Seismic Tomography: Example of a geophysical inverse problem

Dr. Karin Sigloch (karin.sigloch@lmu.de) Theresienstr. 41, Zi. 445

- 1. What is an inverse problem?
- 2. A real-world example: tomography of the Earth's mantle under North America
- 3. How does it work?

Q: What is an "inverse problem"?

A: An indirect measurement.

We want to measure some important "EARTH_PROPERTY"
 (e.g., seismic velocity v(x)), and have no tools to do it.
Instead we know how to measure some other property called
 "DATA" (e.g., traveltime delays dT)
And we know some phys./math. relationship "MAPPING_FCT",
 so that:
DATA = MAPPING_FCT(EARTH_PROPERTY)

If we are able to find an *"inverse function" MAPPING_FCT-1* so that EARTH_PROPERTY = MAPPING_FCT-1(DATA), then the problem is solved.

Seismic tomography Folie 2

www.geophysik.uni-muenchen.de -> Studium -> Vorlesungen

Seismology

EARTH_PROPERTY: as a function of space (x,y,z), e.g., P-velocity or intrinsic attenuation, or rock composition

DATA: Seismograms (and data dreived from them, like traveltimes, amplitudes...) at discrete points at the surface

MAPPING_FCT: wave equation (or some approximation to it, like rays from Snell's law)

Medical Imaging: Computed Tomography

- EARTH_PROPERTY: structure of tissue in the human body
- DATA: X-ray imaging in multiple plane -- by how much do x-rays get attenuated?
- MAPPING_FCT: wave propagation and attenuation (optics, geometrical ray approximation)

Folie 5

Inverse problems are common (also outside geophysics)

Medical Imaging: Computed Tomography

www.geophysik.uni-muenchen.de -> Studium -> Vorlesungen

Planetary Science:Composition of a Jupiter moon

EARTH_PROPERTY: density as function of x,y,z DATA: gravity measurements: deflection of a satellite upon its fly-by MAPPING_FCT: Newton's law of gravity

Common theme: measure interior properties from the outside...

...but not all inverse problems are like that...

Borehole seismics:

EARTH_PROPERTY: shallow earth properties (velocity, density, attenuation,...) as a function of depth DATA: hydrophone recordings inside the borehoel MAPPING_FCT: wave equation: reflections

Environmental remediation/hydrology:

EARTH_PROPERTY: source location(s) and quantity of contaminants
DATA: contaminant sensors in several deep holes around a chemical factory
MAPPING_FCT: diffusion equation/transport in porous media

Summary: What is an inverse problem?

We are unable to directly measure an interesting EARTH_PROPERTY.

Instead we measure some other DATA, because we know how to derive/compute a physical relationship MAPPING_FCT so that:

DATA = MAPPING_FCT(EARTH_PROPERTY)

We try to find the "inverse" MAPPING_FCT⁻¹, so that

EARTH_PROPERTY = MAPPING_FCT⁻¹(DATA)

A realistic experiment: Seismic tomography of the Earth's mantle

Geophysicists' mission: Discover **new** things about the Earth.

If it is a good problem then many other people (geologists, geodynamicists, economists, etc.) will be interested in the results.

Imaging the subducted Farallon plate under North America

The Farallon plate 140 Myr ago...

140 Ma (135-145)

...and 80 Myr ago...

80 Ma (74-85)

...and today.

PRESENT (0-5)

150 million years of textbook-like subduction?

A single large plate has been subducting beneath the North American west coast for 150+ million years. No significant interference from other plates.

Ren et al 2007, after Engebretson 1985

A simple story? Yes, but.

Extensive mountain building and volcanism far inland (since ~70 Myr). Not a "conventional" volcanic arc.

Why is the North American Cordillera so wide and stands so high?

The "Laramide orogeny": Rapid uplift, far inland at ~70 Myr ago 75 Myr ago 65 Myr ago

A shallow inland sea covers the Rocky Mountain area

Laramide orogeny (70-50 Myr): basement uplift by thrust faulting, volcanic arc along trench has shut off. 17

graphics: Blakely (online)

Geologists' explanation: Laramide thrust faulting was caused by anomalously flat subduction

...but Western North America has stood high ever since.

NASA satellite photo of Western U.S.; mountains are from Laramide times⁹

Our tomographic experiment

637 earthquake sources

1125 broadband receivers (seismometers)

•We use teleseismic P-wave seismograms from large earthquakes (magnitude >= 5.8, 1990-2007)

•Many new USArray stations in Western U.S since 2005⁹⁰

Tomography step by step

Result: 3-D model of P-wave velocities under North America

Locations of interesting cross-sections

The big picture: Not one, but two episodes of whole mantle subduction

25

Image of the subducted Farallon slab in the mantle

•Seismically fast material is contoured (fast means cold).

- •Color signifies depth. We can confidently image ~1500 km deep.
- •Crust and lithosphere not rendered.

Interpretation: a frontal plate break ended the Laramide era at ~50 Myr

•F1 must have been part of the Laramide flat slab. It still fills the transition zone.

Lower end of S2/N2 subducted ~55 Myr ago.

27

Interpretation: a frontal plate break ended the Laramide era at ~50 Myr

How does this work?

Some intuitive examples...

Seismic tomography Folie 29

www.geophysik.uni-muenchen.de -> Studium -> Vorlesungen

Surface waves (of a certain frequency) have sampled the shallow mantle of North America, along the shown raypaths.

Your prior guess is that traveltime ~ length of ray, meaning v(x,y)=v₀ = const. everywhere.
In reality you observe anomalies in the traveltime DATA: Red ray means traveltime was longer than expected.
Blue ray means traveltime was as expected.

Red rays must have traversed some slow material. Where exactly is is located?

Idea: Consider ray crossings

Idea: Consider ray crossings

It worked pretty well.

recovered area

true area (was used to generate the colored rays)

Why is the reconstruction not perfect?

Seismic tomography Folie 34

www.geophysik.uni-muenchen.de -> Studium -> Vorlesungen

Image reconstruction

original image

We smear the image in horizontal direction (like an x-ray integrates over different body tissues along its path)

Image reconstruction: Generating "DATA"

We smear over more directions to simulate more x-ray "data": what rays "see" from all these different angles

Now we try to reconstruct the image (principle of destructive/constructive interference):

Addition of two directions of the "data"

Addition of all 8 directions of the "data"

Seism

Reconstruction result

Original Reconstruction How could we improve on this?

Acoustic tomography:

A few bricks are standing next to each other. To first order they all have the same, known Pvelocity v_0 (or slowness $u_0 = 1/v_0$), except for small variations: $u_i = u_0 + \Delta u_i$, where $\Delta u_i << u_0$ We want to estimate the small anomalies Δu_i

$$u_0 + \Delta u_1$$
 $u_0 + \Delta u_2$ $u_0 + \Delta u_3$

Seismic tomography Folie 39

Acoustic tomography:

Blocks are x wide and y high. Traveltime: $t_1 = u_1 s_{11} + u_2 s_{12} + u_3 s_{13}$ Traveltime anomaly: $\Delta t_1 = \Delta u_1 s_{11} + \Delta u_2 s_{12} + \Delta u_3 s_{13}$ The s_{ij} can be computed from the given geometry (general case = Snell's law!)

x
y
$$u_0 + \Delta u_1$$
 $u_0 + \Delta u_2$ $u_0 + \Delta u_3$
s₁₁ **s**₁₂ **s**₁₃ **t**₁, Δ**t**₁

Seismic tomography Folie 40

Acoustic tomography:

Linear system: two equations, three unknowns Matrix notation:

Acoustic tomography:

For full rank: two equations, two unknowns. Full rank means: Matrix notation (and its inverse):

Acoustic tomography:

Does this system have full rank? How many measurements M need to be made for the matrix to have an inverse?

Acoustic tomography: How about these geometries?

Ideally, each measurement should contribute as much new information as possible ("independent" measurements --> experiment design)

www.geophysik.uni-muenchen.de -> Studium -> Vorlesungen

Parameterizations of the unknowns (grid)

Coarse parameterization in blocks; few unknowns

٧S.

Complex parameterization (irregular tetrahedra, 10⁵ unknowns

Source and receiver geometry

Optimally designed sourcereceiver geometry

۷S.

"Take what you can get" -->

Signals and wave propagation modeling

Sharp pulses modelled as optical rays

۷S.

Realistic wavelets with broad Fresnel zones -->

Seismic tomography Folie 47

www.geophysik.uni-muenchen.de -> Studium -> Vorlesungen

System to solve

Small sytem, well conditioned, exactly determined

VS.

Huge system, ill conditioned, both underdetermined and overdetermined

ART OF TOMOGRAPHY: Finding smart ways to solve this anyway.

