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Abstract

The elastic wave equation in spherical coordinates is solved on a spher-
ical section by a Chebyshev spectral method. In the presented algorithm
the singularities in the governing equations are avoided by centering the
physical domain around the equator. The highly accurate pseudo-spectral
(PS) derivative operators reduce the required grid size compared to finite-
difference (FD) algorithms. The non-staggered grid scheme allows easy
extension to general material anisotropy without the additional interpo-
lations required in staggered FD schemes. The boundary conditions pre-
viously derived for curvi-linear coordinate systems can directly be applied
to the velocity vector and stress tensor in the spherical basis. Such tech-
niques will be important to model the full 3-D characteristics of upper
mantle structure and to provide accurate reference solutions for 3-D global
models.
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1 Introduction

Understanding the global structure and geodynamical features of the mantle is
one of the most important goals in seismology today. To understand the mass
flux into and out of the mantle requires a detailed knowledge of the structure



of subduction zones, hot spots, upper mantle discontinuities, etc. Much of the
current imaging and modelling of 3-D mantle structure is undertaken using ray-
based approximations or long-period seismograms involving other (linearised)
approximations. These approximations are not valid when the wavelengths of
the propagating wavefield are of the same order as the structures of interest.
In such cases it is important to consider scattering effects, which may contain
valuable information. Modern high-quality broad-band recordings contain infor-
mation which is currently not accounted for by essentially ray-based modelling
algorithms. Therefore the development of forward modelling tools which sim-
ulate a 3-D Earth with high enough frequencies is an important step towards
solving some of the current geodynamical problems.

In the past decade discrete grid methods have been widely used in the field
of seismic wave propagation. Early algorithms (e.g. Virieux, 1984, 1985) solved
the equations in two dimensions using low-order approximations to the space
and time derivatives. Later those algorithms were extended to higher orders
(e.g. Levander, 1988), to 3-D (e.g. Mora, 1989) and to the general anisotropic
case (e.g. Tgel, Mora, and Riollet, 1995; Tessmer, 1995).

An alternative to the local derivative operators of FD schemes is provided by
pseudo-spectral (PS) techniques. PS methods have been widely used in numeri-
cal algorithms for wave propagation, computational fluid dynamics and in other
fields. For fundamentals on pseudospectral methods the reader is referred to the
excellent book by Fornberg (1996). Previous applications to wave propagation
problems can be found in Kosloff et al. (1990), Kosloff and Tal-Ezer (1993), Car-
cione and Wang (1993), Carcione (1994), Tessmer and Kosloff (1994), Tessmer
(1995), Komatitsch, Coutel, and Mora (1997).

In PS techniques the space-dependent fields are expanded in a set of orthog-
onal basis functions which are known exactly at a discrete set of points. For
example, these basis functions can be Fourier series (regular grid) or Chebyshev
polynomials (non-uniform grid defined between [-1,1] with denser grid at the
boundaries). The PS techniques have the advantage that the space derivatives
can be calculated with high numerical precision. The Chebyshev method fur-
thermore allows an implementation of boundary conditions (e.g. traction-free,
or non-reflecting) with the same accuracy as within the medium. This is a prob-
lem with the FD method, where boundary conditions are usually implemented
with lower accuracy than inside the medium. The drawback of the PS technique
is that due to the length of the derivative operator more numerical operations
are needed. However, the overall performance of FD and PS methods - assuming
the same accuracy - are similar, depending mostly on hardware.

One major advantage of the PS technique is in connection with anisotropy.
While staggered grids are to be preferred in FD algorithms, they are not re-
quired with the PS technique. Since staggering requires that elements of stress,
strain, and stiffness tensor to be defined at different locations, Hooke’s law forces
(numerical) interpolations to be carried out in the general case, degrading the
overall accuracy (Tgel et al., 1995).



In this paper we propose a solution to the elastic anisotropic wave equa-
tion for spherical sections using the Chebyshev method. This can be seen as
a special case of the more general formulation by Carcione (1995) for gener-
alised coordinates. However, the direct implementation of the wave equation in
spherical coordinates is far more convenient than in a cartesian frame. Further-
more, it will allow the addition of small perturbations to the spherical grid (e.g.
ellipticity, surface topography, topography of internal boundaries) by defining
appropriate stretching functions.

2 The Wave Equation

Following the approach of previous authors (e.g. Virieux, 1986; Carcione, 1994;
Tessmer, and Kosloff, 1994; Tessmer, 1995) we write the governing equations as
a first order system. We denote by ;; and v; the elements of the stress tensor
and velocity vector, respectively. In general form the equations of motion are

Oy = V(o5 + M)+ fi
Ovoij = cijridient (1)

where ¢;;; are the elements of the stiffness tensor and M;; are the elements of
the source moment tensor, f; being volumetric forces.

In spherical coordinates [r, 8, ¢] these equations (time and space dependence
implicit) take the form (e.g. Lapwood and Usami, 1981, p. 28 and p.78)
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where the elements ¢;; of the strain tensor are given by
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In the isotropic case, the stress-strain relation is

Orr = AN+ 2pep, + My

oos = AA+ 2uegg + Mpy

Top = A+ 2ucpp + My,

org = 2perg + Mg

Oppo = 2pegy,+ My,

Orp = 2pérp+ My, (4)

where A and g are the Lamé parameters and A = ¢, + €gg + €.
In the following section we describe the numerical solution to these equations.

3 The Numerical Algorithm

3.1 Physical and Computational Domain

To solve the equations described in the previous sections, all space-dependent
fields are defined on a curved grid, a spherical section, as illustrated in Figure
1. In each dimension j, the fields are defined on the Chebyshev collocation
points z! = cos(im/N7),i = 0,..., N/, where N7+1 is the total number of grid
points along dimension j. This non-uniform discretization leads to decreasing
grid spacing at the boundaries. Since, by the stability criterion, this requires
unreasonably small time steps, stretching is applied in all dimensions to improve
the performance of the algorithm. Such stretching functions are described in
Kosloff et al. (1990), Kosloff and Tal-Ezer (1993), and Carcione and Wang
(1993). Tt allows time steps of order O(N ~1) rather than O(N ~2) in the original
Chebyshev discretization.

The singularities in the governing equations are avoided by centering the
spherical section around 6 = 7/2. Clearly, the effective grid spacing becomes
smaller with decreasing . The depth extent of the model should be carefully
designed for the particular application to avoid time increments which are too
small.



3.2 Space Derivatives and Time Extrapolation

In all spatial dimensions the derivatives are evaluated with the Chebyshev
derivative operator (e.g. Fornberg, 1996). The derivatives can be evaluated
either by matrix-matrix multiplication (MMM) or the Fast-Fourier Transform
(FFT). In the three-dimensional case the number of grid points per axis is rather
small (e.g. < 200). We find that in this case the MMM outperforms the FFT,
which is in accordance with the results reported by Fornberg (1996).

The time extrapolation is carried out by a fourth-order Runge-Kutta method.
An algorithm similar to the one described in this paper - for the two-dimensional
cartesian case - is described in Carcione and Wang (1993).

3.3 Boundary Conditions

Since we are modelling only a section of the sphere we want to omit reflections
from the sides of our physical domain except the outer surface. The great
advantage of the Chebyshev method in comparison to low or high-order finite-
difference methods is the implementation of absorbing and free-surface boundary
conditions with spectral accuracy.

Boundary conditions for the Chebyshev method have previously been derived
using the concept of characteristic variables (Gottlieb, Gunzburger, and Turkel,
1982). A discussion on the derivation of these boundary conditions can be found
in Carcione and Wang (1993), Carcione (1994), and for the general anisotropic
case in Tessmer (1995). Tn curvi-linear coordinates the vectors and tensors have
to be rotated into a system normal to the particular boundary. Clearly, we are
already using the rotated fields and can therefore directly apply the boundary
conditions originally derived from the cartesian equations by a one-dimensional
analysis.

For example, the free surface condition at » = 6371km requires that o, =
org = 0rp, = 0. Denoting the corrected boundary values by superscript "%,
this condition can be satisfied by
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where the superscript °/? denotes the values obtained after applying the opera-
tors within the medium. The only variable which remains unchanged is o,

At the bottom and all the side boundaries we apply non-reflecting boundary
conditions. Using the same notation as above, the condition at the bottom
boundary at r = ry,;, reads
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The accuracy of the implementation of the boundary conditions depends on
the grid spacing near the boundaries. The stretching functions applied to each
dimension have to be carefully designed to avoid inaccuracies near the bound-
aries. Appropriate parameters are discussed in Carcione and Wang (1993).

4 Numerical Examples

To demonstrate the feasibility of this algorithm we first compare it with a finite-
difference (FD) solution and then simulate a dip-slip earthquake in a simplified
high-velocity slab geometry.

4.1 Comparison with Finite Differences

To address the accuracy of the presented algorithm we compare seismograms
calculated with the PS technique to FD seismograms. The FD seismograms are
calculated with the P-SV algorithm for wave propagation in spherical coordi-
nates with rotational symmetry (Igel and Weber, 1996). This code has previ-
ously been compared and verified with other solutions within the COSY project
(Tgel, Geller, and Romanowicz, 1997). The symmetry of the P-SV algorithm



limits the sources to those with rotational symmetry (e.g. explosions or vertical
forces). The PS calculations were carried out on a 100x100x100 grid for a 50°x
50°x 3000km section. Seismograms are obtained at arbitrary locations at the
surface by interpolating between adjacent grid points. The depth of the explo-
sive source is 600km. To avoid numerical artefacts the source is distributed by a
spatial Gauss function with 75km halfwidth. The seismograms are filtered with
a cut-off at 15 seconds period. We compare vertical components calculated for
an isotropic model (v,=13km/s, v;=6.5km/2). Results at epicentral distances
between 1°and 25%are shown in Figure 2. There is excellent agreement between
FD and PS results. The rms-difference between the two solutions calculated in
a window of two dominant periods is less than 0.1%.

4.2 Slab Simulation Parameters

For the slab simulation the spherical section is defined on a 80x80x50 grid (lon-
gitude, latitude, depth, respectively). The physical domain is 80°x 80°wide at
the surface and the depth range is 5000km. The angular domain is centered
around # = 90° and ¢ = 130°. Thus at the surface the grid spacing is ap-
proximately 100km in each dimension. Towards the bottom boundary the grid
spacing decreases to a minimum 10km. 3000 time steps with an increment of
0.25 seconds lead to a total recording time of 750 seconds. The dominant period
of the source-time function is 50 seconds.

The background spherically-symmetric model is the isotropic part of PREM
(Dziewonski and Anderson, 1981). The high-velocity perturbation is 10°x 4°wide
and 700km deep. The velocities and densities are 5% larger inside the slab with
respect to PREM.

4.3 Results

Figures 3 shows snapshots of wave propagation at the Earth’s surface 550 sec-
onds after the source origin time. The source is a pure dip-slip at 600km depth.
Snapshots are shown for the spherically symmetric background model. The ef-
fective action of the absorbing boundaries can be seen in the snapshots. The
strong azimuthal variation of the wavefield is due to the source radiation pattern.

Wave motion inside the Earth’s mantle is shown in Figure 4 in sections of
constant ¢ and 6. In Figure 4, top, the SH part of mantle wave propagation
is shown, where motion is confined to the mantle and the wavefield is totally
reflected at the core-mantle boundary. The amplitude of the surface reflections
is stronger than those of the downward (and subsequently reflected) signals.
This is because the smaller velocities near the Earth’s surface have caused them
to propagate a shorter distance. In Figure 4, bottom, the radial part of the
wavefield is shown and both S and P waves can be seen, including a converted
P wave propagating inside the outer core.



The seismograms for the spherically symmetric background model PREM
are shown in Figure 5 for various velocity components and receiver profiles.
The ray-theoretical arrival times of the phases P, sP, and S are indicated.
The differential seismograms for the slab model obtained after subtracting the
PREM seismograms are shown in Figure 6. The slab mainly affects the waves
recorded at small epicentral distances propagating vertically upwards (through
the slab). At larger distances the slab seems to affect later arrivals more than
the direct waves.

5 Conclusion

We present a numerical algorithm for solving the elastic wave equation in spher-
ical coordinates on a spherical section using the PS method based on Chebyshev
polynomials. With the high accuracy of modern broad-band recordings, accu-
rate forward modelling algorithms for 3-D structures will play an important role
in understanding and interpreting fine details in the recorded wavefields. The
more and more detailed regional seismic velocity images obtained from tomog-
raphy will soon allow us to focus on dynamic rather than kinematic effects.

The potential of this approach is in its accurate handling of boundary con-
ditions (free surface or absorbing). Tt will allow us to study full wave effects of
3-D heterogeneous structures (subduction zones, hot spots, lowermost mantle
structure (D”), etc.) on various length scales in a spherical system. Furthermore
the centered scheme allows modelling of generally anisotropic structures.

Because 3-D algorithms will have to rely on relatively coarse grids for some
time, the spherically symmetric background model may not be well represented
by an arbitrary discretization in depth. This could be avoided by implementing
a multi-domain solution, where the different domains may represent depth sec-
tions between major discontinuities. The domains could be connected applying
the boundary conditions for discontinuities in welded contact. This is work in
progress.
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Figure 1: Physical domain for 3-D simulations. The angular range in ¢ and 6
is 80°. The section is centered around the equator. The radial range is 1371km
<r < 6371km.
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Figure 2: Comparison of radial velocity components calculated with FD (left
traces) and with PS (right traces) for an explosion source at 600km depth. The
model is isotropic (see text), sampled at an (average) interval of ~30km. The
dominant period is ~&230 seconds.
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Figure 3: Top: The vy component of velocity as observed at the surface for a
source at 600km depth. The only non-zero element of M;; is M,s = 1, corre-
sponding to a pure dip-slip source. Coastlines are added to show the scales in-
volved. The epicenter location is indicated by a star. The high-velocity anomaly
below the box ranges to a depth of 700km. Bottom: The v, component of ve-
locity at the surface for the same source.



Figure 4: Left: Velocity component v, along § = 90°. This is the SH part of the
wavefield. In this plane, motion is confined to the Earth’s mantle. Right: Veloc-
ity component vy along ¢ = 130°. A converted P wave can be seen propagating
in the outer core. The largest energy is in the developing surface multiples in
the upper mantle.
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Figure 5: Seismograms for simulations shown in the previous figures. Top: v,
component recorded along the #-axis at ¢=90°. Middle: v, component recorded

along the ¢-axis at #=130°. Bottom: v, component recorded along the ¢-axis

at 6=130°.
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Figure 6: Residuals Seismograms for simulations shown in the previous figures.
Top: v, component recorded along the f-axis at ¢=90°. Middle: v, component
recorded along the ¢-axis at §=130°. Bottom: v, component recorded along
the p-axis at #=130°.



