
Introduction

Seismic waves: A primer
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 What are the governing equations for
elastic wave propagation?

 What are the most fundamental 
results in simple media?

 How do we describe and input seismic
sources (superposition principle)? 

 What are consequences of the reciprocity principle?

 What rheologies do we need (stress-strain relation)?

 3-D heterogeneities and scattering

 Green‘s functions, numerical solvers as linear systems

Goal: You know what to expect when running a wave simulation code!
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Wave Equations
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The (anisotropic) elastic wave equation (strong form)
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This is the displacement – stress formulation

where

Wave equation

Stress-strain relation

Strain-displacement relation
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The elastic wave equation – the cast
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3D to 1D 
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1D elastic wave equation
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1D elastic wave equation
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fuu xx +∂∂= )(µρ 
This is a scalar wave equation descriptive of transverse motions of a string
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The elastic wave equation
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3D acoustic wave equation
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This is the constant density
acoustic wave equation (sound

in a liquid or gas)  
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Pressure

Sources
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Laplace Operator

This is equation is still 
tremendously important in 

exploration seismics!
. 
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Rheologies
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Stress and strain

To first order the Earth‘s 
crust deforms like an elastic 
body when the deformation 
(strain) is small.  

In other words, if the force 
that causes the deformation 
is stopped the rock will go 
back to its original form. 

The change in shape (i.e., the deformation) is 
called strain, the forces that cause this strain 
are called stresses. 
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Stress-strain relation
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The relation between stress and strain in general is described by the tensor of elastic 
constants cijkl

klijklij c εσ =

From the symmetry of the stress and strain tensor and a thermodynamic condition if 
follows that the maximum number if independent constants of cijkl is 21. In an isotropic 
body, where the properties do not depend on direction the relation reduces to 

ijijij µεδλσ 2+Θ=

where l and m  are the Lame parameters, q is the dilatation and  dij is the Kronecker 
delta. 

Generalised Hooke’s Law

Hooke’s Law

( ) ijzzyyxxijkkij δεεεδεδ ++==Θ
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Other rheologies (not further explored in this course)
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Viscoelasticity
• the loss of energy due to internal friction
• possibly frequency-dependent
• different for P and S waves (why?) 
• described by Q
• Not easy to implement numerically for time-domain methods

Porosity
• Effects of pore space (empty, filled, partially filled) on stress-strain
• Frequency-dependent effects
• Additional wave types (slow P wave)
• Highly relevant for reservoir wave propagation

Plasticity
• permanent deformation due to changes in the material as a 

function of deformation or stress
• resulting from (micro-) damage to the rock mass
• often caused by damage on a crystallographic scale
• important close to the earthquake source
• not well constrained by observations
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Seismic Waves
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Consequences of the equations of motion

What are the solutions to this equation? At first we look
at infinite homogeneous isotropic media, then:
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P-waves



Introduction

Boundary conditions: external and internal interfaces
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0´ == jijj nt σ

nTraction is zero
perpendicular to free
surface (needs special
attention with most
numerical methods)

At internal interfaces we
speak of welded contact
Normal tractions are
continuous (they are
usually not directly
implemented, except
fluid-solid)

nσnσ ˆˆ 21 =
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Seismic wave types
Surface waves waves
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Love waves – transversely
polarized – superposition of
SH waves in layered media

Non-existing in half space

Always dispersive in layered
media

Rayleigh waves – polarized in 
the plane through source
and receiver –
superposition of P and SV 
waves

Non-dispersive in half space

Dispersive in layered media
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Surface wave dispersion
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Data Example 

theoretical experimental
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Real vs. numerial dispersion
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Surface waves summary
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 Elastic surface waves (Love and Rayleigh) in nature generally show
dispersive behavior (later we will see that there is also dispersive behaviour
due to numerical effects!)

 Surface waves are a consequence of the free-surface boundary condition. 
We thus might expect that – when using numerical approximations there
might be differences concerning the accurate implementation of this
boundary condition. 

 The accurate simulation of surface waves plays a dominant role in global 
and regional (continental scale) seismology and is usually not so 
important in exploration geophysics. 
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Reflection, Transmission
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Reflection and transmission at boundaries
oblique incidence - conversion
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P Pr
Sr

PtSt

P waves can be converted to S waves and vice versa. This creates a quite complex behavior of wave 
amplitudes and wave forms at interfaces. This behavior can be used to constrain the properties of the 
material interface. 

incoming P-wave

reflections

transmissions

Material 1

Material 2

Interface



Introduction Computational Geophysics and Data Analysis 24

Analytical solutions
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„delta“-generating function

Spatial (or temporal) source function

bc stands for boxcar
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Analytical solutions for acoustic wave equation (Green‘s function)
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Analytical solutions

27Computational Seismology



Introduction Computational Geophysics and Data Analysis 28

Seismic sources
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Radiation from a point double-couple source

Geometry we use 
to express the 
seismic wavefield 
radiated by point 
double-couple 
source with area A 
and slip Du

Here the fault 
plane is the x1x2-
plane and the slip 
is in x1-direction. 
Which stress 
components are 
affected?
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Radiation from a point source (Mzx=Mxz=M0)

… one of the 
most important 
results of 
seismology!
… Let’s have a 
closer look …

u ground displacement as a 
function of space and 
time

r density
r distance from source
Vs shear velocity
Vp P-velocity
N near field
IP/S intermediate field
FP/S far field 
M0 seismic moment
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Radiation from a point source (Mzx=Mxz=M0)

Near field term 
contains the 
static 
deformation

Intermediate 
terms

Far field terms: 
the main 
ingredient for 
source 
inversion, ray 
theory, etc.
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Elastic waves 2D
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Explosion Double couple
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Beachballs and moment tensor

explosion - implosion

vertical strike slip fault

vertical dip slip fault

45° dip thrust fault

compensated linear vector dipoles
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Translation, Divergence, Rotation, and all that (M4, 3km away)
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Source mechanisms

Basic fault types and 
their appearance in 
the focal 
mechanisms. Dark 
regions indicate 
compressional P-
wave motion. 
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Radiation patterns of a double couple point sources
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Far field P – blue
Far field S - red
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Seismic moment M0

AtuM )(0 ∆= µ

M0 seismic moment
m rigidity
<∆u(t)> average slip 
A fault area Note that the far-field 

displacement is proportional 
to the moment rate!
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Source time function
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Displacement, Velocity, Acceleration
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The superposition principle
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Discrete representation of finite sources
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Superposition principle
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The Earth (or a numerical solver) 
as a linear system
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Source-receiver 
reciprocity
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In other words
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Seismogram
through
random model

A B

A -> B

B -> A
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Time reversal – reverse acoustics
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forward

reverse
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Practical example – Valhall active experiment 
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Full waveform inversion – Inverse Problems
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Sirgue et al., 2010
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Summary

To understand seismic wave propagation the following concepts need to be 
understood:
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 The mathematical description of the deformation of an elastic 3-D 
object -> strain

 The forces that are at work for a given deformation and its (mostly 
linear!) dependence on the magnitude of deformation > stress –
strain relation

 The description of elastic modules and the various symmetry
systems (-> elasticicity tensor, isotropy, transverse isotropy, 
hexagonal symmetry). 

 The boundary condition required at the free surface (traction-free) 
and the consequences for wave propagation -> surface waves

 The description of seismic sources using the moment tensor
concept (-> double couples, explosions)

 The origin, scale, spectrum of material heterogeneities in side the
Earth (-> the reason why we need to resort to numerical methods)
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