Seismic waves: A primer

» What are the governing equations for
elastic wave propagation?

» What are the most fundamental
results in simple media?

» How do we describe and input seismic
sources (superposition principle)?

» What are consequences of the reciprocity principle?

» What rheologies do we need (stress-strain relation)?

» 3-D heterogeneities and scattering
» Green's functions, numerical solvers as linear systems

Goal: You know what to expect when running a wave simulation code!
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Wave Equations
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The (anisotropic) elastic wave equation (strong form)

Introduction

2
p&tui :8j(al.]. -I-Ml.j)-l-fl. Wave equation
This is the displacement — stress formulation
where
— Stress-strain relation
O = Ciibu
1
&y = 5 (8kul + Gluk ) Strain-displacement relation
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The elastic wave equation — the cast

2, _
po;u; =0 (o, + M)+ f,
p — p(x) Mass density O = Cin€u
u; = u,(X,1) Displacement vector ]
o, — o, (x,1) gy == (0,u, +0,u,)
ij i \ Stress tensor (3x3) 2
M; — M;(X,1)  Moment tensor (3x3)

Ji = fi(X,1)  Volumetric force
Cipg —> Cy (X) Tensor of elastic constants (3x3x3x3)

Eq = &,(X,1)  Strain tensor (3x3)
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3D to 1D
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1D elastic wave equation

0o f’ Uy = Oy L (Oxtty + Oytiy) + UH}

+ 3y [ (0 + 20) dyuty + A (ytty + dzuz) + j‘r‘l’_v_v]

+ v

I Hf‘u}; = Ox(uoxuy) + Jfy
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1D elastic wave equation

pu =0 (o u)+ f

This is a scalar wave equation descriptive of transverse motions of a string
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The elastic wave equation

_ Oju; =0 (o, + M)+ f,
po,v, =0, (o, + M)+ f;  Pr=oloyri)*]

. O = Ciéu
O = Ciibu |
€ = E(ak”z T aluk)

This is the velocity — stress formulation, where

. 1
Ep = 5(81("1 ™ alvk)

vV, =U; = atui
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3D acoustic wave equation

2 This is the constant densit
p=c Ap+s f

acoustic wave equation (sound
in a liquid or gas)

C % C(x) P-velocity
p —> p(x’ l-) Pressure
S 9 S(X, l-) Sou.rces

/82\
A —|0°

Laplace Operator

Y
This is equation is still
2 tremendously important in
\ z / exploration seismics!
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Rheologies

Introduction Computational Geophysics and Data Analysis 10



To first order the Earth ‘s /’

crust deforms like an elastic By
body when the deformation I e T
in) i e
(strain) is small. =
N | S N N A
L

In other words, if the force -
that causes the deformation |
is stopped the rock will go
back to its original form.

The change in shape (i.e., the deformation) is
called strain, the forces that cause this strain

are called stresses.
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Stress-strain relation

The relation between stress and strain in general is described by the tensor of elastic
constants cy

Gij — Cijklgkl Generalised Hooke s Law

From the symmetry of the stress and strain tensor and a thermodynamic condition if
follows that the maximum number if independent constants of ¢, is 21. In an isotropic
body, where the properties do not depend on direction the relation reduces to

Gij = ﬂ“®5y + 2,Ll€lj Hooke’ s Law

where | and m are the Lame parameters, q is the dilatation and d;is the Kronecker
delta.

®0, =¢&,,0, = (gxx +&, &, )d]
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Other rheologies (not further explored in this course)

Viscoelasticity

» the loss of energy due to internal friction

» possibly frequency-dependent

« different for P and S waves (why?)

« described by Q

* Not easy to implement numerically for time-domain methods

Porosity

« Effects of pore space (empty, filled, partially filled) on stress-strain
* Frequency-dependent effects

« Additional wave types (slow P wave)

« Highly relevant for reservoir wave propagation

Plasticity

« permanent deformation due to changes in the material as a
function of deformation or stress

 resulting from (micro-) damage to the rock mass

« often caused by damage on a crystallographic scale

« important close to the earthquake source

* not well constrained by observations
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Seismic Waves
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Consequences of the equations of motion

What are the solutions to this equation? At first we look
at infinite homogeneous isotropic media, then:

P-waves approximately S-waves

/ A+2u y =43y H
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Boundary conditions: external and internal interfaces

Traction is zero
perpendicular to free
surface (needs special
attention with most
numerical methods)

t, =oun, =0

At internal interfaces we
speak of welded contact
Normal tractions are
continuous (they are
usually not directly
implemented, except
fluid-solid)
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Seismic wave types

Love waves — transversely
polarized — superposition of
SH waves in layered media

Rayleigh waves — polarized in
the plane through source
and receiver —

superposition of P and SV

Non—existing in half space waves

Always dispersive in layered

Non—dispersive in half space
media

Dispersive in layered media

Love-Welle Rayleigh-Welle
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Surface wave dispersion

Introduction
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Data Example
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Real vs. numerial dispersion

Love Waves Numerical Dispersion
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Surface waves summary

> Elastic surface waves (Love and Rayleigh) in nature generally show
dispersive behavior (later we will see that there is also dispersive behaviour
due to numerical effects!)

» Surface waves are a consequence of the free-surface boundary condition.
We thus might expect that — when using numerical approximations there
might be differences concerning the accurate implementation of this
boundary condition.

» The accurate simulation of surface waves plays a dominant role in global

and regional (continental scale) seismology and is usually not so
important in exploration geophysics.
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Reflection, Transmission
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Reflection and transmission at boundaries

P waves can be converted to S waves and vice versa. This creates a quite complex behavior of wave
amplitudes and wave forms at interfaces. This behavior can be used to constrain the properties of the
material interface.

incoming P-wave

p 7 P
reflections
MGT@I"iCl' 1 Interface
Material 2

transmissions
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Analytical solutions
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,delta“-generating function

—
o

Spatial (or temporal) source function

Amplitude
S
(\)

5y () — { 1/de |z| < dx/2

0 elsewhere

<
[—

bc stands for boxcar
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Analytical solutions for acoustic wave equation (Green's function)

1D 2D 3D
r H t—g)
%H( o %) 27302 (ILQ :,2 4%1}27‘ (t o T/C)
=
r=x r=a2+y? r= /12 +y2+ 22
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Analytical solutions
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Fig. 2.9 Analytical solutions to the
scalar wave equation. Top: Green’s
functions in 1D, 2D, and 3D. Bottom:
Green’s functions obtained after convo-
lution with the 1st derivative of a Gaus-
sian with 1Hz dominant frequency (see
text for details). Note that the source
time function is centred around t = 0.
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Seismic sources
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Radiation from a point double-couple source

Geometry we use
to express the
seismic wavefield
radiated by point
double-couple
source with area A
and slip Du

X2

Here the fault
plane is the x;X,-
plane and the slip
is in x4-direction.
. > Which stress
- -ET X1
Sl components are

affected?

slip patch
with area A

FIGURE 5 Cartesian and polar coordinate systems for analysis of
radiation by a slip patch with area A and average slip {Au(t)).

Introduction Computational Geophysics and Data Analysis 29



Introduction

Radiation from a point source (M_=M,,=M,,

I r 1 s
u(x,t) = — A" — Myt — t)dt
dmp ré

riup

|

-

o |
e AP =Myt —r/vp)
TPUE 2

I 1s ]
+ —— A" =Myt — r/vs)
dmpug re

| rpl )
+—A"" =Myt —rfvp)
dpuy, r

4 pvy

u ground displacement as a
function of space and
time
density
distance from source

s shear velocity

P-velocity

near field

IP/S intermediate field

FP/S far field

M,  seismic moment

p

zZ<<<- -

... one of the
most important
results of
seismology!

... Let’s have a
closer look ...

A™ = 95in 26 cos ¢F — 6(cos 26 cos ¢ — cos b sin pg),
AP = 4in 20 cos ¢r — 2(cos 26 cos zi:ﬁ — COS H sIn qiu;/l’\))*
A% = —35in 26 cos ¢F + 3(cos 26 cos (,t:(j ~ COS A sin r,bq.’;)*

- o N
AT = 5in 26 cos ¢,

A"® = cos 26 cos ﬁf)f} — cost sIn(i)ffh
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Introduction

Radiation from a point source (M_=M,,=M,,

Near field term
contains the
static
deformation

riug

Intermediate
terms

1 1
u(x,t)= — A"V — Myt — 1) dr
dmp r4

rivp

the main
ingredient for
source
inversion, ray
theory, etc.
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Elastic waves 2D

Explosion Double couple
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Introduction Computational Seismology 32



Beachballs and moment tensor
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Translation, Divergence, Rotation, and all that (M4, 3km away)
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Introduction

Source mechanisms

Stiike-slip Faulting
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Radiation patterns of a double couple point sources

Far field P — blue
Far field S — red
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Seismic moment M,

M, = ,u<Au(t)>A

My seismic moment

m rigidity

<Au(t)> average slip

A fault area Note that the far-field

displacement is proportional
to the moment rate!
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Source time function

Near-field Far-field Far-field spectrum
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Displacement, Velocity, Acceleration

Figure 6.6-14: Relation between displacement, velocity, and acceleration in
the time domain.
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The superposition principle
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Discrete representation of finite sources
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Introduction

Superposition principle

We allow each subfault to slip once and parameterize the
slip process in terms of slip amplitude (slipy ), rupture veloc-
ity (¢""?P) and rise time (R). The slip amplitude is heteroge-
neous across the fault plane, leading to 24 free parameters.
Together with the distance between the center of subfault k
and the hypocenter, the rupture velocity provides the rup-
ture time tg(c™?) of subfault k. The rise time expresses the
duration of the slip. Both rupture velocity and rise time are
homogeneonus parameters across the fault plane. Thus, we
invert for 26 free parameters in total. Finally, the complete
seismic response, v/ (w), at station r, component [ and for
the circular frequency, w = 27 f, is computed as a linear sum
of N(= 24) subfault contributions

N

v (w) = E slipg exp[—iwtg(c"™")] G (w) S(R,w).  (2)
k=1

In equation (2) S represents the source function that we im-

plemented as an ordinary ramp function. Additional details
on the source function are provided in Appendix B.
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The Earth (or a numerical solver)
as a linear system
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Introduction

Green's function

Numerical
seismogram using
peak source time
function

Source time function

=
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Seismogram

analytical

numerical
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Source-receiver
reciprocity

Introduction Computational Seismology 45



Introduction

The displacement field generated by a distribution of body
forces and surface tractions can be synthesized using the elasto-
dynamic Green function G;;(x, 1; x’, 1"), giving the i component
of displacement at (x. 7) due to a localized unit body force op-
erating at (x’, ') in the j direction. The elastodynamic Green
function satisfies the Navier equation of motion for a linear elas-
tic solid

97 J

_ o )
Gij = 6ijd(x — x")d(t —1 }‘l‘T{i'iraﬁ-IWGﬁ;ﬂ (1.10)
Al

i :
f o2 X

where §( ) 1s the Dirac delta function. A complete determination
of G;; requires meeting initial conditions (taken usually to be
G =0dG/dt =0fort <t and x # x')and specified boundary
conditions on the surface of the medium.

If G;; satisfies homogeneous boundary conditions (i.e.. zero
traction or zero displacement) on S, it has the following spa-
tiotemporal reciprocity properties

!

ng{x,r:+r".r’):(?ﬁ(+r’. —f . x, —T1). (1.11)
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In other words

A->B
A B
»M I
random model | Wv \ ww
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Time reversal — reverse acoustics

— —
- <
it =150 it=100 it=150
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Practical example — Valhall active experiment

Figure 1. Overview of Valhall Field showing the layout of the geophone array at the sea
floor (red lines), the top of the reserveir, the outline of the field (dark blue line), and the
wells (thin blue lines).
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Full waveform inversion — Inverse Problems

¥ locanon (km)
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Sirgue et al., 2010
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To understand seismic wave propagation the following concepts need to be
understood:

» The mathematical description of the deformation of an elastic 3-D
object -> strain

» The forces that are at work for a given deformation and its (mostly
linear!) dependence on the magnitude of deformation > stress —
strain relation

» The description of elastic modules and the various symmetry
systems (-> elasticicity tensor, isotropy, transverse isotropy,
hexagonal symmetry).

» The boundary condition required at the free surface (traction-free)
and the consequences for wave propagation -> surface waves

» The description of seismic sources using the moment tensor
concept (-> double couples, explosions)

» The origin, scale, spectrum of material heterogeneities in side the
Earth (-> the reason why we need to resort to numerical methods)
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