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Abstract

A new, hybrid finite-difference (FD) method for 3-D global wavefield modeling is presented. It
enables high-frequency studies of wavefield effects of confined 3-D structures, such as plumes,
on a teleseismic wavefield that has travelled through an axi-symmetric background model.
For such 3-D wavefield studies full-3-D waveform modeling methods can be used (e.g. Ko-
MATITSCH AND TROMP [2002]) which is however restricted to low frequencies due to still
existing limitations in computer power. To overcome this problem, hybrid approaches have
been developed (e.g. WEN AND HELMBERGER [1998]; WEN [2002]; CAPDEVILLE et al. [2002,
2003]), combining existing methods with the aim of extending the frequency range of simula-
tions. We present a method that combines a global axi-symmetric FD algorithm with one for
a confined 3-D spherical section. The teleseismic global wavefield through an axi-symmetric,
or standard 1-D model can be calculated with a 2-D method that takes advantage of its axi-
symmetry and thus correctly takes into account 3-D geometrical spreading behavior. It is
passed to a 3-D spherical section that can include an arbitrary, confined 3-D structure im-
plemented in the same background model as was used for the axi-symmetric domain In this
spherical section the 3-D wave equation is solved allowing for studying the 3-D wavefield ef-
fects of the structure.

The method is applied to a plume model that is placed in PREM at an epicentral distance of
90 degrees. The 3-D effects of the plume on the SH-wave is examined including conversions
to P and SV waves.



Introduction

Numerical modeling of global wave propagation is of eminent importance for modern seismol-
ogy. Synthetic seismograms of standard 1-D Earth models such as TASP91 (KENNETT AND
ENGDAHL [1991]) or PREM (DZIEWONSKI AND ANDERSON [1981]) serve as references.Modeling
the effects of specific structures in the Earth such as subduction zones, plumes or ultra-low
velocity zones at the core mantle boundary on the seismic wavefield and understanding how
these effects can be used to image these structures is another important field for numeri-
cal modeling. Moreover, full-waveform inversion techniques are under development (adjoint
method, time-reversal imaging, e.g., TROMP et al. [2005]) and will be feasible in future due
to increasing computer power and the existence of adequate 3-D global wavefield modeling
methods. This will open up a new era in imaging the Earth’s interior and in exploiting the
entire information that is delivered with seismograms.

To date, a variety of computer programs and methods are available to generate synthetic
seismograms, the classical and most popular ones being the reflectivity method (FUCHS AND
MULLER [1971]), the WKBJ-method (CHAPMAN [1978]), and normal mode summation (e.g.
CAPDEVILLE et al. [2000]).

Complete methods for numerical wavefield modeling can achieve arbitrary accuracy but
can require enormous computational resources. They solve the partial differential equations
of the full wavefield.Direct methods include the Finite-Difference method, the Finite-Element
method, the Finite-Volume method, pseudospectral methods (such as the Fourier and the
Chebychev method), and the Spectral Element method.

A hybrid finite-difference method

This section briefly summarizes the finite-difference method, motivates the use of hybrid meth-
ods for global wave propagation, reviews finite-difference methods for wave propagation in
spherical media and describes the construction of a hybrid finite-difference method from two
of the approaches.

The finite-difference method

Finite Differences (FD) have widely been used to numerically propagate seismic waves. Com-
prehensive reviews of the method and their application to seismic wave propagation have been
given recently by Moczo et al. [2004] in the framework of the European SPICE project or
will be published in near future (Moczo et al. [2006]). The major advantage of the method
is its relative simplicity and the use of local operators, allowing for simple model splitting and
thus easy parallelization of the algorithms.

Several FD-codes have been developed by IGEL and co-workers (e.g., IGEL [1993], IGEL
AND WEBER [1995], IGEL AND WEBER [1996], IGEL AND GUDMUNDSSON [1997], THOMAS
et al. [2000]) and served as a basis for further developments. For example, a Cartesian 3-D FD
code was developed by STRASSER [2001] for applications on wave propagation through mantle
plumes at regional distances. This work was promising since it showed observable effects of
plumes consistent with the work by TILMANN et al. [1998]. It also demonstrated the need to
use spherical geometry when one wants to study seismic effects of plumes at larger distances.

Most FD approaches are based on the velocity stress formulation (VIRIEUX [1986]) com-
bined with a staggered grid. Therefore, both will be explained in the following. The velocity-



stress formulation of the seismic equation of motion for an elastic anisotropic medium with a
moment tensor and single force excitation reads (e.g. M0OCZO et al. [2006])

B’Ui

Py = Viloy + M) + fi (1)

for generalized version of Newton’s second law (action principle), and
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for the generalized Hooke’s law that assumes that the elastic properties of the medium are
constant in time and describes the elastic behavior of the material. The elasticity tensor
cijkl contains 81 components, of which only 21 are independent due to the symmetry of the
stress and the strain tensors and energy conservation constraints. For the case of an isotropic
medium it reduces to the two elastic moduli, Lamé’s second constant A and the shear modulus
. The moment tensor M;; represents the double couple forces, single sources are given by f;.

The principle of the FD method for solving these two partial differential equations lies in
the approximation of the spatial functions by truncated Taylor series. For the velocity v this
reads
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leading — for example, for a centered difference scheme — to
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for the second order approximation of the first derivative. The approximation error caused by
the truncated terms of 3 with respect to 4 is proportional to Az?.

To apply finite-differences to the seismic wave equation, it is necessary to discretize the
stiffness tensor c;;;, the density p and the wavefield v; on a spatial grid. To do so most FD
methods use a “staggered grid” where the wavefield variables and the material properties are
not defined on the same grid points. This reduces the approximation error from Az? to AT”CQ
while not requiring more memory.

The time evolution is approximated using the same Taylor series truncation which leads

to
ov(t)
ot

The cycle for solving the wavefield equations consists of updating the velocity values from
the neighboring ones, then updating the stress values with the new velocity values and finally
extrapolating the values in time using eq. 5.

Modern FD programs mostly use a 4th-order spatial approximation instead of the 2nd-
order scheme shown above for the sake of simplicity. Moreover, if not modeling the entire globe,
there are unphysical model boundaries leading to artificial reflections. These are avoided using
so called “absorbing boundaries”, that is, a rim of grid points where the function values are
multiplied with an decreasing factor <1. They continuously damp the wavefield towards the
model boundaries and this weakens the wave and its reflections from the model boundary such
that they do not influence the modeled seismograms.

o(t + At) = o(t) +

At (5)



Finite difference methods for spherical media

When considering wave propagation on a global scale, it is useful to turn to spherical coor-
dinates since the Earth is in first approximation a sphere. When expressing the elastic wave
equation (1) in spherical coordinates (r, 6, ) one obtains (e.g. NISSEN-MEYER [2001]):
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If we also assume the model to be rotationally symmetric (axi-symmetric) with the § = 0
line as symmetry axis the equations become invariant with respect to . Thus, all derivatives
with respect to ¢ are vanishing. Then it reads (e.g. THOMAS et al. [2000]; IGEL AND WEBER
[1995)):
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Note that now the P- and the vertical S waves (PSV, first two equations) are decoupled from
the horizontal S-waves (SH, last equation). Due to the decoupling of SH- and PSV waves in
the axi-symmetric case, they can be treated separately and independent of each other.

On the basis of equations 8 and 11 two main developments of finite-difference codes exist
for global wave propagation simulation, the axi-symmetric, and the spherical section approach.
For global wave propagation, an axisymmetric SH-wave FD code was developed by CHALJUB
AND TARANTOLA [1997] and CHALJUB [2000]), and extended to higher orders by IGEL AND
WEBER [1995]. The concept of axisymmetry was transferred to the P-SV case by IGEL
AND WEBER [1996] and has been further modified by JAHNKE [2005] with the extension to
higher orders and the propagation through the inner core. Since axisymmetric computations
are carried out in a 2D domain, these codes allow one to achieve a much higher resolution
than with a full 3D domain. Despite the use of 2D domains, this method is capable of
accurately reproducing the effects of three-dimensional geometrical spreading. Because of
the axisymmetry of the problem, the results can be extended to three dimensions by simply
rotating the wavefield around the axis.

The input of axi-symmetric (which includes all 1-D) Earth models such as PREM (DZIEWONSKI
AND ANDERSON [1981]), IASP91 (KENNETT AND ENGDAHL [1991]) or AK135 (KENNETT
et al. [1995]) is adequate for many issues in global seismology and the results give helpful
constraints in terms of 1D reference model solutions e.g., for tomography. However, the im-
plementation of sources or regional structures in the Earth require these be extended to rings
(or, cylindrical volumes if including the axis) due to the axisymmetry (figure 1). For example,
a plume at some epicentral distance is extended to a ring structure with the radius of the
epicentral distance; thus no true 3D study of wavefield effects of such an object can be carried
out using the axi-symmetric approach on its own.



Figure 1: Illustration of axi-symmetry. The source (yellow point) is centered at the axis.
The heterogeneous structures along a cut plane through the center are independent of ¢ and
therefore ring-like (grey). Figure modified after JAHNKE et al. [2002].

Concerning seismic sources, this problem can be overcome by placing a point source at (or
technically actually close to the axis. The assumption of a point source still permits progress
on many important studies that utilize teleseismic data at high frequencies.

NISSEN-MEYER [2001] developed a 3-D FD method in spherical geometry, however limited
to spherical sections to avoid singularities and diminishing grid spacing towards the axis
and the center, and applied it to simulate wave propagation through subducting slabs (IGEL
et al. [2002]). Reflections from the artificial model boundaries are suppressed using absorbing
boundary conditions. This method is particularly useful to look at continental scale wave
propagation, when the spherical nature of Earth and its effect on the wave field has to be
taken into account and lateral heterogeneities have considerable strength (e.g. subduction
zones, continental margins, etc.).

In summary, both the axisymmetric approaches as well as the spherical section approach
suffer from severe restrictions when applied to global wave propagation through lateral struc-
tures such as plumes or subduction zones at teleseismic distances.

In general, it can be stated that for teleseismic wavefield studies of locally confined 3-D
structures in a radially symmetric background model, full 3D calculations are a computational
waste since the wavefield propagates most of the distance in a radially symmetric Earth model
that is more efficiently dealt with using a 2D computational domain or alternative techniques.
On the other hand, with the presence of spherical section codes there are tools for computing
the regional wavefield effects around 3-D structures. Thus a combination of axi-symmetric
and spherical sections approaches towards a hybrid algorithm appears desireable.



The hybrid finite-difference approach

Hybrid methods for global wave-propagation

At present, hybrid methods are a hot topic in computational global seismology since they are
able to overcome the drawbacks of the individual methods while combining their advantages.
Recently developed hybrid methods for teleseismic lower mantle studies (WEN AND HELM-
BERGER [1998], WEN [2002], combine 1D and 2D methods (generalized ray theory, 2D-FD
simulations, and Kirchhoff theory).

Another approach, closer to the hybrid idea presented and realized within this paper is
the combination of the spectral-element method for spherical geometries with normal-mode
approaches (CAPDEVILLE et al. [2002, 2003]). It couples the normal mode solution for the
inner, radially symmetric part of the Earth (the inner and outer core and for 3-D upper mantle
studies also the lower mantle) with the SEM for the entire or the upper mantle, respectively.
A disadvantage of the method is, that the interface between the domains has to be strictly
spherically symmetric, thus precluding the incorporation of effects due to CMB topography
or the ellipticity of the Earth (KOMATITSCH AND TROMP [2002]).

Hybrid finite-difference approach

Coming back to the two finite-difference approaches presented in the last section — the axi-
symmetric and the spherical section codes — it is evident that there are obvious drawbacks
with either of the approaches when attempting to model scattering effects of highly localized
3-D structures (from here on, we will take a plume as an example). In order to overcome these
limitations we decided to combine the approaches with the goal of exploiting the long-distance
simulation capabilities of the axi-symmetric approach with the complete 3-D solution in a
localized region, thereby considerably widening the frequency range that can be modeled with
current computer hardware. The idea of this hybrid approach is to calculate the propagation of
the wavefield from the source through a axi-symmetric (e.g., 1-D) Earth model over teleseismic
distances using the axisymmetric approach. At the distance where the plume is to be modelled
the axi-symmetric wavefield is passed to the boundaries of the 3-D spherical section (figure
2) and continues to be calculated in full 3D towards the 3D plume model. Thus, within
the 3D-section, true 3D wavefield effects like scattering and refraction can be modelled using
an incoming teleseismic wavefield that can up to now not be calculated in 3D for higher
frequencies with a reasonable effort.

The lateral extent and position of the 3-D spherical section with respect to the source
(the epicentral distance of the target 3D object) can be freely chosen, keeping in mind that
close to the polar axis we are approaching singularities in the grid. Thus, centering the 3D
section around the equator (e.g. 65-115°) is ideal since the lateral grid spacing within the
spherical section is exposed to the least variations. This is an appropriate distance range for
many teleseismic studies. At closer distances, the 3D spherical section code may be used alone
without excessive computational effort.

An advantage for the hybrid method presented here arises from the fact that for the axi-
symmetric case, the SH and the PSV components of motion are decoupled — as mentioned
above. For the hybrid method that means that it is possible to combine only one of the
two axi-symmetric codes with the 3-D spherical section code and to study the effect of one
type of motion alone. This is especially interesting for studying conversions from one type of



Figure 2: Hybrid axisymmetric/3D-approach. The global wavefield is computed on an axi-
symmetric 2D-domain with the source centered on the axis. It is then passed to the regional
3D spherical section that is located at some distance and includes the 3D structure of interest.

motion induced by the 3-D structure to the other. An example for this will be shown in the
application section.

Even if conceptually simple, care must be taken when combining the two axisymmetric and
the spherical section algorithms. In order to guarantee a reliable interplay of the three codes
that form the hybrid code it has to be made sure that the grid spacing and the background
model are identical, and that the time step as well as the time evolution cycle are synchronized.
This is ensured by using a hybrid initialization subroutine for both sub-codes (see fig. 3).

The calculation of wave-propagation in the 3-D section only starts when energy arrives at
10 grid points around the spherical section for the first time. For the serial version of the code
this saves a lot of computation time since the wave-propagation over the teleseismic distance
is only computed with the fast 2-D axi-symmetric algorithm. This is another advantage of
the hybrid concept presented here.

After the 3-D section code is switched on the codes must in each time step run either
one after the other or in parallel (for a parallel algorithm) during the time evolution loop
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Figure 8: Flowchart of the hybrid code: full lines and boxes represent the program flow of a
parallel algorithm, the dahed lines and boxes are for serial execution of the code. Note that
not every component (SH, PSV, 3D) has to be switched on. It is possible to run the code
omitting either SH or PSV, and the 3-D section (and thus the communication parts) may only
be switched on after the first arrival of energy at its edges in order to save computaton time.
The subroutines for gridding and model initialization get their parameters from a common
parameter file. In the hybrid initialzation part the time step is derived from the stability
criterion and the model parameters of all the sub-codes.
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Figure 4: The hybrid grid (example for SH case). Several grid cells of the axi-symmetric SH
grid are shown together with one 3D grid cell of the spherical section grid. Different symbols
represent grid points with different variable defined there. Red symbols stand for variables
that are necessary to define horizontal shear waves.

of the velocity-stress cycle VIRIEUX [1986]. Moreover, the velocity-stress cycle of classical
finite-difference codes has to be split into seperate parts for velocity and stress, to enable
communication between the axi-symmetric and the 3-D codes after each part (see fig. 3).

The actual heart of the hybrid code is the interface between the axi-symmetric codes for
global wave propagation and the regional spherical 3D section. The r and 6 coordinates of
the gridpoints of the 3D section correspond to (i.e. spatially coincide with) the gridpoints of
the axisymmetric grid. For illustration, figure 4 shows the grid cell of the spherical section
3D-FD scheme and its position in the axi-symmetric SH 2D grid. Coupling of the grids and
thus of the two codes is done by communication of the wavefield information for the grid
points. In order to correctly pass the global wavefield to the 3-D code the first nop/2 (nop=
operator length) points of the front side and the bottom of the spherical section are set to
the corresponding velocity and stress values of the axi-symmetric code. This is done for every
time step (and for velocity and stress seperatly) and ensures a continuous flow of the global
wavefield into the 3-D box.

As an alternative to the program flow just presented the global axi-symmetric wavefield
may also be stored once for all since it does not change for the types of studies for which
the hybrid concept presented here is suited. In that case, instead of the execution of the axi-
symmetric code(s) the axi-symmetric wavefield has to be read from disk in the communication
subroutines. Depending on the actual setup and the disk access speed this might lead to a
significant reduction of computation time when carrying out computations with the same
configuration but many different models in the 3-D section. This option can be regarded as



using the spherical section code with “boundary conditions” determined by the global wavefield.

As a consequence of this way of coupling the codes the absorbing boundaries of the spherical
3-D code have to be modified. When feeding the axi-symmetric wavefield in the spherical
section code at the front and the bottom side, no absorbing boundaries can be used at these
sides. In consequence, waves running (back) towards the front end and the bottom of the
spherical 3D section are reflected at this feeding-in zone. However, since there are no sources
in the spherical section model itself — as it would be usual for FD modeling — and since the
main direction of wave propagation is towards the surface and the back end of the section
(where an absorbing boundary exists) this is not a severe limitation. Only waves reflected by
the plume or the surface or converted waves by the plume might run ’backward’ and are thus
reflected at the model end. By extending the size of the spherical section in - and vertical
direction the arrivals of these reflections at the receivers can be delayed such that they will not
appear on the seismograms at times were phases of interest show up. Extending the section
is not a significant waste of model space because the points that would have been necessary
for the absorbing boundaries can be spent for this purpose. Moreover, since it takes twice
the time for waves to run to the model and the reflected waves to come back every grid point
spent to extend the spherical section increases the delay significantly.

The same reasoning is used to justify circular boundary conditions that are necessary to
avoid refractions from the ’loose ends’ of the sides of the block, where derivatives can not be
calculated due to missing neighbors and absorbing boundaries can not be used either.

The general direction of energy, however, is towards the back side of the block. So from this
side the strongest reflections are to be expected. These can be damped away with absorbing
boundaries placed at the back-end of the block.

In addition, the restrictions on placing absorbing boundaries only apply to the components
that are communicated. Take for example the SH-case. Only SH-energy reflected at the
plume is reflected at the communication zone or appears on the other side due to circular
boundary conditions. Conversions showing up on other components can run into the absorbing
boundaries at all sides.

Verification

Comparison of seismograms produced by the spherical section part of the hybrid code with
the ones of the axisymmetric part provides a simple verification of the hybrid method since
the axisymmetric code is verified within the COSY project (IGEL et al. [1999]), while the
accuracy of the spherical section method is assessed by IGEL et al. [2002].

If both domains use the same model, the wavefields and thus the seismograms recorded at
the surface are supposed to be identical. This comparison is shown in fig. 5, where the first
onsets of the SH wave for receivers in both domains are shown together. fThe background
model used is the isotropic part of PREM without the crustal layer. For the 105°-extension
in the #-direction, 2000 grid points are used, and for the vertical direction down to the core-
mantle boundary 580 grid points are used. At a distance of about 81° (1545 grid points)
the 3-D spherical section grid begins. It extends 350 grid points (18.375°) in the 6-direction
(including 50 points for absorbing boundaries). and 250 points (13.125°) in the -direction.
The 3-D section is discretized with 180 grid points in the vertical direction which corresponds
to a depth of about 900 km, thus including the entire upper mantle. Computations were
carried out on a 2.8GHz Pentium 4-processor, required 1820MB of RAM and took about 39
hours.
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A point source function is used one grid point from the symmetry axis. The source
time-function can be arbitrarily chosen, with the possibility to use an impulsive (0-) source
excitation in time, which leads to seismograms that are Green’s functions, which can then
be convolved with any desired source wavelet. For the seismograms shown, a 20 s two-pole
Butterworth low-pass filter for the suppression of numerical noise was used. The waveforms
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Figure 5: Seismograms for A=82-99° epicentral distance calculated with the hybrid code.
Both domains, the axisymmetric (red line) and the 3D (blue line), use the PREM model. The
direct Sgy /ScSy-wave is shown. Deviations between the seismogram pairs observable from 97°
on result from absorbing boundaries that affect the 3D section from this distance on. At 99°
on the 3D signal is effectively down at zero amplitude.

are very similar, however, slight differences are observable. These might result from the
small differences in the dispersion relation between the two- and the three-dimensional case
and would thus be intrinsic to the hybrid method. Apart from that, it can be seen that at
higher epicentral distances the seismograms of the spherical section diminish due to the use
of absorbing boundaries at the back side of the section.

Application of the hybrid approach

As an illustration of the functionality of the hybrid method, we show an application on a
plume at about 90° epicentral distance. Only the axisymmetric SH code is coupled with the
spherical section code. This enables us to study conversion from SH to P-SV waves caused by
the plume.

The setup is the same as used for fig. 5, only that here, in order to obtain snapshots of
the wavefield, a band-limited source spectrum is required. We used 20 s as the dominant
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period for for a Gaussian source-time function. The plume at a epicentral distance of 88.75°
consists only of a conduit with a radius of 100 km and perturbations of densitity, P-, and S-
wavespeed of 10, 15, and 25%, respectively. These relatively high perturbation values were
used to enhance the delay due to the plume, because otherwise the deflection of the wavefront
would not be visible in the snapshost due to the ratio between wavelength and deflection. Fig.
7 shows the resulting snapshots for all components through different cross-sections through
the plume, or at the surface.
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Figure 6: Legend to the snapshot figures of the hybrid code. In the upper left the SH wavefield
of the axisymmetric domain is shown together with the symmetry axis and the position of the
3-D section. Below, the axisymmetric wavefield at the position of the 3-D section is enlarged.
To the right of that, the wavefield at the same position, but calculated with the 3-D code
is shown. Differences between these wavefield should be only due to the usage of different
models in the two codes (e.g. PREM in the axi-symmetric and PREM+plume in the 3-D
domain). The other images in the middle row are other cross-sections through the model,
all showing the transverse (SH) component. The upper and lower row show the radial and
vertical components, respectively. Both components contain PSV waves and since no PSV
energy is fed in by the axi-symmetric code, these can only been generated by conversions due
to lateral heterogeneities in the 3-D. model. The right column shows depth cross-sections
perpendicular to the direction of wave propagation, the middle column shows surface cross-
section, and the left one shows depth cross-sections in the direction of wave propagation, as
the leftmost column does for the axi-symmetric wavefield.
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Figure 7: Snapshots of the wavefield as calculated with the hybrid code. A legend for this
figure is given in fig. 6. The upper and the lower row show conversions caused by the plume.
In the middle picture (surface SH-motion) the healing behind the plume is clearly visible.
Absolute amplitudes are arbitrary and serve only for comparison. Plume boundaries are given
in blue.
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The panels of figure 7 show snapshots of the wavefield at different cross-sections (for a
legend see fig. 7) through the plume center (horizontal depth slices or at the surface) of the
three components (radial, transverse and vertical). Since only SH waves are fed in from
the axisymmetric code only the middle row (showing transverse, i.e. SH motion) gets a
signal. Motions on the other components are due to conversions at the plume. Conversion
seismograms are shown in fig. 8, for both the vertical (subfigure (a)) and the radial component
(b). In these figures the arrival times of the SH wave are marked as black lines. The conversions
concentrate in the epicentral distance range of the plume (cf. TILMANN et al. [1998]) and
behind it. Note also some converted signals before the arrival of the original SH-wave (e.g.
at 90°). This is due to conversion at greater depth and subsequent faster propagation of the
generated P wave. The two leftmost panels of the middle row in fig. 7 show the transverse
(SH) component of the axisymmetric domain (left) and the spherical section. They differ only
slightly, this is the difference in the wavefield caused by the plume.

Compared to other methods the parallel computation of the axisymmetric wavefield with
the 1D model along with the wavefield in the spherical section using a 3-D model has the
advantage that the undisturbed solution is always provided along with the seismograms that
are influenced by the 3D structure. A separate run for the background model (which is 1D)
alone, neede for comparison, is an overkill to the problem, when carried out in full 3D.

Parallelization

In order to achieve high-frequent wavefield simulations, workstation clusters or supercom-
pusters have to be used which requires parallel algorithms. The concept for parallelizing the
hybrid algorithm goes beyond simple classical FD domain decomposition and is presented in
the following.

Parallelization using domain decomposition and the Message Passing libraries (MPI) is
currently the standard way to obtain reasonable portability and performance of numerical
wave propagation codes even if the extra effort for parallelization is significant.

For the hybrid code a parallelization scheme based on MPI has been developed (fig. 9).
Apart from running the parallelized subcodes in parallel inter-code communication is neces-
sary. As a result of a long line of development and testing a scheme was developed that takes
advantage of the the possibility to define groups of processes within MPI, each with its own
communicator (e.g. MPI_COMM_SH in fig. 10).

Thus, it is possible to create a separate environment for each of the codes in a way such
that there is no interference of the codes for example if the same variable names are used in
the codes. This is an advantage since it allows development of the subcodes without much
consideration of the other codes, as long as the variables used for inter-code communication
are not affected.

Between these environments inter-code communication is possible using the global message-
passing communicator (MPI_COMM_WORLD). However, the development of the routines that pass
the axi-symmetric wavefield to the spherical section was the most time consuming task since
domain sizes of the individual codes differ in general. The concept of the resulting hybrid
communication scheme is shown in 10. It was implemented and tested on the Institute’s
Linux workstation cluster, and then, for production runs, transferred to the Bundeshoch-
stleistungsrechner (Hitachi SR-8000) at the Leibnitz-Rechenzentrum.
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Figure 8: SH to PSV Conversions caused by the plume. a) close up of radial component, b)
vertical component. When feeding the spherical section only with SH waves, a signal appearing
on the radial and vertical components can only result from conversions of SH to P-VS waves
by a lateral heterogeneity, i.e. the plume. The onsets of some SH-phases are given as a black
line, for reference. Note that some of the P-VS onsets here are earlier than these SH-arrivals,
because P-waves travel faster after conversion than SH waves.
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Figure 9: The complete parallelization scheme of the hybrid code with the axi-symmetric SH-
and PSV code and the 3-D spherical section code. The PSV-code uses m nodes and covers
the entire epicentral range (0-180°), with a vertical domain decomposition and a vertical, but
different parallel distribution of nodes. The SH-code only covers an epicentral range that
in this example slightly exceeds the 3D section’s back end (0-125°). It is parallelized in the
O-direction and uses n nodes. The 3D spherical section (here, 70-110°) again uses vertical
parallelization with k nodes. As an example, a plume coming from the 660’ is implemented
at an epicentral distance of 81°. Major discontinuities of the Earth are given in red dotted
lines, node or domain boundaries in black. Grey shaded regions are the absorbing boundaries
of the SH and the 3D code. At the right side at high epicentral distances the grid is shown
with the domain numbers for the PSV-code.
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Figure 10: The hybrid communication concept. In this example, 12 nodes are globally avail-
able for the hybrid code (global node numbering from 0-11). The global MPI-communicator
MPI-COMM-WORLD enables communication between all the nodes, and thus also inter-
code communication. The nodes are distributed on the different codes. For each code a MPI
sub-group for inner-code communication is set up, as well as node numbering for each code.
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Discussion

To study 3-D wavefield effects of spatially confined structures in the mantle such as slabs
or plumes an accurate modeling of 3-D wave propagation is necessary. However, full 3-D
methods, though available and more and more used (e.g. KOMATITSCH AND TROMP [2002])
are computationally still very expensive and are an overkill to the problem since most of the
Earth structure modeled is still only 1-D. In this study, we present a hybrid method that
combines an axisymmetric approach with a spherical section method. In this method the
propagation of the wavefield over the long epicentral distance range is modeled using a 2-D
computational domain allowing for an efficient computation with an axi-symmetric or 1-D
(e.g. PREM) background model. Around the structure of interest, the global wavefield is
passed to a confined 3-D spherical section grid, on which the full 3-D wavefield including the
interaction with the modelled structure is computed. An advantage is, that the expensive
calculation in the 3-D domain is only activated when energy approches the 3-D section, which
saves computation time.

This setup is ideally suited for parameters studies with a lot of parameter combinations for
confined structures and their interaction with the global wavefield at teleseismic distances. For
closer distances the spherical section code can be used alone. Moreover, the hybrid method
benefits from the possibility of considerung only one of the independent wavefields (SH or PSV)
due to their decoupling for axisymmetric models as used. Thus, the study of conversions (SH
to PSV and vice versa) is possible with the advantage to obtain the converted signals alone
and not mixed with the actual signals on the respective component.

We have shown that with this method a 3-D wavefield study is feasible on a desktop
PC that would require a 150 processor supercomputer for the same frequency and full 3-D
calculation. For the time until full 3-D calculations are feasible with an effort that allows for
mass calulations the hybrid method presented here might be a helpful tool for parameters
studies of confined structures in the Earth’s mantle.
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