

Roadmap	
Earthquake Source Inversion	
 (1) Introduction & Theory A brief overview Fundamentals From point-source to extended-fault modeling 	
 (2) Applications & Implications Case studies: early developments What to learn from these source models? What can be extract from them? 	
 (3) Challenges, Developments, Opportunities Imaging versus inversion, or combination of both? Alternative methods Uncertainty quantification 	
P. Martin Mai – Earthquake Source Inversion	2

New Developments
SIV Comparisons: More quantitative
Multi-dimensional scaling
 Generate an <i>m</i>-dimensional configuration in Euclidian space based on (dis-)similarity between pairs of 2D random fields (e.g. slip models)
 Visualize these point-configurations in a lower-dimensional (2D, 3D) representation
Method:
 Construct matrix <i>D</i> with elements that measure dissimilarity (SE, AE, or other)
 Construct matrix <i>B</i> from <i>D</i>, by double-centering <i>D</i> (for symmetry purposes)
- Apply SVD to B , such that $\mathbf{B} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$
- Select <i>n</i> -points in <i>p</i> -dimensional space from $x_{ij} = V_{ij} \lambda_i^{\frac{1}{2}}$, $i = 1 n, j = 1 p$
 Coordinates of x are constructed such that either a mean-model is the reference, located then in the center of the point cloud, or that any selected model (known solution) becomes the reference
P. Martin Mai – Earthquake Source Inversion 48

<u>nv1</u> : comp	ari	son o	f simp	le s	sca	lar m	easure	es fo	or no	w	10	mo	odel	s		
-	Ben	chmark id: i	inv1													
scalar metrics	Sca	lar source-m	odel metrics fi	or the c	differen	t solutions										
multi-dimensional scaling	SN Solution		Mo (Nm)	Mw	Max. Slin	dz,dx	Dimensions (km)	Eff. Dimensions		Slip Centroid (km)			Waveform misfits x 100			
spatial prediction					(m)		Width Length	Width	Length	Xc	Yc	Zc	1-Norm 2-Norm		RMSE	%VR
comparison test	1	SIVdata	1.060e+19	6.65	1.87	0.50, 0.50	18.48 36.50	11.18	23.34	1.37	1.97	11.66	0.0	0.0	0.0	100.0
	2	causse	9.740e+18	6.63	1.33	2.50, 2.50	19.98 35.00	12.84	23.89	0.30	-1.97	14.94	340.3	9.8	0.9	56.3
	3	fsg	1.200e+19	6.69	1.86	0.50, 0.50	18.00 36.00	12.20	23.96	1.32	1.97	11.68	207.7	9.4	0.7	65.1
	4	gallovic	8.700e+18	6.59	0.91	1.00, 1.00	20.00 35.00	13.10	23.34	0.64	-1.94	12.00	*	*	*	
	5	gallovic2	8.700e+18	6.59	1.55	1.00, 1.00	20.00 35.00	13.60	23.42	1.28	-2.14	13.16	12.3	0.1	0.3	94.4
	7	bobyt	1.100e+10	8.69	3.22	4.00.3.00	20.00 35.00	14.05	25.76	0.94	-1.94	15.26	223.6	30	0.5	76.2
	8	hobyt	1.100e+19	6.71	2.38	4.00, 3.00	20.00 39.00	15.21	20.75	0.04	2.00	14.52	223.5	3.9	0.5	81.6
	9	hobyy3	1.300e+19	6.71	2.15	4.00, 3.00	20.00 39.00	15.59	30.02	-0.33	2.06	15.62	204.4	3.0	0.5	81.6
	10	somala	1.060e+19	6.65	6.22	0.34, 0.25	17.42 35.25	12.88	23.40	1.75	-2.06	12.00	171.8	4.5	0.5	82.1
	11	somala1	1.060e+19	6.65	2.11	0.35, 0.50	10.01 34.50	7.56	24.55	1.14	-1.93	11.27	97.3	0.3	0.2	95.2
	11 • 1 2 0	somala1 The table lists 2/3*(log10(Mo) listribution foll und z)	1.060e+19 s standard para) - 9.05). The lowing Mai and	6.65 ameters effectiv Beroza	2.11 s of the ve sour a (2000	0.35, 0.50 e source. M ce dimensio). The slip o	10.01 34.50 o refers to sels ons (or Eff. Dim entroid (Xc, Yc,	7.56 mic mom tensions) , Zc) is es	24.55 ent. Mon is comp timated a	1.14 nent ma uted fro is slip-v	-1.93 agnitude om auto veighte	Mw is correlat	97.3 computition width	0.3 ed as Me h of the dinates (a	0.2 w = slip x, y,	95.2
	1	he misfit met -Norm (sum 2-Norm (sum	rics given below of average abs of squares of th	w are co oluture ne error	ompute errors) s) = Σ()	d for each w = $\Sigma y_i - f(x_i)$ $\frac{y_i - f(x_i)^2}{f(x_i)^2}$	aveform data a	nd averag	ed for all	the con	nponen	ts.				

New Developments

Some General Conclusions

Source Inversion Validation

- Through a series of benchmarks we aim at being able to discriminate "strong" source-inversion methods from "weak" ones, and to identify where deficiencies could be
- The project & efforts are ongoing, but already have been used to develop and test new methods, or to 'calibrate' existing ones

Quantitative Source Model Comparison

- The Spatial Prediction Comparison Test (SPCT) seems to be a useful tool to quantify how well a given 2D field (slip model) "fits" a reference solution
- Using a multidimensional scaling approach allows to further quantify in which sense the models are different (amplitude; patch location ..), and to propose some form of ranking for the models

P. Martin Mai – Earthquake Source Inversion

57