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Abstract

The spectral properties of upper-mantle velocity perturbations are
controversial. While global Farth models obtained by tomographic
inversion are characterized by the dominance of long-wavelength fea-
tures, results from regional tomography, and stochastic analysis of
travel times suggest the presence of more power at intermediate scales
than predicted by global models. We study frequency-dependent ef-
fects of long-period S and 55 waves of SH-type through random
upper-mantle models with specified spectral properties. Wave prop-
agation is simulated by a finite-difference approximation to the axi-
symmetric wave equation in spherical coordinates. For global models
with cylindrical symmetry and constant angular increment A# the use
of spherical coordinates leads to an effective lateral grid spacing (arc
length) decreasing with depth. This is contrary to the requirements of
global models with low velocities at the top of the mantle, which ne-
cessitate a dense grid spacing at small depths and a wider grid spacing
at the base of the mantle. We introduce a grid with depth-dependent
lateral grid spacing to overcome this inconsistency. Our simulations
suggest that (1) the properties of spatial power spectra of travel-time
fluctuations are frequency dependent; (2) power spectra of models ob-
tained from long-period tomography may underestimate the power at
intermediate scales; (3) frequency-dependent effects on the waveform
are sensitive to the scales and amplitudes of perturbations present in
the upper mantle.
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1 Introduction

Determining the spectrum of heterogeneities in the Earth’s mantle is impor-
tant to constrain the types of convection present in the mantle and to under-
stand the origin of modeled seismic-velocity anomalies. Spectral properties
of mantle structure can be estimated from three-dimensional (3D) models ob-
tained by global tomography or they can be estimated directly from observed
travel-time fluctuations. A detailed comparison of power spectra for different
global and regional models can be found in Passier and Snieder (1995). A
discussion of global mantle models is given in Ritzwoller and Lavely (1995).

The spectral properties of mantle-velocity perturbations determined by
various methods often differ substantially (Passier and Snieder, 1995). While
tomographic images obtained from global-data inversion suggest a sharp on-
set of spectral decay at harmonic degree [ ~ 8 (e.g. Su and Dziewonski,
1992; Zhang and Tanimoto, 1991, 1993; Pollitz, 1994) results from regional
tomography (e.g. Snieder, 1988; Zielhuis and Nolet, 1994; Spakman et al.,
1993) and stochastic analysis of travel times (Gudmundsson et al., 1990;
Davies et al., 1992) indicate that there is more power in intermediate-scale
heterogeneity than predicted by global inversions. These differences are at-
tributed to (1) varied effects of the inversion schemes (e.g. Laske, Masters
and Ziirn, 1994); (2) complexity of the regions where regional tomography is
carried out (Passier and Snieder, 1995); (3) filtering effects of finite-frequency
propagation on travel times (Gudmundsson and Cummins, 1994).

To understand frequency-dependent effects on the determination of spec-
tral properties we perform full-wavefield calculations for mantle models with
known spectral properties. The numerical method we use is an extension
of the finite-difference (FD) approach by Igel and Weber (1995, 1996) to
grids with depth-dependent, lateral grid spacing. Grid refinement near the
Earth’s surface considerably improves the performance of the FD algorithm
because (1) low velocities (small wavelengths) at the top of the mantle can
be sampled more efficiently, and (2) higher velocities in the lower mantle are
sampled less densely, improving stability.

The purpose of this paper is to present an FD algorithm with depth-
dependent, lateral grid spacing for global, toroidal wave propagation, to dis-
cuss its accuracy, and to simulate frequency-dependent waveform effects for
upper-mantle models with specified spectral properties.



2 Numerical algorithm

The algorithm presented in this paper is an extension of the high-order FD
scheme of Igel and Weber (1995) to grids with radially varying grid spac-
ing. The equations of motion in spherical coordinates r, 8, ¢ are solved for
wavefields and media invariant in ¢, thus rotationally symmetric with re-
spect to the axis § = 0. For spherical or polar grids with equal spacing in
the angular domain, the grid is coarse for large radii and dense near the
centre. This is contrary to what is required for global Earth models. The
velocities near the Earth’s surface are considerably lower than deeper within
the Earth and therefore require dense rather than coarse sampling. In addi-
tion, heterogeneities are clearly strongest in the lithosphere and uppermost
mantle (possibly with the exception of the lowermost mantle, D”) which
consequently should be sampled with a dense grid.

2.1 Theory

Assuming invariance in ¢ the equations for toroidal motion u,, are (e.g. Lap-
wood and Usami, 1981, sections 2.3 and 5.1)
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where p is the mass density, f, is a volumetric force, o;; are the components
of the symmetric stress tensor,
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1t being the shear modulus.

2.2 Discretization

All space dependent fields — stress, sources, and displacement — are defined on
a spherical, staggered grid. Staggered grids have been used widely in isotropic
(e.g. Virieux, 1984; 1986) and anisotropic (Igel et al., 1995) FD wavefield
calculations. In staggered grids, the elements of displacement, stress, and
strain are not defined at the same locations, allowing the first derivatives of
those fields to be centered in between grid points. Due to the antisymmetry



of the difference operator, this improves the accuracy of the finite-difference
calculation for a given space increment.

The spherical grid is shown schematically in Figure 1. The grid is defined
between the Earth’s surface and the core-mantle boundary (CMB). These
two boundaries are modeled as free surfaces. To implement this boundary
condition, the grid is extended L/2 + 1 levels above and below the physi-
cal boundary, L being the length of the FD differential (and interpolation)
operator.

In the toroidal case with constant grid spacing in both the angular and the
radial direction this leads to a consistent scheme without requiring additional
interpolations. However, to link the two domains with different lateral grid
spacing, interpolations are required at or around the depth of the grid change.

The free-surface boundary condition

0, = 0 atr = 6371km, and r = 3480km, (3)

is implemented by imposing symmetry of u, and antisymmetry of the o,
component with respect to the free surface(s).

As shown in Figure 1, the elements defined at § = 0 are the displacement
u, and the stress element o,,. At § = 0 the equation of motion are singular
and the displacement field can not be evaluated. However, by symmetry we
impose u, = 0,9 = 0. Analogous to the situation at the free surface the grid
is extended /2 + 1 points across the boundary # = 0 and the boundary
condition is imposed by anti-symmetry of both stress and displacement field.
The equivalent condition is imposed at the boundary 6§ = «.

The source region near § = 0 is schematically shown in Figure 2. Our
goal is to model point-source-like behavior. To achieve this, sources are input
at a grid point close to the axis of symmetry. A directional force would thus
result in a ring source (pure toroidal motion) with radiation pattern similar
to a strike slip source but with an amplitude behavior o cos? # rather than
cos . The radiation pattern of such a source is unrealistic. Nevertheless,
it allows us to study model-dependent wave phenomena where the source
radiation pattern is irrelevant.

The motivation for changing the angular grid spacing was given above.
Jastram and Tessmer (1994) and Rodrigues (1993) both introduced FD grids
with vertically varying grid spacing, condensing the (cartesian) grid near the
surface by a factor of 3. The stability of explicit FD algorithms is generally



of the form cmal,j—; < const., where ¢,,,, is the maximum velocity, and dt
and dx are time increment and grid spacing, respectively. Depending on
the actual velocity model, the time step has to be decreased in accordance
with the change in grid spacing to keep the same level of stability. We find
a change of lateral grid spacing by a factor of 2 optimal for global models
taking account of computation time.

The partial differentials and the interpolations are calculated by high-
order operators of length L. The weights of the operators were obtained
following the approach of Holberg (1987). The time evolution is carried out
by a Taylor expansion. Details of this type of FD algorithm applied to wave
propagation on a 3D cartesian grid can be found in Igel et al. (1995). In all
simulations carried out in this paper we use 8-point space operators (L = 8)
for both derivative and interpolation. The time extrapolation is accurate to
fourth order.

3 Comparison with other methods

3.1 Spherically symmetric media

Before applying our algorithm to arbitrarily heterogeneous models we com-
pare FD synthetic seismograms with those obtained by an eract method
(Direct Solution Method (DSM), Geller et al., 1994; Cummins et al., 1994)
for spherically symmetric media. The FD grid is divided into two domains
with depth ranges 0-320 km and 320-2891 km, with grid sizes 2048 x64 and
1028x 512, respectively. The angular domain is 0-7 and the time increment
is 0.3 seconds. The model is the isotropic part of PREM (Dziewonski and
Anderson, 1981).

In Figure 3 seismograms are compared for two epicentral distances at a
period of 20 seconds. The source (toroidal ring source) is at 200 km depth.
The overall agreement between the entirely different numerical techniques is
excellent. Small phase differences are attributed to the discreteness of the
FD grid, which can be suppressed by further grid refinements. The relative
amplitude of the phases as well as the waveforms are well modeled by the
FD approximation.

How does the grid refinement near the surface improve the performance of
the FD scheme? To demonstrate the performance of the suggested algorithm



we undertake a convergence test. We compare seismograms from three dif-
ferent simulations: 1. Reference seismogram obtained with a very dense grid
(5120%x1024); II: Seismogram for a 1024 x256 grid; I1I: same as 11, but with
a 2048x 32 refined grid at the top 360 km of the model.

The algorithm allows us to calculate the response of the model to a source
time function of the form

folr,0.t) = 6(60—0,) 6(r —ry) 6(t —t5) (4)

where we define the discrete delta functions as

5(9):{ 1/(r,df) at 6 =6,

0 otherwise

{ 1/dr  at r=r,

otherwise

bl

(1) = {1/dt at t=t,

0 otherwise

where dr and df are the space and dt the time increments, and #,, r,, and t,
are the source coordinates.

The resulting seismograms are later convolved with a source wavelet of
the desired frequency band. The wavelet is given by

S(t) = sin[nw

sin[(n + 2)7 4] | 0<i<T , (6

t] n
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T + 2
where n is the number of sides and T is the dominant period. In all our
simulations n = 2. This allows us to study the convergence of the FD solu-
tion to the correct solution as a function of grid size (e.g. with or without
refinement near the surface). In Figure 4 seismograms are shown for three
different dominant periods at a distance of 80° . At the considered frequen-
cies the seismograms obtained for the coarse grid are accurate for periods
>60 seconds while the grid refinement enables the calculation of accurate
seismograms down to a period of ~25 seconds. The increase of CPU time
for the simulation of type III with respect to type II was 30%. However, as
Figure 4 indicates, a substantial improvement in accuracy results.



3.2 Travel-time accuracy for 2-D model

A further demonstration of the accuracy is given by a comparison of travel
times derived from the FD seismograms with those obtained by the Huy-
gens method (Witte et al., 1996). The 2-D model is generated by adding
lateral perturbations to the isotropic part of PREM. The lateral S-velocity
perturbations are shown in Figure 5a. The perturbations are coherent down
to a depth of 250km where they are tapered to zero. The perturbations are
also zero in the vicinity of the axis # = 0 to avoid interference due to the
axi-symmetry of the model.

Travel times for the S (Sgg) phase from the FD seismograms were ob-
tained by maximizing cross-correlation between perturbed and unperturbed
seismograms for a period of 30 seconds. Comparison of the travel-time per-
turbations obtained by these different approaches are shown in Figure 5b.
The sampling rate of the FD seismograms is 2/3 seconds and the receiver
spacing is 1/3 degrees. The maximum difference between the ray-theoretical
and FD travel time is ~1 second.

Since the direct S (Sair) phase is arriving at a very steep angle, we expect
anti-correlation between velocity and travel-time perturbation, which can be
appreciated by comparing Figures 5a and 5b.

The accuracy of our algorithm as far as waveforms and travel times are
concerned gives us confidence that we can apply our FD method to study
finite-frequency amplitude and waveform effects.

4 Spectra of mantle models

The aim of this study is to investigate the frequency dependence of travel
times and waveforms of S and S5 waves for upper-mantle models with var-
ied power spectra and the implications for the scale of mantle heterogeneity.
A schematic representation of the power spectrum of mantle-velocity per-
turbations is shown in Figure 6. The two types of spectra shown in this
Figure (type I and type II) represent extreme cases of Passier and Snieder
(1995). They showed that at intermediate scales (I=30) the spectra obtained
by global and regional inversions differ by as much as a factor of 10-30. One of
their arguments for the presence of significant intermediate-scale heterogene-
ity is the complexity of long-period surface-wave spectra due to multipathing



and the associated interference effects.

We generate models with type I and II statistics shown in Figure 6. De-
tails of the model generation are given in the Appendix. Figure 7 shows
5 random model realizations of each spectral type. Clearly spectral type [
contains mainly continent-scale features while type II contains a significant
amount of energy at scales down two &~ 100 km wavelength.

To test the spectral properties of the synthetic models we average the
power spectra of several realizations for each type. Numerical tests show
that at least 5 power spectra of different realizations have to be summed to
achieve an accuracy of 5% for the decay rate. Results are shown in Figure
8. The power spectra display the characteristic corner frequency and the
spectral decay which was imposed during the generation of the models.

2-D models of S-velocity perturbations are obtained by superimposing
several lateral 1-D functions weighted by depth-dependent orthogonal func-
tions. Details about the 2-D model generation are given in the Appendix.
Sections of models thus obtained are shown in Figure 9. The S-velocity per-
turbations for all the simulations described below are tapered down to zero
between 500km and 600km depth. There are no lateral velocity perturba-
tions below 600km depth. It is important to note that the 2-D perturbations
vanish near the axis of rotational symmetry § = 0 to avoid focusing effects.
The perturbations are imposed for § >10° .

In the following we investigate synthetic seismograms obtained for the
model types just described. All models have 2-D S-velocity perturbations
according to spectral types I or II from Figure 6. The models considered
below have maximum velocity perturbations of 12% corresponding to a root-
mean-square perturbation of 3.2%.

4.1 Synthetic seismograms

We calculate synthetic seismograms for perturbations of types I and II added
to the isotropic part of PREM with the following set-up. The mantle is
sampled in depth by 578 grid points, leading to a depth spacing of 5.0km. The
upper part of the mantle (0-320km depth) is defined on a grid of size 2560 x 64,
while the bottom part (320-2891km depth) is defined on a 1280x512 grid. We
focus on S and S5 phases, which are frequently used in global tomographic
studies. Seismograms of length 1 hour (12000 time steps with time increment
dt = 0.3s) are calculated for epicentral distances 50-150° with a receiver



spacing of 1/3° . Windows containing S and SS arrivals are extracted using
ray-theoretical travel times.

Seismograms for Sqi at a receiver sampling of 1 degree are shown in Fig-
ure 10 for a dominant period of 25 seconds for epicentral distances 100-150°
. The seismograms shown in Figure 10 were obtained for a 2-D realization of
spectral types I (top) and II (bottom) for different maximum perturbation
amplitudes. In the context of seismic-velocity anomalies and their relation
to tectonic features the small and large perturbation amplitudes may repre-
sent regions of little (e.g. cratons) and high (e.g. island-arc regions) tectonic
activity.

Concerning the Sgg phase we can make the following observations: (1)
For model type I the S waveform is essentially undisturbed even for large
perturbations; (2) for model type Il the waveform begins to be affected by
the scattering for perturbation amplitudes greater than 4%.

From the same set of seismograms we extract time windows containing
the SS phase. These are shown in Figure 11. For model type I similar
observations can be made as for the S (Sai) phase. The waveform — in the
spherically symmetric case the Hilbert transform of the S phase (Choy and
Richards, 1975) — is hardly affected by the velocity perturbations even at
large perturbation amplitudes (12%). However, the S.S-waveforms of model
type II are severely distorted for perturbations larger than 4%. It is worth
noting that most of the scattered energy in Figure 11 (bottom) is precursory
to SS.

How does the waveform distortion depend on the dominant period of the
wavelet used? For long-period wavelets (75 seconds) the situation is quite
different (see Figure 12). Although there still is a considerable difference
between the two model types, the waveforms for model type II are much less
distorted than at a dominant period of 25 seconds. We try to quantify this
frequency dependent SS—waveform distortion in the next section.

4.2 Frequency-dependent effects on the waveform

To describe the frequency-dependent scattering effect we process the SS-
windows in the following way: (1) Find the time delay 7 of the perturbed
phase with respect to a reference (PREM) wavelet. (2) Correct the time
delay and calculate a scattering index s(7T') (normalized root-mean-square
dispacement misfit in a time window of length 27, T being the dominant



period) according to
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This processing is carried out for the seismograms shown in Figures 11
and 12, for periods from 20-110 seconds and 50 receivers between 50° and
150° epicentral distance and for four other simulations with the correspond-
ing spectral properties. For each model set-up the scattering index is thus
averaged over 5 simulations. We suggest that the scattering index obtained
for the different model types is representative for the particular spectral prop-
erties.

The results are shown in Figure 13. For spectral type I (Figure 13, left)
even for large model perturbations (12%) the average waveform distortion
does not exceed 7%. In the case of spectral type II (Figure 13, right) there is
a rapid increase in waveform distortion for periods <30 seconds. In the long
period limit the convergence of the perturbed and unperturbed waveforms is
more rapid for models of type I.

4.3 Frequency-dependent effects on travel times

We now look at the frequency dependence of the spectrum of S5 travel-time
fluctuations measured at the surface. The model considered is of spectral
type II (see Figure 6). The maximum perturbation amplitude is 6%, which
is a likely underestimate of the strength of heterogeneity in the upper mantle
judged by results of surface-wave tomography (e.g. Zielhuis and Nolet, 1994).

The dense and regular receiver sampling (1/3° between 50° and 150° )
allows us to achieve high accuracy in the travel-time spectra at intermediate
scales (1< 300). The travel times are determined by maximizing the cross-
correlation between perturbed and unperturbed S5 waveforms. Travel times
are picked from seismograms of three different dominant periods (25, 50, and
100 seconds). Examples are shown in Figure 14. While there is overall a
good correlation between the travel-time fluctuations, they tend to be larger
and show more details at shorter periods.

To obtain stable results for the travel-time spectra we sum power spectra
from 5 different model realizations for each of the three frequency bands
considered. The decay rate of the stacked power specta is determined by
linear regression in the intervals indicated below.
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At high frequencies (dominant period 25 seconds), the power spectrum of
the travel-time fluctuations has the same decay rate as the underlying model
perturbations. At 50 seconds dominant period the characteristics of the
spectrum change. The onset of the decay is shifted towards lower harmonic
degrees. In addition, the decay rate changes near harmonic degree 1 = 40.
Up to harmonic degree 40 the decay is slightly faster than for the model
perturbations, while for harmonic degrees above 40 the slope is greater by a
factor of 2. These effects are even more pronounced at a dominant period
of 100 seconds. The onset of the spectral decay seems to be shifted down
to degree 1=10. While the decay below 1=35 reflects roughly the spectral
properties of the velocity perturbations the decay beyond 1=35 is much more
pronounced.

It is instructive to consider the spectral ratio of the results shown in
Figure 15. The spectra of the two longer-period travel-time fluctuations (50
and 100 seconds) are divided by the power spectrum obtained for a dominant
period of 25 seconds. The results shown in Figure 16 further illustrate the
dependence of the corner and decay of the spectra on the dominant period
of the wave field propagating through the perturbed region.

5 Discussion and Conclusions

The goal of this study was to analyze full-wavefield, synthetic seismograms
for random upper-mantle models with specified spectral properties and to
investigate frequency-dependent effects on waveforms and travel times of S
and SS waves.

The synthetic study we have undertaken is statistical in nature and re-
quires a number of wave simulations to be carried out in order to achieve a
stable estimate of spectra. Therefore, an efficient forward technique allow-
ing us to model complete seismograms for arbitrary homogeneous structures
was necessary. Accurate 3-D global simulations without assumptions on the
amplitude of perturbations are still too expensive computationally. We com-
promise in using a FD approximation to the wave equation in spherical co-
ordinates where all fields are invariant in . This leads to a 2-D problem
which can be solved efficiently on present-day parallel computers.

We extended the FD algorithm suggested by Igel and Weber (1995) to

grids with vertically-varying, lateral grid spacing. The grid refinement near
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the Earth’s surface is necessary from an algorithmic point of view (the arc
length of the angular grid increment increases with distance from the cen-
ter of the sphere) and from velocity model considerations (low velocities in
the crust and lithosphere require smaller grid spacing). The change in grid
spacing has been implemented using a high-order approximation. The rela-
tively thin layer (< 200km) with refined grid spacing leads to an additional
30% in computation time (as compared to a simulation without refinement).
However, to achieve the same accuracy without grid refinement, simulations
about four times longer would have been necessary. This is crucial for this
study where the investigation of random structures and their spectral prop-
erties requires many simulations to be carried out.

The scale of seismic-velocity perturbations in the Earth’s mantle is impor-
tant in many aspects of geodynamics (e.g. mantle convection, subduction,
hot spots, etc). In several studies, conclusions about mantle convection were
drawn from power spectra of global tomographic models (e.g. Montagner
and Tanimoto, 1991; Montagner 1994) or even directly from the power spec-
tra of SS-traveltime fluctuations (e.g. Su and Dziewonski, 1991, 1992). In
a recent study Passier and Snieder (1995) highlighted the discrepancy be-
tween the scales of velocity perturbations obtained from global and regional
tomography.

In this study we attempted to use an accurate full wave field algorithm to
examine the scattering effects of upper mantle models with known spectral
properties. Our simulations can be classified according to the characteristics
of the random velocity perturbations and the properties of the wavefield.
As far as the scattering medium is concerned the relevant parameter is the
correlation length. We define the correlation length @ as double the half-
width of the auto-correlation function of the lateral velocity perturbations.
For our model types I and II this length was estimated as a;=1600km and
arr=500km. The wave field is characterised by the dominant wavelength.
We determine the dominant wavelength for an average mantle S-velocity of
5km/s. The thickness d of the scattering region is 550km.

In Figure 17 our SS-wave simulations are classified in terms of period
and the length scales that control scattering phenomena: the scale length of
heterogeneity and the widths of the relevant Fresnel zones. The Fresnel-zone
width at the bounce point is calculated assuming an epicentral distance of
100 degrees and surface focus. The width of the Fresnel zone beneath the
receiver is computed for the middle of the heterogeneous region, i.e. at a
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depth of 275 km. We expect scattering effects or diffraction to be significant
where the width of the first Fresnel zone exceeds the scale length of the
inhomogeneity. Where the Fresnel zone is narrower than one correlation
length we expect scattering effects to be insignificant, that ray theory apply,
and that the spectral properties of the arrival-time fluctuations reflect the
spectral properties of the velocity perturbations.

The classification of our simulations corresponds well with the results de-
rived from the synthetic seismograms if we assume that the measured vari-
ations of time are dominated by contributions from the region immediately
beneath the receiver. The widths of the Fresnel zones in the region beneath
the receivers correspond to harmonic degrees | = 53, 39, and 29, respectively
for dominant periods of 25, 50 and 100 seconds. For models of type I little
power exists beyond harmonic degree 30 and as all the Fresnel-zone widths
lie below the characteristic scale of the heterogeneity scattering effects are
small. This interpretation agrees with the results of our simulations. For
models of type II significant power exists up to degree 50. The width of
the Fresnel zone for 25 second waves lies below the correlation length of the
medium. We therefore expect the heterogeneity distribution to be mapped
into the travel-time fluctuations unaffected. This is the result of our simula-
tions (see Figure 15). At 50 seconds the Fresnel-zone width is comparable to
one correlation length. We therefore expect a marginal effect as we do indeed
observe in our simulations. At 100 seconds the Fresnel-zone width exceeds
one correlation length and scattering effects are more significant.

It is interesting to compare the harmonic degree at which a bend appears
in the spectra in Figure 15 to the harmonic degrees corresponding to the
widths of the appropriate Fresnel zones. A bend occurs in the spectrum for
50 second waves at 1=40-50. For 100 second waves a similar bend appears at
1=30-40. This corresponds crudely with the calculated Fresnel-zone widths
which translate into harmonic degrees 1 = 39 and 29 for 50 and 100 second
waves respectively. This indicates that the apparent bends in the spectra in
Figure 15 represent the onset of scattering/diffraction effects. No clear knee
is evident in the spectrum for 25 second waves.

The above discussion ignores contributions to the travel-time fluctuations
from the surface bounce point. The widths of the Fresnel zones at the bounce
point correspond to harmonic degrees | = 3, 5, and 8 for 100, 50, and 25
second waves respectively. Thus we expect all travel-time signal carried by
the S5 waves from the bounce point to map into the lowest harmonics. That
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signal therefore affects the spectrum marginally, although it may enhance
the spectral plateau at low degrees somewhat in relative terms and thus
artificially contribute to the spectral decay at around degree 1=10.

We conclude that the travel-time fluctuations of long-period S5 waves
are dominated by structure beneath the recorder. Differential S5 - S times
effectively eliminate that contribution and carry the signature of structure
beneath the bounce point of the S5 wave. However, that signature is ex-
pected to be severely smoothed by scattering/diffraction effects.

Our synthetic modeling suggests that — as far as S, 55 and 55— 5 studies
are concerned — the discrepancies reported by Passier and Snieder (1995) are
at least in part due to finite-frequency effects of wave propagation. If the
travel-time perturbations observed at the Earth’s surface do not reflect the
scale of the underlying mantle, it is impossible for delay-time tomography
to model the power spectrum of mantle heterogeneity correctly. Similarly, if
phase-velocities measured along the Earth’s surface do not reflect the details
of the structure of the mantle beneath, that detail cannot be recovered by
inversion. Waveforms and amplitudes are necessary to model Earth structure
in detail.

The results shown in Figure 13 suggest that the frequency-dependent
effects on the waveform are sensitive to the scales and amplitudes of per-
turbations present in the upper mantle. This points to possible processing
techniques which should be used in combination with travel-time processing
when estimating the power spectrum of mantle velocity perturbations. Gud-
mundsson (1996) studied the effects of frequency on waveform distortion and
travel-times. He concluded that — depending on the bandwidth — waveform
distortion could be minor while diffraction effects on timing are significant.
His results and our synthetic modeling suggest that even though waveform
distortion may be significant, it may not be clear from a single seismogram
(e.g. Figure 11).

The power spectra in Figure 15 demonstrate that the characteristics of
the power spectra of S5 travel-time fluctuations are frequency dependent.
The slope of decay extracted from the power spectrum varies with the fre-
quency band at which the power spectrum was determined. For example, at
around [ = 100 (~400km wavelength), the power spectrum determined at
25 seconds dominant period contains around 10 times more energy than the
one determined at a dominant period of 50 seconds. This implies that con-
clusions on the scale of mantle heterogeneities from long-period seismograms
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may be erroneous if these finite-frequency effects are not taken into account,
e.g. by using more accurate complete wave field modeling.

It is important to note that — since our models are invariant in ¢ and thus
two-dimensional — the effects we described in this paper are conservatively
described. For 3-D models with the same spectral properties we expect the
filtering effects to be even more pronounced.
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Appendix: Generation of velocity perturba-
tions

We generate 1-D models with power spectral properties shown in Figure 6.
Using the relation between wavenumber k and harmonic order [ kR = [41/2,
R being the radius, we describe the amplitude spectrum as a function of
harmonic order. Perturbations are then calculated according to the defined
spectrum as follows

(1) generate a random (white) phase spectrum [—=, 7]

(2) modulate complex phase spectrum with predefined amplitude
spectrum to define the Fourier spectrum

(3) inverse FFT to obtain space domain representation

(4) scale to desired maximum perturbation.

(5) modulate perturbation with a prescribed function of depth.
Choises of amplitude (power) spectra and the depth modulation are described
in the main body of the paper. Examples of perturbations calculated in this
way are shown in Figure 7. (The analogy in 3D spherical coordinates would
be to predefine the spherical-harmonic amplitude spectrum and distribute
the power within each degree randomly among all its orders).

To make the models more realistic, incoherence in depth is introduced.
Lateral perturbations are weighted with the set of depth-dependent functions

falz)=1, n=0.

nmz

fn(2> = SiH(T), n=13,..
Ja(2) = cos(=2), m=24,.. (8)

and 2-D velocity perturbations Avg(z,8) are obtained as

Avy(z.0) = éwngnw)fn(z» (9)

where ¢, (0) are the lateral perturbations, and w,, are weights. Examples of
2-D perturbations obtained for the spectra in Figure 6 are shown in Figure 9.
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We use m = 5 for all 2-D models. For spectral type I the weights in equation
(8) are wy = wy = 1.0, w3 = wyq = 0.8, w4 = ws = 0.4, and for spectral type
IT all weights are unity.
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O'rq) interpol.

Figure 1: Staggered grid used in the FD scheme. At the top of the model the
angular grid spacing A# is increased by a factor of 2. The radial grid spacing
Ar is constant throughout the grid. The Earth’s surface and the CMB are
modeled with a free-surface boundary condition. At the level of changing
angular grid spacing, /2 levels of interpolated o,5 components have to be
added to connect the two domains (L being the length of the space operator,
for the purpose of this figure [ = 2). The angular domain is 0-7.
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Figure 2: The staggered FD grid close to the axis § = 0. The equations of
motion are singular at # = 0. At the axis of symmetry u, = 0 and o,, =0
are imposed by symmetry. Note that a directional force input at a grid point
(4+) next to the axis of symmetry leads to a toroidal ring source. The grid is
extended L/2 + 1 levels beyond 6 = 0, i.e. to the left, where L is the length
of the space operator, to enforce the boundary condition. For the purpose of

this graph L = 4.
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Figure 3: Comparison of DSM (bold) and FD seismograms for the isotropic
part of PREM. The dominant period is 20 seconds. Some arrival times of
S phases are marked by arrows. Top: Epicentral distance 80 degrees. (the
direct arrival is a superposition of S and SeS). Bottom: 140 degrees.
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Figure 4: The effect of the change in grid spacing at the top of the model for
different frequencies (25, 35, and 60 seconds dominant period). The source
is at the surface. The model is the isotropic part of PREM. Arrival times of
some phases are marked by arrows. For each frequency band three seismo-
grams at an epicentral distance of 80° are shown: I. Reference seismogram
obtained with a very dense grid (5120x1024); II: Seismogram for a 1024 x256
grid; ITI: same as I, but with a 2048x 32 refined grid at the top of the model.
The accuracy of the surface waves is considerable improved by the grid re-
finement.
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Figure 5: Top: Lateral velocity perturbations which were added to PREM
at the top of the mantle. The perturbations are coherent down to a depth
of 250 km. Bottom: Travel-time perturbations for S (Sgg) obtained by the
Huygens method (solid line, Witte et al., 1995), and those obtained with the
FD method (dots). The sampling of the FD seismograms was 2/3 seconds.
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Figure 6: Power spectra of lateral velocity perturbations suggested by Passier
and Snieder (1995) as representative of global tomographic models (type I,
solid) and regional tomographic (and other) models (type I, dashed).
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Figure 7: Realizations of models of lateral shear-velocity perturbations for
the two types of spectra shown in the Figure 6.
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Figure 8: Power spectra obtained by stacking five spectra of the realizations
shown in Figure 7. Straight lines correspond to linear regressions. The corner
of spectral decay and the decay rate are well matched (the error of the slope

is <5%).
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Figure 9: Two-dimensional models for the two types of power spectra. The
perturbations are limited to the top 500 km. Top: type I; Bottom: type II.
See text for details about the depth dependence.
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Figure 11: FD seismograms for the S5 phase (dominant period 25 seconds)
and the PREM model (top left), with heterogeneity according to spectral
types I and II. superimposed (right). Same models as in Figure 10.
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Figure 12: FD seismograms for the S5 phase (dominant period 75 seconds)
and the PREM model (top left), with heterogeneity according to spectral
types I and II. superimposed (right). Same models as in previous Figure.
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Figure 13: The mean scattering index s(7T') (defined in the text) as a function
of dominant period for 5 simulations of each model type. Results are shown
for the two types (I and I1) of spectra and different maximum perturbation
amplitude (4, 8, and 12%). Spectral type II is characterized by a rapid
increase of waveform distortion at dominant periods <30 seconds.
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Figure 14: S5 travel-time perturbations determined from seismograms of
varied dominant period (25, 50, and 100 seconds) between 50 and 150 degrees
epicentral distance. The receiver spacing is 1/3 degrees.
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Figure 15: Power spectra of S5 travel-time fluctuations determined in dif-
ferent frequency bands. In each case spectra for 5 random realizations using
Earth models with identical characteristics are stacked. The model spec-
tra are as in Figure 8 (lower). The underlying model perturbations have a
corner at [ = 20 and a slope of [72. The maximum model perturbation is
6%. Lines are fitted in various intervals. With increasing period the corner
shifts towards lower orders and the decay rate in particular for order [ > 40
increases.



3.0

7 25/100
™~

2.0 ' =50 | ]

Log spectral ratio

1.0 1.5 2.0
Log harmonic order

Figure 16: Spectral power ratio of the results shown in Figure 15. Solid line:
ratio of power spectrum for dominant period of 25 seconds divided by power
spectrum for dominant period of 50 seconds. Dashed line: Spectrum for 25
seconds divided by spectrum for 100 seconds period.
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Figure 17: Classification of our S.S-wave simulations in terms of period and
the lengths scales which control scattering phenomena: the scale length of
heterogeneity and the widths of the relevant Fresnel zone. The dashed hor-
izontal lines are the correlation lengths for model types I and II. The solid
symbols represent the widths of the first Fresnel zone for the three domi-
nant periods we examined immediately beneath the receiver and around the
surface bounce points.



