
 
 
 
  
 

 
 

Refraction seismics – the basic formulae 
 
 

1. Two-layer case 
 
We consider the case where a layer with thickness h and velocity v1 is situated over a halfspace with 
velocity v2. A receiver is located at a distance ∆ from the source, which itself is located at the surface. 
What signals will we measure, if a seismic source is generating energy (e.g. an explosion)? Here we will 
only consider the direct waves, reflections and refractions but no take into account multiple 
reverberations which would be recorded in nature (but often neglected in the processing).  
 
The geometry of the problem looks like this: 

Refraction profile: 

i

Direct wave

Reflection

Refraction

Depth h

∆

Figure 1: Geometry of reflection/refraction experiment. There are three 
arrivals recorded at greater distances: the direct wave, the reflection from the 
discontinuity at depth h and the refracted wave. 
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Before we try to determine the structure from observed travel times we have to understand the forward 
problem: how can we determine the travel time of the three basic rays as a function of the velocity 
structure and the distance from the source. The most important ingredient we need is Snell’s law 
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relating the incidence angle i  in layer 1 with velocity v1 to the transmission angle i in layer 2 with velocity 
v2. Both angles are measured with respect to the vertical. Let us derive the arrival times for the three 
types separately: 
 
1.1 The direct wave 
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This is the easy one! In a layered medium the direct wave travels straight along the surface with velocity 
v1. At distance ∆ clearly the travel time tdir will be: 
 

travel time direct wave     1/ vtdir ∆=        (2)   

 
1.2 The reflected wave 
 
To calculate the reflected wave we need to do a little geometry. The length of the path  the ray travels in 
layer 1 is obviously related to the distance in a non-linear way. The travel time for the reflection is given 
by 
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In refraction seismology this arrival is often of minor interest, as the distances are so large that the 
reflected wave has merged with the direct wave. Note that this has the form of a hyperbola.  
 
1.3 The refracted wave 
 
As we can easily see from the figure above the refracted wave needs a more involved treatment. 
Refracted waves correspond to energy which propagates horizontally in medium 2 with the velocity v2. 
This can only happen if the emergence angle i2 is 90°, i.e. 
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where ic  is the critical angle.   So in order to calculate the travel time we need to consider rays which 
impinge on the discontinuity with angle ic. From elementary geometry it follows that the arrival time trefr of 
the refracted wave as a function of distance  ∆ is given by 
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which is a straight line which crosses the time axis ∆=0 at the intercept time tirefr  and has a slope 1/v2. 
 
1.4 Travel time curves – the forward problem 
 
Now we can put things together and calculate – for a given velocity model – the arrival times and plot 
them in a travel-time diagram. Example:  
 
The model parameters are: 

 
h=30km 
v1=5km/s 
v2=8km/s 

 
This could correspond to a very 
simple model of crust and upper 
mantle and the discontinuity would 
be the Moho. The distance at 
which the refracted arrival 
overtakes the direct arrival can be 
used to determine the layer depth. 
According to ray theory there is a 
minimal distance at which the 
refracted wave can be observed, 
this is called the critical distance 
(see below). 
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Figure 2: Travel-time diagram for the two-layer case. 
 

 



 
 
 
 
1.5 Critical distance and overtaking distance  
 
Two concepts are useful when determining the depth of the top layer. The critical distance is the 
distance at which the refracted wave is first observed according to ray theory (in real life it is observed 
already at smaller distances, this is due to finite-frequency effects which are not taken into account by 
standard ray theory). The critical distance ∆c is from basic geometry 
 

critical distance       cc ih tan2=∆            (5) 

 
where the critical angle ic is given by equation (4).  If we equate the arrival time of the direct wave and 
the refracted wave and solve for the distance we obtain the overtaking distance. It is given by 
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1.6 Determining the structure from travel-time diagrams: the inverse problem 
 
The problem: determine the velocity depth model from the observed travel times (Figure 2). We proceed 
as follows: 
 

a. Determine v1 from the slope (1/ v1 ) of the direct wave. 
b. Determine v2 from the slope (1/ v2 ) of the refracted wave. 
c. Calculate the critical angle from v1 and v2. 
d. Read the intercept time ti from the travel-time diagram. 
e. Determine the depth h using equation (5), thus 
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      or 
 
f. Read the overtaking distance from the travel-time diagram, and calculate h using equation (6). 

 
 
2. Three-layer case 
 
The three layer case is important for many realistic problems, particularly for near surface seismics, 
where often a low velocity weathering layer is on top of the bedrock. In principle we follow the same 
reasoning as before but through the additional layer the algebra is a little more involved. We have to 
introduce a slightly different nomenclature to take into account the different layers. The incidence angles 
will have two indices, the first index stands for the layer in which the angle is defined and the last index 
corresponds to the layer in which the ray is refracted (see Figure 3). The equation for the direct waves is 
of course the same as in the two-layer case. The same is true for the refraction from layer 2 but we 
show it to demonstrate the nomenclature.  
 
2.1 The refraction from layer 2 
 
The  arrival time t2 of the refraction from layer 2 is given by  
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and - using the intercept time from the diagram - will allow us to determine the depth h1 of the topmost 
layer. 
 



Refraction profile 3-layer case 
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Figure 3: Geometry of 3-layer refraction experiment. 
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2.2 The refraction from layer 3 
 
Due to Snell's law we have  
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we use this relation and basic trigonometry to derive the arrival time t3 of the  refracted wave in layer 3 
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and again this is a straight line with the intercept time ti3 which can be read from the travel time diagram.  
 
 
2.3 Determining the velocity depth model for the 3-layer case  
 
As before our data is a diagram with the travel-times of the direct wave, the refraction from layer 2 and 
the refraction from layer 3 (provided we were able to read the arrivals in the seismograms). To 
determine the velocities and the thicknesses of layers 1 and 2 we proceed as follows: 
 

a. Determine the velocities v1-3 from the slopes (1/v1-3) in the travel-time diagram. 
b. Read the intercept time ti2 for the refraction from layer 2. 
c. Determine thickness h1 - using equation (8) such that  
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d. Read the intercept time ti3 for the refraction from layer 3. 
e. Calculate with the already determined values h1  an intermediate intercept time t* 

 



1

1313* cos2

v

ih
tt i −=    , where     

3

1
13 arcsin

v

v
i =               (12) 

 
f. Using t*  calculate the thickness  h2 of layer 2  
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Figure 4: Travel-time diagram for the 3-layer case

 
 

In the model shown in Figure 4 the velocites are v1=3.5km/s, v2=5km/s, v3=8km/s. The layer thicknesses 
are h1=10km and h2=25km.  
 
 
3. Reduced time 
 
In refraction seismology as well as in global seismology we often find travel-time diagrams where 
reduced time is used. In principle this means that the refraction arrival of interest is approximately 
horizontal in the travel-time diagram. This can be achieved by doing the following transformation 
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where vred is the reduction velocity. How can we determine the real velocity from the travel-time 
diagrams in reduced form?  
 

a. Choose a distance ∆0 and read the reduced travel time tr0 from the diagram for the desired 
arrival. 

b. Calculate the velocity using 
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where ti is the intercept time. Note that the intercept time does not change when using  
reduced time! 

 
 
 

   

Figure 4: Travel-time diagram for the 3-layer case in reduced form for the
same model as before.
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To determine he velocity-depth structure from a travel-time diagram in reduced form you can - after 
having calculated the real velocities using equation (15) - follow the steps given in section 2.3. 

 
 
 
 
 



 
4. Inclined 2-layer case 
 
So far we have only considered plane layers with no structural variation along the profile. In this chapter 
we consider the case where a high-velocity layer is inclined with an inclination angle α (see Figure 5). 
The most important difference to thw previous examples (2-layer and 3-layer cases) is, that we now 
perform two experiments, one shooting at the near end and one shooting at the far end of the region of 
interest. Note that for the previous examples - due to symmetry - we would have observed the same 
travel time curves. For the case of an inclined layer this is no longer the case! 
 

 
 

Let us develop the forward problem, i.e. calculating the travel times of the direct and refracted waves for 
a given model. With seismic velocities v1 and v2 and inclination angle α the travel time of the refracted 
waves are 
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where the (-) sign stands for the refracted arrival with smaller intercept time and the (+) sign for the 
refraction with larger intercept time, ic is the critical angle at the interface and h+  and h- are defined 
according to Figure 5. Note that - as in all previous cases - the arrival of the direct wave is at time 
tdir=∆/v1. An example for the travel time curves that will be observed for a model with α=8deg, 
v1=1.2km/s and v2=4km/s is shown in Figure 6.  
 
But how can we determine the model properties from the observed arrival times (the inverse problem)? 
Here is how you should proceed: 
 

a. Determine the velocities v1 and v2
+/-

 from the slopes in the travel-time diagram. 
b. Use the following relations to determine α and v2: 
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c. Read the intercept times ti

+ and ti
-
 from the travel time diagram. Determine the distances 

from the layer interface as 

c

c

i

tv
h

i

tv
h

i

i

cos2

cos2

1

1

+
+

−
−

=

=
 

 
d. You can now graphically draw the layer interface by drawing circles around the profile ends 

with the corresponding heights h+/- and tangentially connecting the circles at depth.  
 

 


