}^{j}\right] \rightarrow U_{\nu}^{j} \rightarrow i k U_{\nu}^{j} \rightarrow \mathscr{F}^{-1}\left[i k U_{\nu}^{j}\right] \rightarrow \partial_{x} u_{i}^{j} \\
\partial_{x} u_{i}^{j} \rightarrow \mathscr{F}\left[\mu_{i} \partial_{x} u_{i}^{j}\right] \rightarrow \tilde{U}_{\nu}^{j} \rightarrow \mathscr{F}^{-1}\left[i k \tilde{U}_{\nu}^{j}\right] \rightarrow \partial_{x}\left[\mu(x) \partial_{x} u(x, t)\right]
\end{gathered}
$$

where capital letters denote fields in the spectral domain, lower indices with Greek letters indicate discrete frquencies, and $\tilde{U}_{\nu}^{j}=\mu_{i} \partial_{x} u_{i}^{j}$ was introduced as an intermediate result to facilitate notation.

Elastic 1D

Finding a setup for a classic staggeredgrid finite-difference solution to the elastic 1D problem, leads to an energy misfit to the analytical solution u_{a} of 1%. The energy misfit is simply calculated by $\left(u_{F D}-u_{a}\right)^{2} / u_{a}^{2}$

	FD	PS
nx	3000	1000
nt	2699	3211
c	$3000 \mathrm{~m} / \mathrm{s}$	$3000 \mathrm{~m} / \mathrm{s}$
dx	0.33 m	1.0 m
dt	$5.5 \mathrm{e}-5 \mathrm{~s}$	$4.7 \mathrm{e}-5 \mathrm{~s}$
f_{0}	260 Hz	260 Hz
ϵ	0.5	0.14
n / λ	34	11

Elastic 1D

FD 5-pt - run time: 2.50875 s

Fourier - run time: 3.518 s

Comparing memory requirements and computation speed between the Fourier method (right) and a 4th-order finite-difference scheme (left). In both cases the relative error compared to the analytical solution (misfit energy calculated by $\frac{u_{F D}-u_{a}}{u_{a}^{2}}$) is approximately 1%. The big difference is the number of grid points along the x

Summary

- Pseudospectral methods are based on discrete function approximations that allow exact interpolation at so-called collocation points. The most prominent examples are the Fourier method based on trigonometric basis functions and the Chebyshev method based on Chebyshev polynomials.
- The Fourier method can be interpreted as an application of discrete Fourier series on a regular-spaced grid. The space derivatives can be obtained exactly (except for rounding errors). Derivatives can be efficiently calculated with the discrete Fourier transform requiring $n \log n$ operations.
- The Fourier method implicitly assumes periodic behavior. Boundary conditions like the free surface or absorbing behaviour are difficult to implement.

